Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 19(35): e2301469, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37098645

RESUMEN

Single-atom catalysts (SACs) exhibit remarkable potential for electrochemical reduction of CO2 to value-added products. However, the commonly pursued methods for preparing SACs are hard to scale up, and sometimes, lack general applicability because of expensive raw materials and complex synthetic procedures. In addition, the fine tuning of coordination environment of SACs remains challenging due to their structural vulnerability. Herein, a simple and universal strategy is developed to fabricate Ni SACs with different nitrogen coordination numbers through one-step pyrolysis of melamine, Ni(NO3 )∙6H2 O, and polyvinylpyrrolidone at different temperatures. Experimental measurements and theoretical calculations reveal that the low-coordinate Ni SACs exhibit outstanding CO2 reduction performance and stability, achieving a Faradic efficiency (FECO ) of 98.5% at -0.76 V with CO current density of 24.6 mA cm-2 , and maintaining FECO of over 91.0% at all applied potential windows from -0.56 to -1.16 V, benefiting from its coordinatively unsaturated structure to afford high catalytic activity and low barrier for the formation of *COOH intermediate. No significant performance degradation is observed over 50 h of continuous operation. Additionally, several other metallic single-atom catalysts are successfully prepared by this synthetic method, demonstrating the universality of this strategy.

2.
Small ; 19(41): e2301379, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37300346

RESUMEN

The CO2 electroreduction to fuels is a feasible approach to provide renewable energy sources. Therefore, it is necessary to conduct experimental and theoretical investigations on various catalyst design strategies, such as electronic metal-support interaction, to improve the catalytic selectivity. Here a solvent-free synthesis method is reported to prepare a copper (Cu)-based metal-organic framework (MOF) as the precursor. Upon electrochemical CO2 reduction in aqueous electrolyte, it undergoes in situ decomposition/redeposition processes to form abundant interfaces between Cu nanoparticles and amorphous carbon supports. This Cu/C catalyst favors the selective and stable production of CH4 with a Faradaic efficiency of ≈55% at -1.4 V versus reversible hydrogen electrode (RHE) for 12.5 h. The density functional theory calculation reveals the crucial role of interfacial sites between Cu and amorphous carbon support in stabilizing the key intermediates for CO2 reduction to CH4 . The adsorption of COOH* and CHO* at the Cu/C interface is up to 0.86 eV stronger than that on Cu(111), thus promoting the formation of CH4 . Therefore, it is envisioned that the strategy of regulating electronic metal-support interaction can improve the selectivity and stability of catalyst toward a specific product upon electrochemical CO2 reduction.

3.
Angew Chem Int Ed Engl ; 59(3): 1171-1175, 2020 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-31702869

RESUMEN

A simple solvent ligation effect was successfully used to disrupt the growth of a model compound, Fe[(OH)(O3 P(CH2 )2 CO2 H)]⋅H2 O (MIL-37), into an extended 2D structure by replacing water with dimethylformamide (DMF) as the solvent during the synthesis. Owing to the lack of -OH group, which provides the corner-sharing (binding) oxygen atoms for the octahedra, an amorphous and porous structure is formed. When Fe3+ is partially replaced by Ni2+ , the amorphous structure remains and the resultant binary metal catalyst displays excellent photocatalytic oxygen evolution activity with almost 100 % yield achieved under visible light irradiation using [Ru(bpy)3 ]2+ as the photosensitizer. This study opens up new possibilities of using the simple solvent effect to synthesize high surface area metal phosphonates for catalytic and other applications.

4.
Sensors (Basel) ; 19(6)2019 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-30934629

RESUMEN

To realize the application of the star sensor in the all-day carrier platform, a three-field-of-view (three-FOV) star sensor in short-wave infrared (SWIR) band is considered. This new prototype employs new techniques that can improve the detection capability of the star sensor, when the huge size of star identification feature database becomes a big obstacle. Hence, a way to thin the guide star catalog for three-FOV daytime star sensor is studied. Firstly, an introduction of three-FOV star sensor and an example of three-FOV daytime star sensor with narrow FOV are presented. According to this model and the requirement of triangular star identification method, two constraints based on the number and the brightness of the stars in FOV are put forward for guide star selection. Then on the basis of these constraints, the improved spherical spiral method (ISSM) is proposed and the optimal number of reference points of ISSM is discussed. Finally, to demonstrate the performance of the ISSM, guide star catalogs are generated by ISSM, magnitude filter method (MFM), 1st order self-organizing guide star selection method (1st-SOPM) and the spherical spiral method (SSM), respectively. The results show that the guide star catalog generated by ISSM has the smallest size and the number and brightness characteristics of its guide stars are better than the other methods. ISSM is effective for the guide star selection in the three-FOV daytime star sensor.

5.
Angew Chem Int Ed Engl ; 57(41): 13570-13574, 2018 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-30155982

RESUMEN

Halide perovskite quantum dots (QDs) have great potential in photocatalytic applications if their low charge transportation efficiency and chemical instability can be overcome. To circumvent these obstacles, we anchored CsPbBr3 QDs (CPB) on NHx -rich porous g-C3 N4 nanosheets (PCN) to construct the composite photocatalysts via N-Br chemical bonding. The 20 CPB-PCN (20 wt % of QDs) photocatalyst exhibits good stability and an outstanding yield of 149 µmol h-1 g-1 in acetonitrile/water for photocatalytic reduction of CO2 to CO under visible light irradiation, which is around 15 times higher than that of CsPbBr3 QDs. This study opens up new possibilities of using halide perovskite QDs for photocatalytic application.

6.
Front Psychol ; 15: 1377669, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38817829

RESUMEN

The detection rate of mental health problems among undergraduates has recently risen significantly. However, undergraduates underutilize mental health services; approximately a third only of undergraduates in need of treatment use school counseling resources. Based on a social psychological theoretical framework, the health belief model, factors of undergraduates' willingness to seek help when dealing with psychological problems were investigated. A cross-sectional online questionnaire and a snowball sampling method with 446 undergraduates investigated perceived susceptibility, perceived severity, perceived behavioral benefits, perceived barriers, self-efficacy, and cues to action to understand how students' mental health-seeking behaviors are affected. We found that perceived susceptibility (p < 0.01), perceived severity (p < 0.01), perceived benefits (p < 0.01), perceived barriers (p < 0.01), self-efficacy (p < 0.01), and cues to action (p < 0.01) significantly correlated with behavioral intention. Encouragement or counseling from others would be more likely to motivate undergraduates to seek mental health help. In addition, we used a bias-corrected Bootstrap approach to test the significance of the mediating effect, the mediation effect of cues to action between undergraduates' perceived susceptibility and mental health help-seeking behavior was utterly significant [mediation effect value of 0.077, with an SE value of 0.027 and a 95% CI (0.028, 0.133)]. It demonstrated that those who perceived themselves to be at high risk of developing a mental illness and who had received encouragement or counseling to seek mental health help were more likely to be motivated to seek mental health help. Multiple regression analyses indicated that self-efficacy (Z = 5.425, p < 0.01) and cues to action (Z = 6.673, p < 0.01) independently influenced behavioral intentions. Encouragement or counseling from others would be more likely to motivate undergraduates to seek mental health help.

7.
Small Methods ; 5(2): e2000928, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34927894

RESUMEN

Fabrication of nonstoichiometric metal oxides containing oxygen vacancies (OVs) has been an effective strategy to modulate their (photo)catalytic or (photo)electrochemical performances which are all affected by charge transfer at the interface and in the bulk. Considerable efforts are still needed to achieve tunability of OVs, as well as their quantitative characterization. Herein, a one-step flame synthesis method is reported for the first time for fast fabrication of blue TiO2- x with controllable defect content and location. Temperature-programmed oxidation (TPO) analysis is applied for the first time and found to be an excellent technique in both differentiating and quantifying OVs at the surface, grain boundary (GB), and bulk of TiO2- x . The results indicate that a moderate level of OVs can greatly enhance the charge transfer. Importantly, the OVs locked at GBs due to the thermal sintering of nanoparticles during the synthesis can facilitate the anchoring and reduction of Pt species.

8.
ChemSusChem ; 12(9): 2029-2034, 2019 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-30088698

RESUMEN

A Pt2+ /Pt0 hybrid nanodot-modified graphitic carbon nitride (CN) photocatalyst (CNV-P) was fabricated for the first time using a chemical reduction method, during which nitrogen vacancies in g-C3 N4 assist to stabilize Pt2+ species. It is elucidated that the coexistence of metallic Pt0 and Pt2+ species in the Pt nanodots loaded on g-C3 N4 results in superior photocatalytic H2 evolution performance with very low Pt loadings. The turnover frequencies (TOFs) are 265.91 and 116.38 h-1 for CNV-P-0.1 (0.1 wt % Pt) and CNV-P-0.5 (0.5 wt % Pt), respectively, which are much higher than for other g-C3 N4 -based photocatalysts with Pt co-catalyst reported previously. The excellent photocatalytic H2 evolution performance is a result of i) metallic Pt0 facilitating the electron transport and separation and Pt2+ species preventing the undesirable H2 backward reaction, ii) the strong interfacial contact between Pt2+ /Pt0 hybrid nanodots and nitrogen vacancies of CNV facilitating the interfacial electron transfer, and iii) the highly dispersed Pt2+ /Pt0 hybrid nanodots exposing more active sites for photocatalytic H2 evolution. Our findings are useful for the design of highly active semiconductor-based photocatalysts with extremely low precious metal content to reduce the catalyst cost while achieving good activity.

9.
Guang Pu Xue Yu Guang Pu Fen Xi ; 28(8): 1819-22, 2008 Aug.
Artículo en Zh | MEDLINE | ID: mdl-18975811

RESUMEN

The skin-core evolvement of the carbon fibers was studied as a function of heat-treatment temperature though the analysis of Raman spectroscopy of the carbon fibers surface and core. It was found that the change of the Raman spectra of the carbon fibers core was similar to that on the surface with the increase in heat-treatment temperature. At 1600 degrees C, the Rs and Rc values were almost equal, indicating that the degrees of the graphitization of the carbon fibers surface and core were almost uniform. The Rs and Rc values decreased dramatically with the increase in heat-treatment temperature, and Rs decreased more. At 2800 degrees C, the Rs value came to 0.429, lowered 77.2%, while the Rc value then came to 1.101, lowered 38.7% only. It implied that the graphitization degree of the carbon fibers was enhanced with increasing the heat treatment temperature, and that of carbon fibers surface was enhanced more. The graphite characters of the carbon of the carbon fibers surface were different from that of the carbon fibers core. The former is close to soft carbon, which is easy to graphitize, while the latter is close to hard carbon, which is difficult to graphitize, and it may be resin carbon Skin-core structure gene Rsc (= Rs/Rc) which denoted the skin-core degree of the carbon fibers was first brought forward and adopted. The Rsc value is between 0 and 1. When the Rsc value is equal to 1, the carbon fibers are homogenous. When the Rsc value is close to zero, there are serious skin-core structures in the carbon fibers. The Rsc value reduced linearly with the increase in heat-treatment temperature, indicating that the homogeneous degrees of the carbon fibers decreased and the skin-core degrees of the carbon fibers increased. The crystallite size of the carbon fibers surface and core increased gradually with the increase in heat-treatment temperature, but the surface's increased more quickly, indicating that the carbon of the carbon fibers surface was easier to graphitize than the carbon fibers core. Serious skin-core structure was one of the reasons that caused the reducing of the carbon fibers' tensile strength.

10.
Guang Pu Xue Yu Guang Pu Fen Xi ; 27(11): 2249-53, 2007 Nov.
Artículo en Zh | MEDLINE | ID: mdl-18260406

RESUMEN

Laser Raman spectroscopy was employed to characterize the structure of PAN-based carbon fibers during graphitization (2 000-3 000 degrees C), and the spectra of the surface and the cross section of the fibers were compared. The results show that the Raman spectra of the fibers after graphitization can be separated as three bands (D, G and D'). The degree of disorder of the fibers can be measured by Raman spectra parameter, such as the full-widths at half maximum (FWHM) of D and G bands, Raman shift of G band, and the integrated intensity ratio in the form of R(I(D) I(G)). Further investigation demonstrated that the FWHM of D and G bands, Raman shift of G band and the value of R decrease with increasing heat treatment temperature (HTT). The D band can be seen and the value of R is 0.19 even after being heat treated at 3 000 V, indicting that the fibers still have disordered carbons. In addition, the value of R is linearly related to the reciprocal of the basal plane length of the crystallites (L(a)). The spectra of the surface and the cross-section of the fibers after graphitization show obvious difference. So the degree of graphitization and preferred orientation of carbon fibers can be quantitatively characterized by laser Raman spectroscopy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA