RESUMEN
Small nucleic acid drugs mainly include small interfering RNA(siRNA), antisense oligonucleotide(ASO), microRNA(miRNA), messenger RNA(mRNA), nucleic acid aptamer(aptamer), and so on. Its translation or regulation can be inhibited by binding to the RNA of the target molecule. Due to its strong specificity, persistence, and curability, small nucleic acid drugs have received considerable attention in recent years. Recent studies have shown that some miRNAs from animal and plant sources can stably exist in the blood, tissue, and organs of animals and human beings and exert pharmacological action by regulating the expression of various target proteins. This paper summarized the discovery of small nucleic acids derived from traditional Chinese medicine(TCM) and natural drugs and their cross-border regulatory mechanisms and discussed the technical challenges and regulatory issues brought by this new drug, which can provide new ideas and methods for explaining the complex mechanism of TCM, developing new drugs of small nucleic acids from TCM and natural medicine, and conducting regulatory scientific research.
Asunto(s)
Descubrimiento de Drogas , Medicamentos Herbarios Chinos , Medicina Tradicional China , Humanos , Animales , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , MicroARNs/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/química , Ácidos Nucleicos/químicaRESUMEN
WRKY transcription factor family plays an important role in plant growth and development, secondary metabolite synthesis, and biotic and abiotic stress responses. The present study performed full-length transcriptome sequencing of Polygonatum cyrtonema by virtue of the PacBio SMRT high-throughput platform, identified the WRKY family by bioinformatics methods, and analyzed the physicochemical properties, subcellular localization, phylogeny, and conserved motifs. The results showed that 30.69 Gb nucleotide bases and 89 564 transcripts were obtained after redundancy removal. These transcripts had a mean length of 2 060 bp and an N50 value of 3 156 bp. Based on the full-length transcriptome sequencing data, 64 candidate proteins were selected from the WRKY transcription factor family, with the protein size of 92-1 027 aa, the relative molecular mass of 10 377.85-115 779.48 kDa, and the isoelectric point of 4.49-9.84. These WRKY family members were mostly located in the nucleus and belonged to the hydrophobic proteins. According to the phylogenetic analysis of WRKY family in P. cyrtonema and Arabidopsis thaliana, all WRKY family members were clustered into seven subfamilies and WRKY proteins from P. cyrtonema were distributed in different numbers in these seven subgroups. Expression pattern analysis confirmed that 40 WRKY family members had distinct expression patterns in the rhizomes of 1-and 3-year-old P. cyrtonema. Except for PcWRKY39, the expression of 39 WRKY family members was down-regulated in 3-year-old samples. In conclusion, this study provides abundant reference data for genetic research on P. cyrtonema and lays a foundation for the in-depth investigation of the biological functions of the WRKY family.
Asunto(s)
Arabidopsis , Polygonatum , Factores de Transcripción , Filogenia , Transcriptoma , Regulación de la Expresión GénicaRESUMEN
Quercetin is the most abundant polyphenolic flavonoid (flavonol subclass) in vegetal foods and medicinal plants. This dietary chemopreventive agent has drawn significant interest for its multiple beneficial health effects ("polypharmacology") largely associated with the well-documented antioxidant properties. However, controversies exist in the literature due to its dual anti-/pro-oxidant character, poor stability/bioavailability but multifaceted bioactivities, leaving much confusion as to its exact roles in vivo. Increasing evidence indicates that a prior oxidation of quercetin to generate an array of chemical diverse products with redox-active/electrophilic moieties is emerging as a new linkage to its versatile actions. The present review aims to provide a comprehensive overview of the oxidative conversion of quercetin by systematically analyzing the current quercetin-related knowledge, with a particular focus on the complete spectrum of metabolite products, the enzymes involved in the catabolism and the underlying molecular mechanisms. Herein we review and compare the oxidation pathways, protein structures and catalytic patterns of the related metalloenzymes (phenol oxidases, heme enzymes and specially quercetinases), aiming for a deeper mechanistic understanding of the unusual biotransformation behaviors of quercetin and its seemingly controversial biological functions.
RESUMEN
Yi Yin, a famous medical scientist and culinary master in the late Xia Dynasty and early Shang Dynasty, developed the Chinese medicinal liquids and Chinese medicinal prescriptions emerged after that. Chinese medicinal prescriptions have attracted much attention because of their unique advantages in the treatment of chronic multifactorial diseases, representing an important direction of drug discovery in the future. Yiyin decoction theory is the superior form of personalized combined medication with advanced consciousness. It is different from not only the magic bullet theory of single component action but also the connotation of modern multi-target drugs. The core of Yiyin decoction theory can be summarized as compound compatibility, multiple effects, and moderate regulation. Compound compatibility refers to that the formulation of Chinese medicinal prescriptions involves the complex synergy and interactions between sovereign, minister, assistant, and guide medicinal materials. Multiple effects mean that the prescriptions employ a variety of mechanisms to exert comprehensive pharmacological effects of nonlinear feedback. Moderate regulation reflects that the prescriptions can accurately regulate the multiple points of the disease biological network as a whole. To solve the mystery of Yiyin decoction theory, we should not only simply study the known active substances(components) and their independent target effects in the mixture, but also mine the "dark matter" and "dark effect" of Chinese medicinal prescriptions. That is, we should learn the neglected atypical pharmacological effects of Chinese medicinal prescriptions and the multi-point nesting mechanism that plays a precise regulatory function in the body. Yiyin decoction theory focuses on the overall pharmacological effect to reflect the comprehensive clinical value of Chinese medicinal prescriptions, which is of great significance for the development of a new model for the evaluation and application of new Chinese medicinal prescriptions in line with the theory of traditional Chinese medicine.
Asunto(s)
Medicamentos Herbarios Chinos , China , Medicamentos Herbarios Chinos/farmacología , Medicina Tradicional China , PrescripcionesRESUMEN
Fluorochemicals are persistent, bioaccumulative, and toxic compounds that are widely tributed in the environment. Developing efficient biodegradation strategies to decompose the fluorochemicals via breaking the inert C-F bonds presents a holistic challenge. As a promising biodegradation enzyme candidate, fluoroacetate dehalogenase (FAcD) has been reported as the only non-metallic enzyme to catalyze the cleavage of the strong C-F bond. Here, we systematically investigated the catalytic actions of FAcD toward its natural substrate fluoroacetate using molecular dynamics simulations and quantum mechanism/molecular mechanism calculations. We propose that the enzymatic transformation involves four elementary steps, (I) C-F bond activation, (II) nucleophilic attack, (III) C-O bond cleavage, and (IV) proton transfer. Our results show that nucleophilic attack is the rate-determining step. However, for difluoroacetate and trifluoroacetate, C-F bond activation, instead of nucleophilic attack, becomes the rate-determining step. We show that FAcD, originally recognized as α-fluorocarboxylic acid degradation enzyme, can catalyze the defluorination of difluoroacetate to glyoxylate, which is captured by our high-resolution mass spectrometry experiments. In addition, we employed amino acid electrostatic analysis method to screen potential mutation hotspots for tuning FAcD's electrostatic environment to favor substrate conversion. The comprehensive understanding of catalytic mechanism will inform a rational enzyme engineering strategy to degrade fluorochemicals for benefits of environmental sustainability.
Asunto(s)
Hidrolasas , Simulación de Dinámica Molecular , Aminoácidos , Catálisis , Hidrolasas/metabolismo , Teoría CuánticaRESUMEN
While the mechanism of the P450-catalyzed oxidative hydroxylation of organic compounds has been studied in detail for many years, less is known about sulfoxidation. Depending upon the structure of the respective substrate, heme-FeâO (Cpd I), heme-Fe(III)-OOH (Cpd 0), and heme-Fe(III)-H2O2 (protonated Cpd 0) have been proposed as reactive intermediates. In the present study, we consider the transformation of isosteric substrates via sulfoxidation and oxidative hydroxylation, respectively, catalyzed by regio- and enantioselective mutants of P450-BM3 which were constructed by directed evolution. 1-Thiochromanone and 1-tetralone were used as the isosteric substrates because, unlike previous studies involving fully flexible compounds such as thia-fatty acids and fatty acids, respectively, these compounds are rigid and cannot occur in a multitude of different conformations and binding modes in the large P450-BM3 binding pocket. The experimental results comprising activity and regio- and enantioselectivity, flanked by molecular dynamics computations within a time scale of 300 ns and QM/MM calculations of transition-state energies, unequivocally show that heme-FeâO (Cpd I) is the common catalytically active intermediate in both sulfoxidation and oxidative hydroxylation.
RESUMEN
A unique P450 monooxygenase-peroxygenase mutual benefit system was designed as the core element in the construction of a biocatalytic cascade reaction sequence leading from 3-phenyl propionic acid to ( R)-phenyl glycol. In this system, P450 monooxygenase (P450-BM3) and P450 peroxygenase (OleTJE) not only function as catalysts for the crucial initial reactions, they also ensure an internal in situ H2O2 recycle mechanism that avoids its accumulation and thus prevents possible toxic effects. By directed evolution of P450-BM3 as the catalyst in the enantioselective epoxidation of the styrene-intermediate, formed from 3-phenyl propionic acid, and the epoxide hydrolase ANEH for final hydrolytic ring opening, ( R)-phenyl glycol and 9 derivatives thereof were synthesized from the respective carboxylic acids in one-pot processes with high enantioselectivity.
Asunto(s)
Oxigenasas de Función Mixta/metabolismo , Oxidorreductasas/metabolismo , Biocatálisis , Propionatos/química , Propionatos/metabolismoRESUMEN
BACKGROUND/AIMS: Avascular necrosis of the femoral head (ANFH) is the focus and difficulty of orthopedic diseases. Recently, tissue engineering bone for this disease has shown a good therapeutic effect. The aim of the present study was to investigate the therapeutic effect of basic fibroblast growth factor (FGF-2) as cytokines transfected bone marrow mesenchymal stem cells (BMSCs) in constructing tissue-engineered bone for avascular necrosis of the femoral head. METHODS: The FGF-2 gene overexpressed lentivirus-transfected rBMSCs with xenogeneic antigen-extracted cancellous bone (XACB) to construct tissue engineered bone, and the model of early avascular necrosis of the femoral head was established by lipopolysaccharide (LPS) combined with hormone. The models were randomly divided into five groups: A (control), B (XACB), C (XACB+rBMSCs), D (XACB+rBMSCs+Lv-GFP), and E (XACB+rBMSCs+Lv-FGF-2/GFP) groups. The therapeutic effect of the tissue engineered bone for the avascular necrosis of the femoral head was evaluated by gross anatomy, X-ray examination, immunohistochemistry and H&E staining. RESULTS: The FGF-2 gene was transfected into rBMSCs (Multiplicity of infection [MOI] = 100) by lentivirus, and its efficiency was above 95%. The rBMSCs were successfully transfected overexpressing FGF-2 by qPCR and western blot. After tissue engineering bone implantation, X-ray examination and gross specimen observation revealed that the repair area in the E group was > 80% at six weeks, the defect was completely repaired at 12 weeks, and osteogenesis was stronger, when compared with the other groups. For the X-ray score, vascular area density and new bone formation area were higher, when compared with the other groups, and the difference was statistically significant (P< 0.05). CONCLUSION: FGF-2 gene overexpression lentivirus transfection BMSCs combined with XACB to construct tissue engineered bone can effectively promote vascular regeneration, and improve the repair effect of avascular necrosis of the femoral head.
Asunto(s)
Huesos/patología , Necrosis de la Cabeza Femoral/patología , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Animales , Células de la Médula Ósea/citología , Regeneración Ósea/fisiología , Huesos/diagnóstico por imagen , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Necrosis de la Cabeza Femoral/etiología , Necrosis de la Cabeza Femoral/metabolismo , Factor 2 de Crecimiento de Fibroblastos/genética , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Lentivirus/genética , Lipopolisacáridos/toxicidad , Masculino , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Osteogénesis , Conejos , Ingeniería de TejidosRESUMEN
Enzymes have been used for a long time as catalysts in the asymmetric synthesis of chiral intermediates needed in the production of therapeutic drugs. However, this alternative to man-made catalysts has suffered traditionally from distinct limitations, namely the often observed wrong or insufficient enantio- and/or regioselectivity, low activity, narrow substrate range, and insufficient thermostability. With the advent of directed evolution, these problems can be generally solved. The challenge is to develop and apply the most efficient mutagenesis methods which lead to highest-quality mutant libraries requiring minimal screening. Structure-guided saturation mutagenesis and its iterative form have emerged as the method of choice for evolving stereo- and regioselective mutant enzymes needed in the asymmetric synthesis of chiral intermediates. The number of (industrial) applications in the preparation of chiral pharmaceuticals is rapidly increasing. This review features and analyzes typical case studies.
Asunto(s)
Enzimas/metabolismo , Preparaciones Farmacéuticas/metabolismo , Biocatálisis , Industria Farmacéutica , Humanos , Estructura Molecular , Preparaciones Farmacéuticas/química , EstereoisomerismoRESUMEN
Based on the systematic summary of the results of the fourth general survey of traditional Chinese medicine resources, the cultivation of large varieties of Chinese material medica and the latest research on health industrial development, the novel concepts and scientific connotations of generalized science of Chinese material medica are put forward, and the basic ideas and methods of a new Chinese medicine academic system, the cultivation system of large varieties of Chinese medicinal materials and the application system of the large health industry are constructed. This kind of generalized science of Chinese material medica, rooted in the traditional Chinese culture and the theory of "preventive treatment of disease", can avoid the narrow prospect induced by the increasing specialization and refinement of knowledge of science of Chinese material medica. It will play an important role in the modernization, industrialization, internationalization of traditional Chinese medicine.
Asunto(s)
Materia Medica/uso terapéutico , Medicina Tradicional China , Industria Farmacéutica , Humanos , InvestigaciónRESUMEN
The possibility of a double Walden inversion mechanism of the fluoracetate dehalogenase FAcD (RPA1163) has been studied by subjecting rac-2-fluoro-2-phenyl acetic acid to the defluorination process. This stereochemical probe led to inversion of configuration in a kinetic resolution with an extremely high selectivity factor (E > 500), showing that the classical mechanism involving SN2 reaction by Asp110 pertains. The high preference for the (S)-substrate is of synthetic value. Wide substrate scope of RPA1163 in such hydrolytic kinetic resolutions can be expected because the reaction of the even more sterically demanding rac-2-fluoro-2-benzyl acetic acid proceeded similarly. Substrate acceptance and stereoselectivity were explained by extensive molecular modeling (MM) and molecular dynamics (MD) computations. These computations were also applied to fluoroacetic acid itself, leading to further insights.
RESUMEN
OBJECTIVES: To determine whether string-like lumina (SLs) on contrast-enhanced magnetic resonance angiography (CE-MRA) predict better outcomes in diabetic patients with below-the-knee (BTK) chronic total occlusions (CTOs). METHODS: This study involved 317 long-segment (>5 cm) BTK CTOs of 245 patients that were examined using CE-MRA and treated using endovascular angioplasty. An SL with a CTO was slowly filled with blood on conventional CE-MRA. Univariate and multivariate analyses were performed to identify predictors of procedural success, recanalisation method and immediate blood flow restoration. The target-lesion patency and limb-salvage rates were assessed. RESULTS: SL-positive CTOs (n = 60) achieved a higher technique success rate, preferred intraluminal angioplasty and better blood flow restoration than SL-negative CTOs (n = 257, P < 0.05). Multivariate analyses revealed that lesion length was the independent predictor of procedural success (P = 0.028). SL was a predictor of intraluminal angioplasty (P < 0.001) and good blood-flow restoration (P = 0.004). Kaplan-Meier analyses at 12 months revealed a higher target lesion patency rate (P = 0.04) and limb-salvage rate (P = 0.35) in SL-positive CTOs. CONCLUSIONS: In patients with BTK CTOs, SL predicted intraluminal angioplasty and good blood-flow restoration for BTK CTOs. KEY POINTS: ⢠Intraluminal recanalisation was more frequently used for BTK-CTOs with SLs than without ⢠CTO length was the only independent predictor of successful CTO recanalisation ⢠SL was the only predictor of intraluminal angioplasty for BTK-CTOs ⢠SL and CTO length were predictors of good blood-flow restoration after recanalisation ⢠Restenosis-free and limb-salvage rates were better for SL-positive CTOs than SL-negative CTOs.
Asunto(s)
Angioplastia/métodos , Arteriopatías Oclusivas/diagnóstico , Velocidad del Flujo Sanguíneo/fisiología , Medios de Contraste/farmacología , Recuperación del Miembro/métodos , Angiografía por Resonancia Magnética/métodos , Flujo Sanguíneo Regional/fisiología , Anciano , Arteriopatías Oclusivas/fisiopatología , Arteriopatías Oclusivas/cirugía , Femenino , Estudios de Seguimiento , Humanos , Rodilla , Masculino , Estudios Retrospectivos , Factores de Tiempo , Resultado del TratamientoRESUMEN
Although segmented and unsegmented RNA viruses are commonplace, the evolutionary links between these two very different forms of genome organization are unclear. We report the discovery and characterization of a tick-borne virus--Jingmen tick virus (JMTV)--that reveals an unexpected connection between segmented and unsegmented RNA viruses. The JMTV genome comprises four segments, two of which are related to the nonstructural protein genes of the genus Flavivirus (family Flaviviridae), whereas the remaining segments are unique to this virus, have no known homologs, and contain a number of features indicative of structural protein genes. Remarkably, homology searching revealed that sequences related to JMTV were present in the cDNA library from Toxocara canis (dog roundworm; Nematoda), and that shared strong sequence and structural resemblances. Epidemiological studies showed that JMTV is distributed in tick populations across China, especially Rhipicephalus and Haemaphysalis spp., and experiences frequent host-switching and genomic reassortment. To our knowledge, JMTV is the first example of a segmented RNA virus with a genome derived in part from unsegmented viral ancestors.
Asunto(s)
Flaviviridae/genética , Genoma Viral , Garrapatas/virología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Bovinos , Línea Celular , China , ADN Viral/genética , Perros , Evolución Molecular , Flaviviridae/clasificación , Flaviviridae/ultraestructura , Flavivirus/genética , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Filogenia , Proteómica , Virus Reordenados/clasificación , Virus Reordenados/genética , Virus Reordenados/ultraestructura , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Proteínas no Estructurales Virales/genéticaRESUMEN
OBJECTIVE: Hypertension can alter the vascular structure, mechanics, and function of small arteries and arterioles. It remains unknown whether microvascular changes are associated with brain metabolism. The purpose of this study was to analyze the correlation between the reduction in small arteries and changes in brain metabolism in patients with hypertension. SUBJECTS AND METHODS: The study population comprised 50 patients with hypertension and 50 volunteers without hypertension. The two groups underwent 3-T 3D time-of-flight MR angiography, and the numbers of lenticulostriate arteries (LSAs) were determined for both groups. Single-voxel proton MR spectroscopic data on the basal ganglia regions were also acquired. The ratios of N-acetylaspartate to creatine (NAA/Cr), myo-inositol to creatine (Mi/Cr), and choline to creatine (Cho/Cr) were measured. Statistical analysis was performed to evaluate the differences between the two groups with respect to metabolite ratios. RESULTS: The average total number of LSA stems on both sides in patients with hypertension was 5.12 ± 0.98 compared with 6.10 ± 0.95 in volunteers without hypertension (p < 0.0001). The NAA/Cr ratio decreased according to a reduction in the number of LSAs in the hypertension group, which was significantly reduced when the number of LSAs was 3 or fewer. CONCLUSION: Hypertension can lead to a statistically significant reduction in NAA/Cr ratio in the basal ganglia regions when the number of LSAs decreases to a certain extent. Reduced numbers of LSAs correlated with brain metabolism changes caused by hypertension, which can provide important insights for understanding the pathophysiologic mechanism of hypertension and may be valuable in evaluating this disease.
Asunto(s)
Enfermedad Cerebrovascular de los Ganglios Basales/diagnóstico , Cuerpo Estriado/irrigación sanguínea , Hipertensión/complicaciones , Adulto , Enfermedad Cerebrovascular de los Ganglios Basales/etiología , Enfermedad Cerebrovascular de los Ganglios Basales/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Núcleo Caudado/irrigación sanguínea , Núcleo Caudado/metabolismo , Núcleo Caudado/patología , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Femenino , Humanos , Angiografía por Resonancia Magnética , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Adulto JovenRESUMEN
Recent evidence suggested that nonirradiated cancer-associated fibroblasts (CAFs) promoted aggressive phenotypes of cancer cells through epithelial-mesenchymal transition (EMT). Hepatoma-derived growth factor (HDGF) is a radiosensitive gene of esophageal squamous cell carcinoma (ESCC). This study aimed to investigate the effect of irradiated fibroblasts on EMT and HDGF expression of ESCC. Our study demonstrated that coculture with nonirradiated fibroblasts significantly increased the invasive ability of ESCC cells and the increased invasiveness was further accelerated when they were cocultured with irradiated fibroblasts. Scattering of ESCC cells was also accelerated by the supernatant from irradiated fibroblasts. Exposure of ESCC cells to supernatant from irradiated fibroblasts resulted in decreased E-cadherin, increased vimentin in vitro and ß-catenin was demonstrated to localize to the nucleus in tumor cells with irradiated fibroblasts in vivo models. The expression of HDGF and ß-catenin were increased in both fibroblasts and ESCC cells of irradiated group in vitro and in vivo models. Interestingly, the tumor cells adjoining the stromal fibroblasts displayed strong nuclear HDGF immunoreactivity, which suggested the occurrence of a paracrine effect of fibroblasts on HDGF expression. These data suggested that irradiated fibroblasts promoted invasion, growth, EMT and HDGF expression of ESCC.
Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Comunicación Celular/efectos de la radiación , Transición Epitelial-Mesenquimal/efectos de la radiación , Neoplasias Esofágicas/metabolismo , Fibroblastos/efectos de la radiación , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Masculino , Persona de Mediana Edad , Invasividad NeoplásicaRESUMEN
Hantaviruses are among the most important zoonotic pathogens of humans and the subject of heightened global attention. Despite the importance of hantaviruses for public health, there is no consensus on their evolutionary history and especially the frequency of virus-host co-divergence versus cross-species virus transmission. Documenting the extent of hantavirus biodiversity, and particularly their range of mammalian hosts, is critical to resolving this issue. Here, we describe four novel hantaviruses (Huangpi virus, Lianghe virus, Longquan virus, and Yakeshi virus) sampled from bats and shrews in China, and which are distinct from other known hantaviruses. Huangpi virus was found in Pipistrellus abramus, Lianghe virus in Anourosorex squamipes, Longquan virus in Rhinolophus affinis, Rhinolophus sinicus, and Rhinolophus monoceros, and Yakeshi virus in Sorex isodon, respectively. A phylogenetic analysis of the available diversity of hantaviruses reveals the existence of four phylogroups that infect a range of mammalian hosts, as well as the occurrence of ancient reassortment events between the phylogroups. Notably, the phylogenetic histories of the viruses are not always congruent with those of their hosts, suggesting that cross-species transmission has played a major role during hantavirus evolution and at all taxonomic levels, although we also noted some evidence for virus-host co-divergence. Our phylogenetic analysis also suggests that hantaviruses might have first appeared in Chiroptera (bats) or Soricomorpha (moles and shrews), before emerging in rodent species. Overall, these data indicate that bats are likely to be important natural reservoir hosts of hantaviruses.
Asunto(s)
Quirópteros/virología , Eulipotyphla/virología , Infecciones por Hantavirus/veterinaria , Orthohantavirus/genética , Animales , Evolución Biológica , China/epidemiología , Reservorios de Enfermedades/virología , Geografía , Orthohantavirus/clasificación , Orthohantavirus/aislamiento & purificación , Infecciones por Hantavirus/epidemiología , Infecciones por Hantavirus/transmisión , Infecciones por Hantavirus/virología , Humanos , Filogenia , ARN Viral/genética , ARN Viral/aislamiento & purificación , Roedores , Análisis de Secuencia de ADN , Musarañas/virologíaRESUMEN
The whole spectrum usually contains a lot of redundant information in the near-infrared spectroscopy model, the presence of redundant information will increase the model resolution time and increase the difficulty of parsing model, Therefore, how to select the characteristic wavelength quickly and effectly is very crucial. In this paper, we combined the algorithm based on SPA (successive projections algorithm ) with IPLS (interval partial least squares ) to selec the characteristic wavelength in the fermentation of wheat straw microbial biomass, A total of 85 samples prepared by measuring microbial biomass using glucosamine method, 68 samples are chosen as calibration set and 17 simples are chosen as verification set. First, the whole spectral region 520 points are segmented modeling according to the interval wavelength point size 10, 20, 30, 40 and 4 450~4 925 cm-1, 9 194~9 993 cm-1 two-band range are selected as the characteristic wavelength band, then pick out the new feature wavelength points by Successive Projections Algorithm band and Genetic Algorithm (GA), comprehensive analysis and comparison the result of model. The experimental results show that the using of IPLS-SPA algorithm to select the combination band 4 450~4 925 cm-1 & 9 194~9 993 cm-1 has the best modeling effect, compared with the modeling of whole spectrum, the wavelength points decrease from 520 to 10, the correction coefficient of determination R2 rised from 0. 884 9 to 0. 945 28, root mean square error (RMSE) dropped from 11. 104 9 to 8. 203 3, although the genetic algorithm model achieved the better accuracy, but the results are instable and have a strong randomness , while IPLS combined SPA method can select characteristic wavelength information stability and accurately, which can improve the model calculation speed and reduce the fitting difficulty of the model, it can be used as a new reference method for band selection. The results show that using near infrared spectroscopy method for straw biomass rapid detection is feasible.
Asunto(s)
Biomasa , Espectroscopía Infrarroja Corta , Algoritmos , Fermentación , Análisis de los Mínimos Cuadrados , Modelos Teóricos , Tallos de la Planta , TriticumRESUMEN
BIIB021 is a novel, orally available inhibitor of heat shock protein 90 (Hsp90) that is currently in phase I/II clinical trials. BIIB021 induces the apoptosis of various types of tumor cells in vitro and in vivo. The aim of this study is to investigate the effect of BIIB021 on the radiosensitivity of esophageal squamous cell carcinoma (ESCC). The results indicated that BIIB021 exhibited strong antitumor activity in ESCC cell lines, either as a single agent or in combination with radiation. BIIB021 significantly downregulated radioresistant proteins including EGFR, Akt, Raf-1 of ESCC cell lines, increased apoptotic cells and enhanced G2 arrest that is more radiosensitive cell cycle phase. These results suggest that this synthetic Hsp90 inhibitor simultaneously affects multiple pathways involved in tumor development and progression in the ESCC setting and may represent a better strategy for the treatment of ESCC patients, either as a monotherapy or a radiosensitizer.
Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de la radiación , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Adenina/análogos & derivados , Apoptosis/efectos de la radiación , Línea Celular Tumoral , Humanos , Piridinas , Tolerancia a Radiación/efectos de los fármacos , Fármacos Sensibilizantes a Radiaciones/farmacologíaRESUMEN
Bcrp1/ABCG2 is exclusively expressed in side population (SP) cells, however, it has not been fully elucidated whether it has an impact on the viability, proliferation and paracrine actions in kidney SP cells under oxygen-glucose deprivation (OGD) followed by reoxygenation. In this study, we found that 2-h OGD did not injure SP cells (sub-lethal OGD) but induced SP cells proliferation 48 and 72 h after reoxygenation; whereas 4-h OGD markedly injured the cells (lethal OGD) and led to apoptosis 24-72 h after reoxygenation. Fumitremorgin C, an inhibitor of ABCG2, attenuated both the proliferation and viability of SP cells. Sub-lethal and lethal OGD induced the increase in the secretion of vascular endothelial growth factor, insulin-like growth factor 1, hepatocyte growth factor, and stromal cell-derived factor-1α in kidney SP cells, which was inhibited by Fumitremorgin C. Collectively, these findings provide evidence for a crucial role for the ABCG2 expression in the viability, proliferation and paracrine actions of kidney SP cells after OGD.
Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Glucemia/metabolismo , Supervivencia Celular/fisiología , Riñón/metabolismo , Oxígeno/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transportadoras de Casetes de Unión a ATP/genética , Animales , Apoptosis/genética , Apoptosis/fisiología , Western Blotting , Ciclo Celular/genética , Ciclo Celular/fisiología , Proliferación Celular/genética , Proliferación Celular/fisiología , Supervivencia Celular/genética , Células Cultivadas , Riñón/citología , Masculino , Ratones , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
Many γ-butyrolactone-autoregulator receptors control the production of secondary metabolites in Streptomyces spp. Hence, AvaR1, an autoregulator receptor protein in Streptomyces avermitilis, was characterized as a negative regulator of avermectin (Ave) production. Deletion of AvaR1 in a high-producing strain increased production of Ave B1a approx. 1.75 times (~700 µg/ml) compared with the parent strain. Semi-quantitative RT-PCR and electrophoretic mobility shift assays revealed that AvaR1 regulates the biosynthesis of Ave but not through the aveR pathway-specific regulatory gene. A special signaling molecule, avenolide, increased production of Ave. This study has refined our understanding of how avenolide regulates the production of Aves which is promising for developing new methods to improve the production of antibiotics in industrial strains.