Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Physiol ; 189(4): 2227-2243, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35604103

RESUMEN

Potassium (K+) is one of the essential macronutrients for plant growth and development. However, the available K+ concentration in soil is relatively low. Plant roots can perceive low K+ (LK) stress, then enhance high-affinity K+ uptake by activating H+-ATPases in root cells, but the mechanisms are still unclear. Here, we identified the receptor-like protein kinase Brassinosteroid Insensitive 1-Associated Receptor Kinase 1 (BAK1) that is involved in LK response by regulating the Arabidopsis (Arabidopsis thaliana) plasma membrane H+-ATPase isoform 2 (AHA2). The bak1 mutant showed leaf chlorosis phenotype and reduced K+ content under LK conditions, which was due to the decline of K+ uptake capacity. BAK1 could directly interact with the AHA2 C terminus and phosphorylate T858 and T881, by which the H+ pump activity of AHA2 was enhanced. The bak1 aha2 double mutant also displayed a leaf chlorosis phenotype that was similar to their single mutants. The constitutively activated form AHA2Δ98 and phosphorylation-mimic form AHA2T858D or AHA2T881D could complement the LK sensitive phenotypes of both aha2 and bak1 mutants. Together, our data demonstrate that BAK1 phosphorylates AHA2 and enhances its activity, which subsequently promotes K+ uptake under LK conditions.


Asunto(s)
Anemia Hipocrómica , Proteínas de Arabidopsis , Arabidopsis , Anemia Hipocrómica/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Raíces de Plantas/metabolismo , Potasio/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Bombas de Protones/metabolismo , ATPasas de Translocación de Protón/metabolismo
2.
Plant Cell ; 31(3): 699-714, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30760559

RESUMEN

Potassium and nitrogen are essential nutrients for plant growth and development. Plants can sense potassium nitrate (K+/NO3 -) levels in soils, and accordingly they adjust root-to-shoot K+/NO3 - transport to balance the distribution of these ions between roots and shoots. In this study, we show that the transcription factorMYB59 maintains this balance by regulating the transcription of the Arabidopsis (Arabidopsis thaliana) Nitrate Transporter1.5 (NRT1.5)/ Nitrate Transporter/Peptide Transporter Family7.3 (NPF7.3) in response to low K+ (LK) stress. The myb59 mutant showed a yellow-shoot sensitive phenotype when grown on LK medium. Both the transcript and protein levels of NPF7.3 were remarkably reduced in the myb59 mutant. LK stress repressed transcript levels of both MYB59 and NPF7.3 The npf7.3 and myb59 mutants, as well as the npf7.3 myb59 double mutant, showed similar LK-sensitive phenotypes. Ion content analyses indicated that root-to-shoot K+/NO3 - transport was significantly reduced in these mutants under LK conditions. Moreover, chromatin immunoprecipitation and electrophoresis mobility shift assay assays confirmed that MYB59 bound directly to the NPF7.3 promoter. Expression of NPF7.3 in root vasculature driven by the PHOSPHATE 1 promoter rescued the sensitive phenotype of both npf7.3 and myb59 mutants. Together, these data demonstrate that MYB59 responds to LK stress and directs root-to-shoot K+/NO3 - transport by regulating the expression of NPF7.3 in Arabidopsis roots.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Transporte de Membrana/metabolismo , Nitratos/metabolismo , Compuestos de Potasio/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Transporte de Anión/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Transporte Biológico , Proteínas de Transporte de Membrana/genética , Mutación , Fenotipo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/fisiología , Potasio/metabolismo , Factores de Transcripción/genética
3.
Plant Physiol ; 170(4): 2264-77, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26829980

RESUMEN

In Arabidopsis (Arabidopsis thaliana), the Shaker K(+) channel AKT1 conducts K(+) uptake in root cells, and its activity is regulated by CBL1/9-CIPK23 complexes as well as by the AtKC1 channel subunit. CIPK23 and AtKC1 are both involved in the AKT1-mediated low-K(+) (LK) response; however, the relationship between them remains unclear. In this study, we screened suppressors of low-K(+) sensitive [lks1 (cipk23)] and isolated the suppressor of lks1 (sls1) mutant, which suppressed the leaf chlorosis phenotype of lks1 under LK conditions. Map-based cloning revealed a point mutation in AtKC1 of sls1 that led to an amino acid substitution (G322D) in the S6 region of AtKC1. The G322D substitution generated a gain-of-function mutation, AtKC1(D), that enhanced K(+) uptake capacity and LK tolerance in Arabidopsis. Structural prediction suggested that glycine-322 is highly conserved in K(+) channels and may function as the gating hinge of plant Shaker K(+) channels. Electrophysiological analyses revealed that, compared with wild-type AtKC1, AtKC1(D) showed enhanced inhibition of AKT1 activity and strongly reduced K(+) leakage through AKT1 under LK conditions. In addition, phenotype analysis revealed distinct phenotypes of lks1 and atkc1 mutants in different LK assays, but the lks1 atkc1 double mutant always showed a LK-sensitive phenotype similar to that of akt1 This study revealed a link between CIPK-mediated activation and AtKC1-mediated modification in AKT1 regulation. CIPK23 and AtKC1 exhibit distinct effects; however, they act synergistically and balance K(+) uptake/leakage to modulate AKT1-mediated LK responses in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Canales de Potasio/metabolismo , Potasio/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Canales de Potasio de la Superfamilia Shaker/metabolismo , Estrés Fisiológico/efectos de los fármacos , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Clonación Molecular , Metanosulfonato de Etilo , Prueba de Complementación Genética , Germinación/efectos de los fármacos , Mutagénesis , Mutación/genética , Fenotipo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/metabolismo , Canales de Potasio/química , Canales de Potasio/genética , Alineación de Secuencia
4.
Cell Res ; 32(11): 969-981, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36104507

RESUMEN

The dynamic three-dimensional structures of chromatin and extrachromosomal DNA molecules regulate fundamental cellular processes and beyond. However, the visualization of specific DNA sequences in live cells, especially nonrepetitive sequences accounting for most of the genome, is still vastly challenging. Here, we introduce a robust CRISPR-mediated fluorescence in situ hybridization amplifier (CRISPR FISHer) system, which exploits engineered sgRNA and protein trimerization domain-mediated, phase separation-based exponential assembly of fluorescent proteins in the CRISPR-targeting locus, conferring enhancements in both local brightness and signal-to-background ratio and thus achieving single sgRNA-directed visualization of native nonrepetitive DNA loci in live cells. In one application, by labeling and tracking the broken ends of chromosomal fragments, CRISPR FISHer enables real-time visualization of the entire process of chromosome breakage, separation, and subsequent intra- or inter-chromosomal ends rejoining in a single live cell. Furthermore, CRISPR FISHer allows the movement of small extrachromosomal circular DNAs (eccDNAs) and invading DNAs to be recorded, revealing substantial differences in dynamic behaviors between chromosomal and extrachromosomal loci. With the potential to track any specified self or non-self DNA sequences, CRISPR FISHer dramatically broadens the scope of live-cell imaging in biological events and for biomedical diagnoses.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Hibridación Fluorescente in Situ , ADN/metabolismo , Cromatina , Genoma , Sistemas CRISPR-Cas/genética
5.
Dev Cell ; 56(6): 781-794.e6, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33756120

RESUMEN

Organismal homeostasis of the essential ion K+ requires sensing of its availability, efficient uptake, and defined distribution. Understanding plant K+ nutrition is essential to advance sustainable agriculture, but the mechanisms underlying K+ sensing and the orchestration of downstream responses have remained largely elusive. Here, we report where plants sense K+ deprivation and how this translates into spatially defined ROS signals to govern specific downstream responses. We define the organ-scale K+ pattern of roots and identify a postmeristematic K+-sensing niche (KSN) where rapid K+ decline and Ca2+ signals coincide. Moreover, we outline a bifurcating low-K+-signaling axis of CIF peptide-activated SGN3-LKS4/SGN1 receptor complexes that convey low-K+-triggered phosphorylation of the NADPH oxidases RBOHC, RBOHD, and RBOHF. The resulting ROS signals simultaneously convey HAK5 K+ uptake-transporter induction and accelerated Casparian strip maturation. Collectively, these mechanisms synchronize developmental differentiation and transcriptome reprogramming for maintaining K+ homeostasis and optimizing nutrient foraging by roots.


Asunto(s)
Adaptación Fisiológica , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Homeostasis , Nutrientes/metabolismo , Raíces de Plantas/metabolismo , Potasio/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Complejo del Señalosoma COP9/genética , Complejo del Señalosoma COP9/metabolismo , Calcio/metabolismo , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA