Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Ann Transl Med ; 6(20): 403, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30498730

RESUMEN

BACKGROUND: Whether or not the addition of 3D (three-dimension) printed models can enhance the teaching and learning environment for undergraduate students in regard to bone spatial anatomy is still unknown. In this study, we investigated the use of 3D printed models versus radiographic images as a technique for the education of medical students about bone spatial anatomy and fractures. METHODS: The computed tomography (CT) data from four patients, each with a different fracture type (one spinal fracture, one pelvic fracture, one upper limb fracture, and one lower limb fracture), were obtained, and 3D models of the fractures were printed. A total of 90 medical students were enrolled in the study and randomly divided into two groups as follows: a traditional radiographic image group (presented by PowerPoint) and a 3D printed model group (combined PowerPoint and 3D models). Each student answered 5 questions about one type of fracture and completed a visual analog scale of satisfaction (0-10 points). RESULTS: No significant differences were found in the upper limb or lower limb test scores between the 3D printed model group and the traditional radiographic image group; however, the scores on the pelvis and spine test for the traditional radiographic image group were significantly lower than the scores for the 3D printed model group (P=0.000). No significant differences were found in the test-taking times for the upper limb or lower limb (P=0.603 and P=0.746, respectively) between the two groups; however, the test-taking times for the pelvis and spine in the traditional radiographic image group were significantly longer than those of the 3D printed model group (P=0.000 and P=0.002, respectively). CONCLUSIONS: The 3D printed model may improve medical students' understanding of bone spatial anatomy and fractures in some anatomically complex sites.

2.
PeerJ ; 5: e3564, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28717599

RESUMEN

Transpedicular transdiscal screw fixation is an alternative technique used in lumbar spine fixation; however, it requires an accurate screw trajectory. The aim of this study is to design a novel 3D-printed custom drill guide and investigate its accuracy to guide the trajectory of transpedicular transdiscal (TPTD) lumbar screw fixation. Dicom images of thirty lumbar functional segment units (FSU, two segments) of L1-L4 were acquired from the PACS system in our hospital (patients who underwent a CT scan for other abdomen diseases and had normal spine anatomy) and imported into reverse design software for three-dimensional reconstructions. Images were used to print the 3D lumbar models and were imported into CAD software to design an optimal TPTD screw trajectory and a matched custom drill guide. After both the 3D printed FSU models and 3D-printed custom drill guide were prepared, the TPTD screws will be guided with a 3D-printed custom drill guide and introduced into the 3D printed FSU models. No significant statistical difference in screw trajectory angles was observed between the digital model and the 3D-printed model (P > 0.05). Our present study found that, with the help of CAD software, it is feasible to design a TPTD screw custom drill guide that could guide the accurate TPTD screw trajectory on 3D-printed lumbar models.

3.
PLoS One ; 10(4): e0124291, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25915641

RESUMEN

BACKGROUND: To study the morphology of the human spine and new spinal fixation methods, scientists require cadaveric specimens, which are dependent on donation. However, in most countries, the number of people willing to donate their body is low. A 3D printed model could be an alternative method for morphology research, but the accuracy of the morphology of a 3D printed model has not been determined. METHODS: Forty-five computed tomography (CT) scans of cervical, thoracic and lumbar spines were obtained, and 44 parameters of the cervical spine, 120 parameters of the thoracic spine, and 50 parameters of the lumbar spine were measured. The CT scan data in DICOM format were imported into Mimics software v10.01 for 3D reconstruction, and the data were saved in .STL format and imported to Cura software. After a 3D digital model was formed, it was saved in Gcode format and exported to a 3D printer for printing. After the 3D printed models were obtained, the above-referenced parameters were measured again. RESULTS: Paired t-tests were used to determine the significance, set to P<0.05, of all parameter data from the radiographic images and 3D printed models. Furthermore, 88.6% of all parameters of the cervical spine, 90% of all parameters of the thoracic spine, and 94% of all parameters of the lumbar spine had Intraclass Correlation Coefficient (ICC) values >0.800. The other ICC values were <0.800 and >0.600; none were <0.600. CONCLUSION: In this study, we provide a protocol for printing accurate 3D spinal models for surgeons and researchers. The resulting 3D printed model is inexpensive and easily obtained for spinal fixation research.


Asunto(s)
Imagenología Tridimensional , Modelos Anatómicos , Impresión Tridimensional , Columna Vertebral/anatomía & histología , Adulto , Vértebras Cervicales/anatomía & histología , Vértebras Cervicales/diagnóstico por imagen , Humanos , Vértebras Lumbares/anatomía & histología , Vértebras Lumbares/diagnóstico por imagen , Persona de Mediana Edad , Columna Vertebral/diagnóstico por imagen , Vértebras Torácicas/anatomía & histología , Vértebras Torácicas/diagnóstico por imagen , Tomografía Computarizada por Rayos X
4.
Medicine (Baltimore) ; 93(28): e242, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25526447

RESUMEN

Anterior occiput-to-axis screw fixation is more suitable than a posterior approach for some patients with a history of posterior surgery. The complex osseous anatomy between the occiput and the axis causes a high risk of injury to neurological and vascular structures, and it is important to have an accurate screw trajectory to guide anterior occiput-to-axis screw fixation. Thirty computed tomography (CT) scans of upper cervical spines were obtained for three-dimensional (3D) reconstruction. Cylinders (1.75 mm radius) were drawn to simulate the trajectory of an anterior occiput-to-axis screw. The imitation screw was adjusted to 4 different angles and measured, as were the values of the maximized anteroposterior width and the left-right width of the occiput (C0) to the C1 and C1 to C2 joints. Then, the 3D models were printed, and an angle guide device was used to introduce the screws into the 3D models referring to the angles calculated from the 3D images. We found the screw angle ranged from α1 (left: 4.99±4.59°; right: 4.28±5.45°) to α2 (left: 20.22±3.61°; right: 19.63±4.94°); on the lateral view, the screw angle ranged from ß1 (left: 13.13±4.93°; right: 11.82±5.64°) to ß2 (left: 34.86±6.00°; right: 35.01±5.77°). No statistically significant difference was found between the data of the left and right sides. On the 3D printed models, all of the anterior occiput-to-axis screws were successfully introduced, and none of them penetrated outside of the cortex; the mean α4 was 12.00±4.11 (left) and 12.25±4.05 (right), and the mean ß4 was 23.44±4.21 (left) and 22.75±4.41 (right). No significant difference was found between α4 and ß4 on the 3D printed models and α3 and ß3 calculated from the 3D digital images of the left and right sides. Aided with the angle guide device, we could achieve an optimal screw trajectory for anterior occiput-to-axis screw fixation on 3D printed C0 to C2 models.


Asunto(s)
Vértebras Cervicales/diagnóstico por imagen , Simulación por Computador , Fijación Interna de Fracturas/métodos , Procesamiento de Imagen Asistido por Computador , Fracturas de la Columna Vertebral/cirugía , Tomografía Computarizada por Rayos X/métodos , Tornillos Óseos , Vértebras Cervicales/lesiones , Vértebras Cervicales/cirugía , Estudios de Factibilidad , Humanos , Reproducibilidad de los Resultados , Fracturas de la Columna Vertebral/diagnóstico por imagen
5.
Zhongguo Gu Shang ; 26(1): 33-7, 2013 Jan.
Artículo en Zh | MEDLINE | ID: mdl-23617139

RESUMEN

OBJECTIVE: To discuss the therapeutic effects of the atlantoaxial pedicle screw system fixation in treatment of atlantoaxial instability. METHODS: From June 2003 to March 2010, 32 patients with atlantoaxial instability were treated by atlantoaxial pedicle screw system fixation, included 21 males and 11 females wiht an average age of 42.5 years old ranging from 28 to 66 years. Among them, 18 cases were odontoid process fractures, 7 were congenital dissociate odontoid process, 4 were Jefferson fracture combined with odontoid fracture, 3 were rheumatic arthritis causing atlantoaxial instability. All patients suffered from the atlantoaxial subluxation and atlantoaxial instability. The JOA score ranged from 4 to 14 (means 9.1 +/- 0.3) before operation. The patients had some image examination including the X-ray of cervical vertebrae (include of dynamic position film), spiral CT 3D reconstruction and/or MRI. The position of pedicle screw system implantation,the angle of pedicle screw system implantation and screw length were measured. Operating skull traction. Operation undewent general anesthesia, implanted the pedicle screw, reduction and bone fusion under direct vision. The bone was fixated between posterior arch of atlas and lamina of axis by the lateral combination bended to posterior. RESULTS: One hundred and twenty-eight atlantoaxial pedicle screws were implanted in 32 patients. No patient had the injure of spinal cord, nerve root and vertebral artery. All patients were followed-up from 6 to 48 months (averaged 16 months). After operation, the JOA score ranged from 11 to 17 (averaged 15.9 +/- 0.2), improvement rate was 86.1%. The fracture of odontoid process were healing completely. All fusion bone were combinated. The internal fixation wasn't loosening and breaking. CONCLUSION: The atlantoaxial pedicle screw system fixation was effective method to treat atlantoaxial instability. The method had many advantages, such as provide rigid and short segment fixation, safe and simple, high fusion rate. The method was worth in clinical application.


Asunto(s)
Articulación Atlantoaxoidea/lesiones , Tornillos Óseos , Inestabilidad de la Articulación/cirugía , Adulto , Anciano , Articulación Atlantoaxoidea/diagnóstico por imagen , Articulación Atlantoaxoidea/cirugía , Fenómenos Biomecánicos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA