Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 18(6): e2105211, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34850539

RESUMEN

Bismuth oxyselenide (Bi2 O2 Se) has emerged as a promising candidate for electronic and optoelectronic applications due to its outstanding electron mobility and ambient stability. However, high dark current and relatively slow photoresponse that originate from high charge carrier concentration as well as bolometric effect in Bi2 O2 Se inhibit further improvement of Bi2 O2 Se based photodetectors. Here, a one-step van der Waals (vdW) epitaxy synthesis of Bi2 Te2 Se/Bi2 O2 Se vertical heterojunction with type-II band alignment and high-quality interface is demonstrated. The crystal quality and uniformity of the heterojunction are supported by Raman, transmission electron microscopy and energy dispersive spectroscopy results. A photodetector based on Bi2 Te2 Se/Bi2 O2 Se heterojunction demonstrates steady photoresponse over a large wavelength range (532-1456 nm), with a high specific responsivity of 2.21 × 103 A W-1 at 532 nm and fast response speed of 50 ms. Moreover, field effect regulation allows for further improvement of the photoresponse performance of the heterojunction field effect transistor device, where the responsivity can be increased to 3.34 × 103 A W-1 with a 60 V gate voltage. Overall, the one-step vdW epitaxy process is a promising and convenient route towards constructing high quality Bi2 O2 Se based heterojunction for improving its photodetection performance.

2.
Small ; 18(3): e2104244, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34741412

RESUMEN

Ultraviolet detection is of great significance due to its wide applications in the missile tracking, flame detecting, pollution monitoring, and so on. The nonlayered semiconductor γ-Bi2 O3 is a promising candidate toward high-performance UV detection due to the wide bandgap, excellent light sensitivity, environmental stability, nontoxic and elemental abundance properties. However, controllable preparation of ultrathin 2D γ-Bi2 O3 flakes remains a challenge, owing to its nonlayered structure, metastable nature, and other competing phases. Moreover, the UV photodetectors based on 2D γ-Bi2 O3 flake have not been implemented yet. Here, ultrathin (down to 4.8 nm) 2D γ-Bi2 O3 flakes with high crystal quality are obtained via a van der Waals epitaxy method. The as-synthesized single-crystalline γ-Bi2 O3 flakes show a body-centered cubic structure and grown along (111) lattice plane as revealed by experimental observations. More importantly, photodetectors based on the as-synthesized 2D γ-Bi2 O3 flakes exhibit promising UV detection ability, including a responsivity of 64.5 A W-1 , a detectivity of 1.3 × 1013 Jones, and an ultrafast response speed (τrise  ≈ 290 µs and τdecay  ≈ 870 µs) at 365 nm, suggesting its great potential for various optoelectronic applications.

3.
Small ; 18(8): e2105599, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34881497

RESUMEN

2D ferroelectrics with robust polar order in the atomic-scale thickness at room temperature are needed to miniaturize ferroelectric devices and tackle challenges imposed by traditional ferroelectrics. These materials usually have polar point group structure regarding as a prerequisite of ferroelectricity. Yet, to introduce polar structure into otherwise nonpolar 2D materials for producing ferroelectricity remains a challenge. Here, by combining first-principles calculations and experimental studies, it is reported that the native Ga vacancy-defects located in the asymmetrical sites in cubic defective semiconductor α-Ga2 Se3 can induce polar structure. Meanwhile, the induced polarization can be switched in a moderate energy barrier. The switched polarization is observed in 2D α-Ga2 Se3 nanoflakes of ≈4 nm with a high switching temperature up to 450 K. Such polarization switching could arise from the displacement of Ga vacancy between neighboring asymmetrical sites by applying an electric field. This work removes the point group limit for ferroelectricity, expanding the range of 2D ferroelectrics into the native defective semiconductors.

4.
Angew Chem Int Ed Engl ; 61(33): e202206816, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35715388

RESUMEN

Highly-polarizable materials are favorable for photoelectric conversion due to their efficient charge separation, while precise design of them is still a big challenge. Herein a novel polar oxyselenide, Sr6 Cd2 Sb6 O7 Se10 , is rationally designed. It contains lateral sublattices of polarizable [Sb2 OSe4 ]4- chains and highly-orientated [CdSe3 ]4- chains. The intense polarization was evaluated by significant second-harmonic generation (SHG) signal (maximum: 12.6×AgGaS2 ) in broad spectrum range. The polarization was found to mainly improve the carrier separation with a much longer recombination lifetime (76.5 µs) than that of the nonpolar compound Sr2 Sb2 O2 Se3 (18.0 µs), resulting in better photoelectric performance. The single-crystal photoelectric device exhibited excellent response covering broad spectrum in 500-1000 nm with stable reproducibility. This work provides some new insights into the structure design of highly-polarizable heteroanionic materials for photoelectric conversion.

5.
Small ; 16(32): e2002312, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32627927

RESUMEN

Organic single-crystalline semiconductors show great potential in high-performance photodetectors. However, they suffer from persistent photoconductivity (PPC) due to the charge trapping, which has severely hindered high-speed imaging applications. Here, a universal strategy of solving the PPC by integrating with topological insulator Bi2 Se3 is provided. The rubrene/Bi2 Se3 heterojunctions are selected as an example for general demonstration due to the reproducibly high mobility and broad optoelectronic applications of rubrene crystals. By virtue of high carrier concentration on Bi2 Se3 surface and the strong built-in electrical field, the photoresponse of the heterotransistor is significantly reduced for more than two orders (from over 10 s to 54 ms), meanwhile the photoresponsivity can reach 124 A W-1 . To the best of knowledge, this operating speed is among the fastest responses in organic-inorganic heterojunctions. The heterotransistor also shows unique negative differential resistance under positive gate bias, which can be explained by photoinduced de-trapping of electron trap states in the bulk rubrene crystals. Besides, the rubrene/Bi2 Se3 heterojunction behaves as a gate-tunable backward-like diode due to the inhomogenous carrier distribution in the thick rubrene crystal and inversion of relative Fermi level positions. The findings demonstrate versatile functionalities of the rubrene/Bi2 Se3 heterojunctions for various emerging optoelectronic applications.

6.
Small ; 16(23): e2000228, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32346935

RESUMEN

2D wide-bandgap semiconductors demonstrate great potential in fabricating solar-blind ultraviolet (SBUV) photodetectors. However, the low responsivity of 2D solar-blind photodetectors still limits their practical applications. Here, high-responsivity solar-blind photodetectors are achieved based on 2D bismuth oxychloride (BiOCl) flakes. The 2D BiOCl photodetectors exhibit a responsivity up to 35.7 A W-1 and a specific detectivity of 2.2 × 1010 Jones under 250 nm illumination with 17.8 µW cm-2 power density. In particular, the enhanced photodetective performances are demonstrated in BiOCl photodetectors with increasing ambient temperature. Surprisingly, their responsivity can reach 2060 A W-1 at 450 K under solar-blind light illumination, maybe owing to the formation of defective BiOCl grains evidenced by in situ transmission electron microscopy. The high responsivity throughout the solar-blind range indicates that 2D BiOCl is a promising candidate for SBUV detection.

7.
Phys Rev Lett ; 125(4): 047601, 2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32794817

RESUMEN

Two-dimensional (2D) layered materials have been an exciting frontier for exploring emerging physics at reduced dimensionality, with a variety of exotic properties demonstrated at 2D limit. Here, we report the first experimental discovery of in-plane antiferroelectricity in a 2D material ß^{'}-In_{2}Se_{3}, using optical and electron microscopy consolidated by first-principles calculations. Different from conventional 3D antiferroelectricity, antiferroelectricity in ß^{'}-In_{2}Se_{3} is confined within the 2D layer and generates the unusual nanostripe ordering: the individual nanostripes exhibit local ferroelectric polarization, whereas the neighboring nanostripes are antipolar with zero net polarization. Such a unique superstructure is underpinned by the intriguing competition between 2D ferroelectric and antiferroelectric ordering in ß^{'}-In_{2}Se_{3}, which can be preserved down to single-layer thickness as predicted by calculation. Besides demonstrating 2D antiferroelectricity, our finding further resolves the true nature of the ß^{'}-In_{2}Se_{3} superstructure that has been under debate for over four decades.

8.
Nano Lett ; 19(8): 5410-5416, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31343178

RESUMEN

Piezoelectric two-dimensional (2D) van der Waals (vdWs) materials are highly desirable for applications in miniaturized and flexible/wearable devices. However, the reverse-polarization between adjacent layers in current 2D layered materials results in decreasing their in-plane piezoelectric coefficients with layer number, which limits their practical applications. Here, we report a class of 2D layered materials with an identical orientation of in-plane polarization. Their piezoelectric coefficients (e22) increase with layer number, thereby allowing for the fabrication of flexible piezotronic devices with large piezoelectric responsivity and excellent mechanical durability. The piezoelectric outputs can reach up to 0.363 V for a 7-layer α-In2Se3 device, with a current responsivity of 598.1 pA for 1% strain, which is 1 order of magnitude higher than the values of the reported 2D piezoelectrics. The self-powered piezoelectric sensors made of these newly developed 2D layered materials have been successfully used for real-time health monitoring, proving their suitability for the fabrication of flexible piezotronic devices due to their large piezoelectric responses and excellent mechanical durability.

9.
Small ; 15(30): e1901347, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31111680

RESUMEN

Infrared (IR) photodetectors are finding diverse applications in imaging, information communication, military, etc. 2D metal chalcogenides (2DMCs) have attracted increasing interest in view of their unique structures and extraordinary physical properties. They have demonstrated outstanding IR detection performance including high responsivity and detectivity, high on/off ratio, fast response rate, stable room temperature operability, and good mechanical flexibility, which has opened up a new prospect in next-generation IR photodetectors. This Review presents a comprehensive summary of recent progress in advanced IR photodetectors based on 2DMCs. The rationale of the photodetectors containing photocurrent generation mechanisms and performance parameters are briefly introduced. The device performances of 2DMCs-based IR photodetectors are also systematically summarized, and some representative achievements are highlighted as well. Finally, conclusions and outlooks are delivered as a guideline for this thriving field.

10.
Angew Chem Int Ed Engl ; 58(24): 8078-8081, 2019 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-30985053

RESUMEN

A new nonlinear optical (NLO) oxysulfide, Sr6 Cd2 Sb6 O7 S10 , which contains the functional groups [SbOx S5-x ]7- (x=0, 1) with a 5s2 electron configuration, is synthesized by a solid-state reaction. This compound displays a phase-matchable second harmonic generation (SHG) response four times stronger than AgGaS2 (AGS) under laser irradiation at 2.09 µm. Single-crystal-based optical measurements reveal a SHG intensity that can be tuned by temperature and novel photoluminescence properties. Theoretical analyses demonstrate that tetragonal [SbOS4 ]7- and [SbS5 ]7- pyramids make the predominant contribution to the enhanced SHG effect. Among those, the [SbOS4 ]7- units with mixed anions make a larger contribution. This work proposes that oxysulfide groups with an ns2 electron configuration can serve as new functional building units in NLO materials and opens a new avenue for the design of other optoelectronic materials.

11.
Nat Nanotechnol ; 19(4): 455-462, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38225358

RESUMEN

A light field carrying multidimensional optical information, including but not limited to polarization, intensity and wavelength, is essential for numerous applications such as environmental monitoring, thermal imaging, medical diagnosis and free-space communications. Simultaneous acquisition of this multidimensional information could provide comprehensive insights for understanding complex environments but remains a challenge. Here we demonstrate a multidimensional optical information detection device based on zero-bias double twisted black arsenic-phosphorus homojunctions, where the photoresponse is dominated by the photothermoelectric effect. By using a bipolar and phase-offset polarization photoresponse, the device operated in the mid-infrared range can simultaneously detect both the polarization angle and incident intensity information through direct measurement of the photocurrents in the double twisted black arsenic-phosphorus homojunctions. The device's responsivity makes it possible to retrieve wavelength information, typically perceived as difficult to obtain. Moreover, the device exhibits an electrically tunable polarization photoresponse, enabling precise distinction of polarization angles under low-intensity light exposure. These demonstrations offer a promising approach for simultaneous detection of multidimensional optical information, indicating potential for diverse photonic applications.

12.
Adv Mater ; 36(26): e2400858, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38631028

RESUMEN

2D materials are burgeoning as promising candidates for investigating nonlinear optical effects due to high nonlinear susceptibilities, broadband optical response, and tunable nonlinearity. However, most 2D materials suffer from poor nonlinear conversion efficiencies, resulting from reduced light-matter interactions and lack of phase matching at atomic thicknesses. Herein, a new 2D nonlinear material, niobium oxide dibromide (NbOBr2) is reported, featuring strong and anisotropic optical nonlinearities with scalable nonlinear intensity. Furthermore, Fabry-Pérot (F-P) microcavities are constructed by coupling NbOBr2 with air holes in silicon. Remarkable enhancement factors of ≈630 times in second harmonic generation (SHG) and 210 times in third harmonic generation (THG) are achieved on cavity at the resonance wavelength of 1500 nm. Notably, the cavity enhancement effect exhibits strong anisotropic feature tunable with pump wavelength, owing to the robust optical birefringence of NbOBr2. The ratio of the enhancement factor along the b- and c-axis of NbOBr2 reaches 2.43 and 5.27 for SHG and THG at 1500 nm pump, respectively, which leads to an extraordinarily high SHG anisotropic ratio of 17.82 and a 10° rotation of THG polarization. The research presents a feasible and practical strategy for developing high-efficiency and low-power-pumped on-chip nonlinear optical devices with tunable anisotropy.

13.
Light Sci Appl ; 13(1): 119, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802363

RESUMEN

Nonlinear optical activities, especially second harmonic generation (SHG), are key phenomena in inversion-symmetry-broken two-dimensional (2D) transition metal dichalcogenides (TMDCs). On the other hand, anisotropic nonlinear optical processes are important for unique applications in nano-nonlinear photonic devices with polarization functions, having become one of focused research topics in the field of nonlinear photonics. However, the strong nonlinearity and strong optical anisotropy do not exist simultaneously in common 2D materials. Here, we demonstrate strong second-order and third-order susceptibilities of 64 pm/V and 6.2×10-19 m2/V2, respectively, in the even-layer PdPSe, which has not been discovered in other common TMDCs (e.g., MoS2). Strikingly, it also simultaneously exhibited strong SHG anisotropy with an anisotropic ratio of ~45, which is the largest reported among all 2D materials to date, to the best of our knowledge. In addition, the SHG anisotropy ratio can be harnessed from 0.12 to 45 (375 times) by varying the excitation wavelength due to the dispersion of χ ( 2 ) values. As an illustrative example, we further demonstrate polarized SHG imaging for potential applications in crystal orientation identification and polarization-dependent spatial encoding. These findings in 2D PdPSe are promising for nonlinear nanophotonic and optoelectronic applications.

14.
Nat Commun ; 14(1): 3421, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37296149

RESUMEN

Filter-free miniaturized polarization-sensitive photodetectors have important applications in the next-generation on-chip polarimeters. However, their polarization sensitivity is thus far limited by the intrinsic low diattenuation and inefficient photon-to-electron conversion. Here, we implement experimentally a miniaturized detector based on one-dimensional tellurium nanoribbon, which can significantly improve the photothermoelectric responses by translating the polarization-sensitive absorption into a large temperature gradient together with the finite-size effect of a perfect plasmonic absorber. Our devices exhibit a zero-bias responsivity of 410 V/W and an ultrahigh polarization ratio (2.5 × 104), as well as a peak polarization angle sensitivity of 7.10 V/W•degree, which is one order of magnitude higher than those reported in the literature. Full linear polarimetry detection is also achieved with the proposed device in a simple geometrical configuration. Polarization-coded communication and optical strain measurement are demonstrated showing the great potential of the proposed devices. Our work presents a feasible solution for miniaturized room-temperature infrared photodetectors with ultrahigh polarization sensitivity.


Asunto(s)
Comunicación , Electrones , Fotones , Registros , Telurio
15.
Light Sci Appl ; 12(1): 145, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37308488

RESUMEN

One of the most exciting breakthroughs in physics is the concept of topology that was recently introduced to photonics, achieving robust functionalities, as manifested in the recently demonstrated topological lasers. However, so far almost all attention was focused on lasing from topological edge states. Bulk bands that reflect the topological bulk-edge correspondence have been largely missed. Here, we demonstrate an electrically pumped topological bulk quantum cascade laser (QCL) operating in the terahertz (THz) frequency range. In addition to the band-inversion induced in-plane reflection due to topological nontrivial cavity surrounded by a trivial domain, we further illustrate the band edges of such topological bulk lasers are recognized as the bound states in the continuum (BICs) due to their nonradiative characteristics and robust topological polarization charges in the momentum space. Therefore, the lasing modes show both in-plane and out-of-plane tight confinements in a compact laser cavity (lateral size ~3λlaser). Experimentally, we realize a miniaturized THz QCL that shows single-mode lasing with a side-mode suppression ratio (SMSR) around 20 dB. We also observe a cylindrical vector beam for the far-field emission, which is evidence for topological bulk BIC lasers. Our demonstration on miniaturization of single-mode beam-engineered THz lasers is promising for many applications including imaging, sensing, and communications.

16.
ACS Nano ; 17(3): 2148-2158, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36706067

RESUMEN

Nonlinear optical activities (e.g., harmonic generations) in two-dimensional (2D) layered materials have attracted much attention due to the great promise in diverse optoelectronic applications such as nonlinear optical modulators, nonreciprocal optical device, and nonlinear optical imaging. Exploration of nonlinear optical response (e.g., frequency conversion) in the infrared, especially the mid-infrared (MIR) region, is highly desirable for ultrafast MIR laser applications ranging from tunable MIR coherent sources, MIR supercontinuum generation, and MIR frequency-comb-based spectroscopy to high harmonic generation. However, nonlinear optical effects in 2D layered materials under MIR pump are rarely reported, mainly due to the lack of suitable 2D layered materials. Van der Waals layered platinum disulfide (PtS2) with a sizable bandgap from the visible to the infrared region is a promising candidate for realizing MIR nonlinear optical devices. In this work, we investigate the nonlinear optical properties including third-and fifth-harmonic generation (THG and FHG) in thin layered PtS2 under infrared pump (1550-2510 nm). Strikingly, the ultrastrong third-order nonlinear susceptibility χ(3)(-3ω;ω,ω,ω) of thin layered PtS2 in the MIR region was estimated to be over 10-18 m2/V2, which is about one order of that in traditional transition metal chalcogenides. Such excellent performance makes air-stable PtS2 a potential candidate for developing next-generation MIR nonlinear photonic devices.

17.
Adv Mater ; 35(46): e2305594, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37740257

RESUMEN

Detecting and distinguishing light polarization states, one of the most basic elements of optical fields, have significant importance in both scientific studies and industry applications. Artificially fabricated structures, e.g., metasurfaces with anisotropic absorptions, have shown the capabilities of detecting polarization light and controlling. However, their operations mainly rely on resonant absorptions based on structural designs that are usually narrow bands. Here, a mid-infrared (MIR) broadband polarization photodetector with high PRs and wavelength-dependent polarities using a 2D anisotropic/isotropic Nb2 GeTe4 /MoS2 van der Waals (vdWs) heterostructure is demonstrated. It is shown that the photodetector exhibits high PRs of 48 and 34 at 4.6  and 11.0 µm wavelengths, respectively, and even a negative PR of -3.38 for 3.7 µm under the zero bias condition at room temperature. Such interesting results can be attributed to the superimposed effects of a photovoltaic (PV) mechanism in the Nb2 GeTe4 /MoS2 hetero-junction region and a bolometric mechanism in the MoS2 layer. Furthermore, the photodetector demonstrates its effectiveness in bipolar and unipolar polarization encoding communications and polarization imaging enabled by its unique and high PRs.

18.
Adv Mater ; 35(41): e2304082, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37391190

RESUMEN

Carbon nanotubes (CNTs) possess extremely anisotropic electronic, thermal, and optical properties owing to their 1D character. While their linear optical properties have been extensively studied, nonlinear optical processes, such as harmonic generation for frequency conversion, remain largely unexplored in CNTs, particularly in macroscopic CNT assemblies. In this work, macroscopic films of aligned and type-separated (semiconducting and metallic) CNTs are synthesized and polarization-dependent third-harmonic generation (THG) from the films with fundamental wavelengths ranging from 1.5 to 2.5 µm is studied. Both films exhibited strongly wavelength-dependent, intense THG signals, enhanced through exciton resonances, and third-order nonlinear optical susceptibilities of 2.50 × 10-19  m2  V-2 (semiconducting CNTs) and 1.23 × 10-19  m2  V-2 (metallic CNTs), respectively are found, for 1.8 µm excitation. Further, through systematic polarization-dependent THG measurements, the values of all elements of the susceptibility tensor are determined, verifying the macroscopically 1D nature of the films. Finally, polarized THG imaging is performed to demonstrate the nonlinear anisotropy in the large-size CNT film with good alignment. These findings promise applications of aligned CNT films in mid-infrared frequency conversion, nonlinear optical switching, polarized pulsed lasers, polarized long-wave detection, and high-performance anisotropic nonlinear photonic devices.

19.
Nat Commun ; 14(1): 1938, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37024508

RESUMEN

Infrared machine vision system for object perception and recognition is becoming increasingly important in the Internet of Things era. However, the current system suffers from bulkiness and inefficiency as compared to the human retina with the intelligent and compact neural architecture. Here, we present a retina-inspired mid-infrared (MIR) optoelectronic device based on a two-dimensional (2D) heterostructure for simultaneous data perception and encoding. A single device can perceive the illumination intensity of a MIR stimulus signal, while encoding the intensity into a spike train based on a rate encoding algorithm for subsequent neuromorphic computing with the assistance of an all-optical excitation mechanism, a stochastic near-infrared (NIR) sampling terminal. The device features wide dynamic working range, high encoding precision, and flexible adaption ability to the MIR intensity. Moreover, an inference accuracy more than 96% to MIR MNIST data set encoded by the device is achieved using a trained spiking neural network (SNN).

20.
Nat Commun ; 13(1): 4560, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35931776

RESUMEN

On-chip polarimeters are highly desirable for the next-generation ultra-compact optical and optoelectronic systems. Polarization-sensitive photodetectors relying on anisotropic absorption of natural/artificial materials have emerged as a promising candidate for on-chip polarimeters owing to their filterless configurations. However, these photodetectors can only be applied for detection of either linearly or circularly polarized light, not applicable for full-Stokes detection. Here, we propose and demonstrate three-ports polarimeters comprising on-chip chiral plasmonic metamaterial-mediated mid-infrared photodetectors for full-Stokes detection. By manipulating the spatial distribution of chiral metamaterials, we could convert polarization-resolved absorptions to corresponding polarization-resolved photovoltages of three ports through the photothermoelectric effect. We utilize the developed polarimeter in an imaging demonstration showing reliable ability for polarization reconstruction. Our work provides an alternative strategy for developing polarization-resolved photodetectors with a bandgap-independent operation range in the mid-infrared.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA