Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(7): e2315476121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38319970

RESUMEN

Marine photosynthetic dinoflagellates are a group of successful phytoplankton that can form red tides in the ocean and also symbiosis with corals. These features are closely related to the photosynthetic properties of dinoflagellates. We report here three structures of photosystem I (PSI)-chlorophylls (Chls) a/c-peridinin protein complex (PSI-AcpPCI) from two species of dinoflagellates by single-particle cryoelectron microscopy. The crucial PsaA/B subunits of a red tidal dinoflagellate Amphidinium carterae are remarkably smaller and hence losing over 20 pigment-binding sites, whereas its PsaD/F/I/J/L/M/R subunits are larger and coordinate some additional pigment sites compared to other eukaryotic photosynthetic organisms, which may compensate for the smaller PsaA/B subunits. Similar modifications are observed in a coral symbiotic dinoflagellate Symbiodinium species, where two additional core proteins and fewer AcpPCIs are identified in the PSI-AcpPCI supercomplex. The antenna proteins AcpPCIs in dinoflagellates developed some loops and pigment sites as a result to accommodate the changed PSI core, therefore the structures of PSI-AcpPCI supercomplex of dinoflagellates reveal an unusual protein assembly pattern. A huge pigment network comprising Chls a and c and various carotenoids is revealed from the structural analysis, which provides the basis for our deeper understanding of the energy transfer and dissipation within the PSI-AcpPCI supercomplex, as well as the evolution of photosynthetic organisms.


Asunto(s)
Antozoos , Dinoflagelados , Animales , Antozoos/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Dinoflagelados/metabolismo , Floraciones de Algas Nocivas , Simbiosis , Microscopía por Crioelectrón , Complejo de Proteína del Fotosistema I/metabolismo , Clorofila/metabolismo
2.
J Biol Chem ; 299(8): 105057, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37468106

RESUMEN

In wild-type phototrophic organisms, carotenoids (Crts) are primarily packed into specific pigment-protein complexes along with (Bacterio)chlorophylls and play important roles in the photosynthesis. Diphenylamine (DPA) inhibits carotenogenesis but not phototrophic growth of anoxygenic phototrophs and eliminates virtually all Crts from photocomplexes. To investigate the effect of Crts on assembly of the reaction center-light-harvesting (RC-LH) complex from the filamentous anoxygenic phototroph Roseiflexus (Rfl.) castenholzii, we generated carotenoidless (Crt-less) RC-LH complexes by growing cells in the presence of DPA. Here, we present cryo-EM structures of the Rfl. castenholzii native and Crt-less RC-LH complexes with resolutions of 2.86 Å and 2.85 Å, respectively. From the high-quality map obtained, several important but previously unresolved details in the Rfl. castenholzii RC-LH structure were determined unambiguously including the assignment and likely function of three small polypeptides, and the content and spatial arrangement of Crts with bacteriochlorophyll molecules. The overall structures of Crt-containing and Crt-less complexes are similar. However, structural comparisons showed that only five Crts remain in complexes from DPA-treated cells and that the subunit X (TMx) flanked on the N-terminal helix of the Cyt-subunit is missing. Based on these results, the function of Crts in the assembly of the Rfl. castenholzii RC-LH complex and the molecular mechanism of quinone exchange is discussed. These structural details provide a fresh look at the photosynthetic apparatus of an evolutionary ancient phototroph as well as new insights into the importance of Crts for proper assembly and functioning of the RC-LH complex.


Asunto(s)
Proteínas Bacterianas , Chloroflexi , Fotosíntesis , Proteínas Bacterianas/metabolismo , Carotenoides/metabolismo , Chloroflexi/metabolismo , Complejos de Proteína Captadores de Luz/química
3.
Funct Integr Genomics ; 24(2): 53, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38453820

RESUMEN

Hepatocellular carcinoma (HCC) is one of the malignancies with the worst prognosis worldwide, in the occurrence and development of which glycolysis plays a central role. This study uncovered a mechanism by which ZNF692 regulates ALDOA-dependent glycolysis in HCC cells. RT-qPCR and western blotting were used to detect the expression of ZNF692, KAT5, and ALDOA in HCC cell lines and a normal liver cell line. The influences of transfection-induced alterations in the expression of ZNF692, KAT5, and ALDOA on the functions of HepG2 cells were detected by performing MTT, flow cytometry, Transwell, cell scratch, and colony formation assays, and the levels of glucose and lactate were determined using assay kits. ChIP and luciferase reporter assays were conducted to validate the binding of ZNF692 to the KAT5 promoter, and co-IP assays to detect the interaction between KAT5 and ALDOA and the acetylation of ALDOA. ZNF692, KAT5, and ALDOA were highly expressed in human HCC samples and cell lines, and their expression levels were positively correlated in HCC. ZNF692, ALDOA, or KAT5 knockdown inhibited glycolysis, proliferation, invasion, and migration and promoted apoptosis in HepG2 cells. ZNF692 bound to the KAT5 promoter and promoted its activity. ALDOA acetylation levels were elevated in HCC cell lines. KAT5 bound to ALDOA and catalyzed ALDOA acetylation. ALDOA or KAT5 overexpression in the same time of ZNF692 knockdown, compared to ZNF692 knockdown only, stimulated glycolysis, proliferation, invasion, and migration and reduced apoptosis in HepG2 cells. ZNF692 promotes the acetylation modification and protein expression of ALDOA by catalyzing KAT5 transcription, thereby accelerating glycolysis to drive HCC cell development.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Línea Celular Tumoral , Células Hep G2 , Glucólisis , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Fructosa-Bifosfato Aldolasa/genética , Fructosa-Bifosfato Aldolasa/metabolismo
4.
J Synchrotron Radiat ; 31(Pt 4): 948-954, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38861369

RESUMEN

This article presents a demonstration of the improved performance of an X-ray free-electron laser (FEL) using the optical klystron mechanism and helical undulator configuration, in comparison with the common planar undulator configuration without optical klystron. The demonstration was carried out at Athos, the soft X-ray beamline of SwissFEL. Athos has variable-polarization undulators, and small magnetic chicanes placed between every two undulators to fully exploit the optical klystron. It was found that, for wavelengths of 1.24 nm and 3.10 nm, the required length to achieve FEL saturation is reduced by about 35% when using both the optical klystron and helical undulators, with each effect accounting for about half of the improvement. Moreover, it is shown that a helical undulator configuration provides a 20% to 50% higher pulse energy than planar undulators. This work represents an important step towards more compact and high-power FELs, rendering this key technology more efficient, affordable and accessible to the scientific community.

5.
Phys Rev Lett ; 132(3): 035002, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38307082

RESUMEN

We present the generation of x-ray pulses with average pulse energies up to one millijoule and rms pulse durations down to the femtosecond level. We have produced these intense and short pulses by employing the fresh-slice multistage amplification scheme with a transversely tilted electron beam in a free-electron laser. In this scheme, a short pulse is produced in the first stage and later amplified by fresh parts of the electron bunch in up to a total of four stages of amplification. Our implementation is efficient, since practically the full electron beam contributes to produce the x-ray pulse. Our implementation is also compact, utilizing only 32 m of undulator. The demonstration was done at Athos, the soft x-ray beamline of SwissFEL, which was designed with high flexibility to take full advantage of the multistage amplification scheme. It opens the door for scientific opportunities following ultrafast dynamics using nonlinear x-ray spectroscopy techniques or avoiding electronic damage when capturing structures with a single intense pulse via single-particle imaging.

6.
Diabetes Metab Res Rev ; 40(1): e3706, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37545385

RESUMEN

OBJECTIVE: To explore the difference in temperature recovery following cold stimulation between participants with and without diabetes mellitus (DM). MATERIALS AND METHODS: The participants without (control group; n = 25) and with (DM group; n = 26) DM were subjected to local cold stimulation (10º C for 90 s). The thermal images of their hands were continuously captured using a thermal camera within 7 min following cold stimulation, and the highest temperature of each fingertip was calculated. According to the temperature values at different timepoints, the temperature recovery curves were drawn, and the baseline temperature (T-base), initial temperature after cooling (T0), temperature decline amplitude (T-range), and area under the temperature recovery curve > T0 (S) were calculated. Finally, symmetry differences between the two groups were analysed. RESULTS: No statistical differences in the T-base, T0, and T-range were observed between the DM and control groups. After drawing the rewarming curve according to the temperature of the fingertips of the patients following cold stimulation, the S in the DM group was significantly lower than that in the control group (p < 0.05). Furthermore, the asymmetry of the base temperature of the hand was observed in the DM group. CONCLUSIONS: Following cold stimulation, the patients with DM exhibited a different rewarming pattern than those without DM. Thus, cold stimulation tests under infrared thermography may contribute to the early screening of diabetic peripheral neuropathy in future.


Asunto(s)
Diabetes Mellitus , Termografía , Humanos , Temperatura , Termografía/métodos , Frío , Recalentamiento , Temperatura Cutánea
7.
Am J Obstet Gynecol ; 230(2): 254.e1-254.e13, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37531989

RESUMEN

BACKGROUND: Hyperglycemia from pregestational diabetes mellitus induces neural tube defects in the developing fetus. Folate supplementation is the only effective way to prevent neural tube defects; however, some cases of neural tube defects are resistant to folate. Excess folate has been linked to higher maternal cancer risk and infant allergy. Therefore, additional interventions are needed. Understanding the mechanisms underlying maternal diabetes mellitus-induced neural tube defects can identify potential targets for preventing such defects. Despite not yet being in clinical use, growing evidence suggests that microRNAs are important intermediates in embryonic development and can serve as both biomarkers and drug targets for disease intervention. Our previous studies showed that maternal diabetes mellitus in vivo activates the inositol-requiring transmembrane kinase/endoribonuclease 1α (IRE1α) in the developing embryo and that a high glucose condition in vitro reduces microRNA-322 (miR-322) levels. IRE1α is an RNA endonuclease; however, it is unknown whether IRE1α targets and degrades miR-322 specifically or whether miR-322 degradation leads to neural tube defects via apoptosis. We hypothesize that IRE1α can inhibit miR-322 in maternal diabetes mellitus-induced neural tube defects and that restoring miR-322 expression in developing neuroepithelium ameliorates neural tube defects. OBJECTIVE: This study aimed to identify potential targets for preventing maternal diabetes mellitus-induced neural tube defects and to investigate the roles and relationship of a microRNA and an RNA endonuclease in mouse embryos exposed to maternal diabetes mellitus. STUDY DESIGN: To determine whether miR-322 reduction is necessary for neural tube defect formation in pregnancies complicated by diabetes mellitus, male mice carrying a transgene expressing miR-322 were mated with nondiabetic or diabetic wide-type female mice to generate embryos with or without miR-322 overexpression. At embryonic day 8.5 when the neural tube is not yet closed, embryos were harvested for the assessment of 3 miR-322 transcripts (primary, precursor, and mature miR-322), tumor necrosis factor receptor-associated factor 3 (TRAF3), and neuroepithelium cell survival. Neural tube defect incidences were determined in embryonic day 10.5 embryos when the neural tube should be closed if there is no neural tube defect formation. To identify which miR-322 transcript is affected by maternal diabetes mellitus and high glucose conditions, 3 miR-322 transcripts were assessed in embryos from dams with or without diabetes mellitus and in C17.2 mouse neural stem cells treated with different concentrations of glucose and at different time points. To determine whether the endonuclease IRE1α targets miR-322, small interfering RNA knockdown of IRE1α or overexpression of inositol-requiring transmembrane kinase/endoribonuclease 1α by DNA plasmid transfection was used to determine the effect of IRE1α deficiency or overexpression on miR-322 expression. RNA immunoprecipitation was performed to reveal the direct targets of inositol-requiring transmembrane kinase/endoribonuclease 1α. RESULTS: Maternal diabetes mellitus suppressed miR-322 expression in the developing neuroepithelium. Restoring miR-322 expression in the neuroepithelium blocked maternal diabetes mellitus-induced caspase-3 and caspase-8 cleavage and cell apoptosis, leading to a neural tube defect reduction. Reversal of maternal diabetes mellitus-inhibited miR-322 via transgenic overexpression prevented TRAF3 up-regulation in embryos exposed to maternal diabetes mellitus. Activated IRE1α acted as an endonuclease and degraded precursor miR-322, resulting in mature miR-322 reduction. CONCLUSION: This study supports the crucial role of the IRE1α-microRNA-TRAF3 circuit in the induction of neuroepithelial cell apoptosis and neural tube defect formation in pregnancies complicated by diabetes mellitus and identifies IRE1α and miR-322 as potential targets for preventing maternal diabetes mellitus-induced neural tube defects.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Gestacional , MicroARNs , Defectos del Tubo Neural , Embarazo en Diabéticas , Humanos , Embarazo , Masculino , Femenino , Ratones , Animales , MicroARNs/genética , MicroARNs/metabolismo , Factor 3 Asociado a Receptor de TNF/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/patología , Embarazo en Diabéticas/genética , Embarazo en Diabéticas/metabolismo , Diabetes Gestacional/genética , Glucosa , Ácido Fólico , Inositol
8.
Am J Perinatol ; 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39209306

RESUMEN

Pregestational diabetes, either type 1 or type 2 diabetes, induces structural birth defects including neural tube defects and congenital heart defects in human fetuses. Rodent models of type 1 and type 2 diabetic embryopathy have been established and faithfully mimic human conditions. Hyperglycemia of maternal diabetes triggers oxidative stress in the developing neuroepithelium and the embryonic heart leading to the activation of proapoptotic kinases and excessive cell death. Oxidative stress also activates the unfolded protein response and endoplasmic reticulum stress. Hyperglycemia alters epigenetic landscapes by suppressing histone deacetylation, perturbing microRNA (miRNA) expression, and increasing DNA methylation. At cellular levels, besides the induction of cell apoptosis, hyperglycemia suppresses cell proliferation and induces premature senescence. Stress signaling elicited by maternal diabetes disrupts cellular organelle homeostasis leading to mitochondrial dysfunction, mitochondrial dynamic alteration, and autophagy impairment. Blocking oxidative stress, kinase activation, and cellular senescence ameliorates diabetic embryopathy. Deleting the mir200c gene or restoring mir322 expression abolishes maternal diabetes hyperglycemia-induced senescence and cellular stress, respectively. Both the autophagy activator trehalose and the senomorphic rapamycin can alleviate diabetic embryopathy. Thus, targeting cellular stress, miRNAs, senescence, or restoring autophagy or mitochondrial fusion is a promising approach to prevent poorly controlled maternal diabetes-induced structural birth defects. In this review, we summarize the causal events in diabetic embryopathy and propose preventions for this pathological condition. KEY POINTS: · Maternal diabetes induces structural birth defects.. · Kinase signaling and cellular organelle stress are critically involved in neural tube defects.. · Maternal diabetes increases DNA methylation and suppresses developmental gene expression.. · Cellular apoptosis and senescence are induced by maternal diabetes in the neuroepithelium.. · microRNAs disrupt mitochondrial fusion leading to congenital heart diseases in diabetic pregnancy..

9.
J Integr Plant Biol ; 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38411333

RESUMEN

Halorhodospira (Hlr.) halochloris is a triply extremophilic phototrophic purple sulfur bacterium, as it is thermophilic, alkaliphilic, and extremely halophilic. The light-harvesting-reaction center (LH1-RC) core complex of this bacterium displays an LH1-Qy transition at 1,016 nm, which is the lowest-energy wavelength absorption among all known phototrophs. Here we report the cryo-EM structure of the LH1-RC at 2.42 Å resolution. The LH1 complex forms a tricyclic ring structure composed of 16 αßγ-polypeptides and one αß-heterodimer around the RC. From the cryo-EM density map, two previously unrecognized integral membrane proteins, referred to as protein G and protein Q, were identified. Both of these proteins are single transmembrane-spanning helices located between the LH1 ring and the RC L-subunit and are absent from the LH1-RC complexes of all other purple bacteria of which the structures have been determined so far. Besides bacteriochlorophyll b molecules (B1020) located on the periplasmic side of the Hlr. halochloris membrane, there are also two arrays of bacteriochlorophyll b molecules (B800 and B820) located on the cytoplasmic side. Only a single copy of a carotenoid (lycopene) was resolved in the Hlr. halochloris LH1-α3ß3 and this was positioned within the complex. The potential quinone channel should be the space between the LH1-α3ß3 that accommodates the single lycopene but does not contain a γ-polypeptide, B800 and B820. Our results provide a structural explanation for the unusual Qy red shift and carotenoid absorption in the Hlr. halochloris spectrum and reveal new insights into photosynthetic mechanisms employed by a species that thrives under the harshest conditions of any phototrophic microorganism known.

10.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 39(4): 721-729, 2022 Aug 25.
Artículo en Zh | MEDLINE | ID: mdl-36008336

RESUMEN

[Abstract]Automatic and accurate segmentation of lung parenchyma is essential for assisted diagnosis of lung cancer. In recent years, researchers in the field of deep learning have proposed a number of improved lung parenchyma segmentation methods based on U-Net. However, the existing segmentation methods ignore the complementary fusion of semantic information in the feature map between different layers and fail to distinguish the importance of different spaces and channels in the feature map. To solve this problem, this paper proposes the double scale parallel attention (DSPA) network (DSPA-Net) architecture, and introduces the DSPA module and the atrous spatial pyramid pooling (ASPP) module in the "encoder-decoder" structure. Among them, the DSPA module aggregates the semantic information of feature maps of different levels while obtaining accurate space and channel information of feature map with the help of cooperative attention (CA). The ASPP module uses multiple parallel convolution kernels with different void rates to obtain feature maps containing multi-scale information under different receptive fields. The two modules address multi-scale information processing in feature maps of different levels and in feature maps of the same level, respectively. We conducted experimental verification on the Kaggle competition dataset. The experimental results prove that the network architecture has obvious advantages compared with the current mainstream segmentation network. The values of dice similarity coefficient (DSC) and intersection on union (IoU) reached 0.972 ± 0.002 and 0.945 ± 0.004, respectively. This paper achieves automatic and accurate segmentation of lung parenchyma and provides a reference for the application of attentional mechanisms and multi-scale information in the field of lung parenchyma segmentation.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Pulmón/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA