Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cancer Immunol Immunother ; 72(6): 1461-1478, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36472588

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) is a lethal and metastatic malignancy resistant to therapy. Elucidating how pancreatic tumor-specific T cells differentiate and are maintained in vivo could inform novel therapeutic avenues to promote T cell antitumor activity. Here, we show that the spleen is a critical site harboring tumor-specific CD8 T cells that functionally segregate based on differential Cxcr3 and Klrg1 expression. Cxcr3+ Klrg1- T cells express the memory stem cell marker Tcf1, whereas Cxcr3-Klrg1 + T cells express GzmB consistent with terminal differentiation. We identify a Cxcr3+ Klrg1+ intermediate T cell subpopulation in the spleen that is highly enriched for tumor specificity. However, tumor-specific T cells infiltrating primary tumors progressively downregulate both Cxcr3 and Klrg1 while upregulating exhaustion markers PD-1 and Lag-3. We show that antigen-specific T cell infiltration into PDA is Cxcr3 independent. Further, Cxcr3-deficiency results in enhanced antigen-specific T cell IFNγ production in primary tumors, suggesting that Cxcr3 promotes loss of effector function. Ultimately, however, Cxcr3 was critical for mitigating cancer cell dissemination following immunotherapy with CD40 agonist + anti-PD-L1 or T cell receptor engineered T cell therapy targeting mesothelin. In the absence of Cxcr3, splenic Klrg1 + GzmB + antitumor T cells wain while pancreatic cancer disseminates suggesting a role for these cells in eliminating circulating metastatic tumor cells. Intratumoral myeloid cells are poised to produce Cxcl10, whereas splenic DC subsets produce Cxcl9 following immunotherapy supporting differential roles for these chemokines on T cell differentiation. Together, our study supports that Cxcr3 mitigates tumor cell dissemination by impacting peripheral T cell fate rather than intratumoral T cell trafficking.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Linfocitos T CD8-positivos/patología , Diferenciación Celular , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Receptores CXCR3 , Neoplasias Pancreáticas
2.
J Immunol ; 206(6): 1372-1384, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33558374

RESUMEN

Pancreatic cancer is a particularly lethal malignancy that resists immunotherapy. In this study, using a preclinical pancreatic cancer murine model, we demonstrate a progressive decrease in IFN-γ and granzyme B and a concomitant increase in Tox and IL-10 in intratumoral tumor-specific T cells. Intratumoral myeloid cells produced elevated IL-27, a cytokine that correlates with poor patient outcome. Abrogating IL-27 signaling significantly decreased intratumoral Tox+ T cells and delayed tumor growth yet was not curative. Agonistic αCD40 decreased intratumoral IL-27-producing myeloid cells, decreased IL-10-producing intratumoral T cells, and promoted intratumoral Klrg1+Gzmb+ short-lived effector T cells. Combination agonistic αCD40+αPD-L1 cured 63% of tumor-bearing animals, promoted rejection following tumor rechallenge, and correlated with a 2-log increase in pancreas-residing tumor-specific T cells. Interfering with Ifngr1 expression in nontumor/host cells abrogated agonistic αCD40+αPD-L1 efficacy. In contrast, interfering with nontumor/host cell Tnfrsf1a led to cure in 100% of animals following agonistic αCD40+αPD-L1 and promoted the formation of circulating central memory T cells rather than long-lived effector T cells. In summary, we identify a mechanistic basis for T cell exhaustion in pancreatic cancer and a feasible clinical strategy to overcome it.


Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Antígenos CD40/agonistas , Carcinoma Ductal Pancreático/tratamiento farmacológico , Células Mieloides/efectos de los fármacos , Neoplasias Pancreáticas/tratamiento farmacológico , Animales , Antineoplásicos Inmunológicos/uso terapéutico , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/patología , Modelos Animales de Enfermedad , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Interleucinas/metabolismo , Activación de Linfocitos/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Masculino , Ratones , Ratones Transgénicos , Células Mieloides/inmunología , Células Mieloides/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Cultivo Primario de Células , Células Tumorales Cultivadas/trasplante , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA