Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Nano Lett ; 23(18): 8664-8673, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37669541

RESUMEN

Glucose oxidase-loaded ZIF-90 metal-organic framework nanoparticles conjugated to hemin-G-quadruplexes act as functional bioreactor hybrids operating transient dissipative biocatalytic cascaded transformations consisting of the glucose-driven H2O2-mediated oxidation of Amplex-Red to resorufin or the glucose-driven generation of chemiluminescence by the H2O2-mediated oxidation of luminol. One system involves the fueled activation of a reaction module leading to the temporal formation and depletion of the bioreactor conjugate operating the nickase-guided transient biocatalytic cascades. The second system demonstrates the fueled activation of a reaction module yielding a bioreactor conjugate operating the exonuclease III-dictated transient operation of the two biocatalytic cascades. The temporal operations of the bioreactor circuits are accompanied by kinetic models and computational simulations enabling us to predict the dynamic behavior of the systems subjected to different auxiliary conditions.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , G-Cuádruplex , Estructuras Metalorgánicas , Nanopartículas , Glucosa Oxidasa/metabolismo , Peróxido de Hidrógeno , Glucosa , Reactores Biológicos , Hemina
2.
J Transl Med ; 21(1): 200, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36927450

RESUMEN

BACKGROUND: Diabetic cardiomyopathy (DCM) has been considered as a major threat to health in individuals with diabetes. GrpE-like 2 (Grpel2), a nucleotide exchange factor, has been shown to regulate mitochondrial import process to maintain mitochondrial homeostasis. However, the effect and mechanism of Grpel2 in DCM remain unknown. METHODS: The streptozotocin (STZ)-induced DCM mice model and high glucose (HG)-treated cardiomyocytes were established. Overexpression of cardiac-specific Grpel2 was performed by intramyocardial injection of adeno-associated virus serotype 9 (AAV9). Bioinformatics analysis, co-immunoprecipitation (co-IP), transcriptomics profiling and functional experiments were used to explore molecular mechanism of Grpel2 in DCM. RESULTS: Here, we found that Grpel2 was decreased in DCM induced by STZ. Overexpression of cardiac-specific Grpel2 alleviated cardiac dysfunction and structural remodeling in DCM. In both diabetic hearts and HG-treated cardiomyocytes, Grpel2 overexpression attenuated apoptosis and mitochondrial dysfunction, including decreased mitochondrial ROS production, increased mitochondrial respiratory capacities and increased mitochondrial membrane potential. Mechanistically, Grpel2 interacted with dihydrolipoyl succinyltransferase (DLST), which positively mediated the import process of DLST into mitochondria under HG conditions. Furthermore, the protective effects of Grpel2 overexpression on mitochondrial function and cell survival were blocked by siRNA knockdown of DLST. Moreover, Nr2f6 bond to the Grpel2 promoter region and positively regulated its transcription. CONCLUSION: Our study provides for the first time evidence that Grpel2 overexpression exerts a protective effect against mitochondrial dysfunction and apoptosis in DCM by maintaining the import of DLST into mitochondria. These findings suggest that targeting Grpel2 might be a promising therapeutic strategy for the treatment of patients with DCM.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Ratones , Animales , Miocitos Cardíacos/metabolismo , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/metabolismo , Mitocondrias , Apoptosis , Modelos Animales de Enfermedad
3.
Zhonghua Nan Ke Xue ; 29(2): 131-137, 2023 Feb.
Artículo en Zh | MEDLINE | ID: mdl-37847084

RESUMEN

OBJECTIVE: To evaluate the effect of transurethral plasmakinetic enucleation of the prostate (PKEP) with complete preservation of the urethral mucosa in the 11-1 o'clock position on urinary continence and erectile function in BPH patients. METHODS: We retrospectively analyzed the clinical data on 84 cases of BPH treated by traditional PKEP (group A, n = 48) or modified PKEP with complete preservation of the urethral mucosa in the 11-1 o'clock position (group B, n = 36) from January 2017 to December 2021. All the patients had sexual activities within three months preoperatively. We followed up the patients for 12 months after surgery and compared the baseline, surgery-related and follow-up data between the two groups of patients. RESULTS: There were no statistically significant differences between the two groups of patients in age, disease duration, prostate volume, preoperative postvoid residual urine (PVR), preoperative maximum urinary flow rate (Qmax), IPSS, PSA level, QOL scores or IIEF-5 scores, nor in the operation time, intraoperative hemoglobin decrease, volume of resected tissue, bladder flushing time, postoperative hospital stay, or postoperative improvement of Qmax and IPSS. The rate of urinary continence was significantly higher in group B than in A at 1 month postoperatively (66.67% ï¼»24/36ï¼½ vs 43.25% ï¼»20/48ï¼½, P = 0.025) and so were IIEF-5 scores at 6 months (16.69 ± 3.21 vs 15.27 ± 2.74, P = 0.032) and 12 months (18.04 ± 2.04 vs 16.96 ± 2.54, P = 0.039), while the incidence rate of retrograde ejaculation markedly lower in the former than in the latter group at 6 months (33.33% ï¼»12/36ï¼½ vs 56.25% ï¼»28/48ï¼½, P = 0.018) and 12 months (25% ï¼»9/36ï¼½ vs 47.92% ï¼»23/48ï¼½, P = 0.027). At 1, 3, 6 and 12 months after surgery, the patients in group B also showed remarkably higher QOL scores than those in group B (2.61 ± 0.81 vs 2.12 ± 0.69, P = 0.005; 2.24 ± 0.66 vs 1.94 ± 0.51,P = 0.026; 2.12 ± 0.83 vs 1.80 ± 0.53,P = 0.047; and 1.94 ± 0.65 vs 1.72 ± 0.58, P = 0.038). CONCLUSION: Modified PKEP with complete preservation of the urethral mucosa in the 11-1 o'clock position can improve urinary continence, protect erectile function and ameliorate QOL in patients with BPH.


Asunto(s)
Disfunción Eréctil , Hiperplasia Prostática , Resección Transuretral de la Próstata , Masculino , Humanos , Hiperplasia Prostática/complicaciones , Hiperplasia Prostática/cirugía , Disfunción Eréctil/cirugía , Calidad de Vida , Estudios Retrospectivos , Membrana Mucosa , Resultado del Tratamiento
4.
Angew Chem Int Ed Engl ; 62(18): e202215332, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36651472

RESUMEN

DNA nanotechnology relies on the structural and functional information encoded in nucleic acids. Specifically, the sequence-guided reconfiguration of nucleic acids by auxiliary triggers provides a means to develop DNA switches, machines and stimuli-responsive materials. The present Review addresses recent advances in the construction and applications of dynamic reconfigurable DNA nanostructures, networks and materials. Dynamic transformations proceeding within engineered origami frames or between origami tiles, and the triggered dynamic reconfiguration of scaled supramolecular origami structures are addressed. The use of origami frameworks to assemble dynamic chiroplasmonic optical devices and to operate switchable chemical processes are discussed. Also, the dynamic operation of DNA networks is addressed, and the design of "smart" stimuli-responsive all-DNA materials and their applications are introduced. Future perspectives and applications of dynamic reconfigurable DNA nanostructures are presented.


Asunto(s)
Nanoestructuras , Nanoestructuras/química , ADN/química , Nanotecnología , Conformación de Ácido Nucleico
5.
Biochem Biophys Res Commun ; 609: 169-175, 2022 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-35447394

RESUMEN

Mitochondrial calcium ([Ca2+]m) overload is considered a major trigger of cardiomyocyte death during myocardial ischemia/reperfusion (I/R) injury. Grpel2 is located in mitochondria and facilitates the mtHSP70 protein folding cycle in oxidative stress. However, Grpel2 expression during I/R injury and its impact on I/R injury remain poorly understood. This study explored the role of Grpel2 in I/R injury and its underlying mechanism. Mice were intramyocardially injected with recombinant adenovirus vectors to knockdown cardiac Grpel2 expression, and a myocardial I/R model was established. We confirmed that cardiac Grpel2 is upregulated during I/R injury. Cardiac-specific Grpel2 knockdown exacerbates mitochondrial fission, cardiomyocyte death and cardiac contractile dysfunction induced by I/R injury. Moreover, our study revealed that Grpel2 knockdown increased both MCU expression and [Ca2+]m content. Excessive mitochondrial fission and apoptosis were rescued by Ru360, an inhibitor of MCU opening. In summary, our findings suggest that Grpel2 alleviates myocardial ischemia/reperfusion injury by inhibiting MCU-mediated mitochondrial calcium overload and provide new insights into the mechanism of MCU-mediated [Ca2+]m homeostasis during I/R injury.


Asunto(s)
Daño por Reperfusión Miocárdica , Animales , Calcio/metabolismo , Canales de Calcio/metabolismo , Calcio de la Dieta , Ratones , Mitocondrias/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo
6.
J Am Chem Soc ; 143(1): 241-251, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33355453

RESUMEN

The emergence of nucleic acid-based constitutional dynamic networks, CDNs, from a pool of nucleic acids is a key process for the understanding and modality of the evolution of biological networks. We present a versatile method that applies a library of nucleic acids coupled to biocatalytic DNA machineries as functional modules for the emergence of CDNs of diverse composition, complexity, and structural diversity. A set of four DNA template/blocker scaffolds coupled to the polymerase/dNTP replication machinery leads, in the presence of a primer, P1, to the gated replication of the scaffolds and to the displacement of four components that reconfigure into a [2 × 2] CDN. Using six template/blocker scaffolds and the polymerase/dNTPs, the P1-guided emergence of a [3 × 3] CDN is demonstrated. In addition, by further engineering the template/blocker scaffolds, the hierarchical control over the composition of the P1-guided emergence of [3 × 3] CDNs is accomplished. Also, sequence-engineered template/blocker scaffolds, coupled to the polymerase/dNTP machinery, lead, in the presence of two primers P1 and/or P2, to the selective emergence of two different [2 × 2] CDNs or to a [3 × 3] CDN. Also, a set of six appropriately engineered template/blocker scaffolds, coupled to the polymerase/dNTP machinery, leads to the emergence of a CDN composed of four equilibrated DNA tetrahedra constituents. Finally, by further sequence engineering of the set of template/blocker scaffolds and their coupling to a nicking/polymerization/dNTP replication machinery, the amplified high-throughput emergence of CDNs is demonstrated.


Asunto(s)
Replicación del ADN , ADN Catalítico/química , ADN Catalítico/genética , Biocatálisis , Cartilla de ADN/genética , ADN Polimerasa Dirigida por ADN/genética , Evolución Química , Biblioteca de Genes
7.
J Am Chem Soc ; 143(13): 5071-5079, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33755445

RESUMEN

Nucleic acid based, out-of-equilibrium, dissipative networks driven by nucleic acid fuels coupled to the nicking enzyme, Nt.BbvCI, are presented. One set of experiments includes a functional module consisting of a duplex and two fluorophore-labeled strands. The fuel-triggered activation of the functional module leads to a supramolecular intermediate composed of a template bound to the two fluorophore-labeled strands. Nicking of the fuel strand by Nt.BbvCI yields "waste" products, resulting in the regeneration of original system. The transient dissipative behavior of the systems is probed by following the FRET signal generated by the fluorophore labels associated with the intermediate supramolecular complex. The second set of experiments introduces two functional modules activated in parallel by the fuel strand. Using two inhibitors, I1 or I2, the selective gated dissipative operation of the networks is demonstrated. Finally, experiments presenting the intercommunication and cascading of two dissipative networks are introduced. Subjecting the networks to the fuel strands leads to intercommunication between the networks by strand-transfer and strand-feedback processes, allowing the cascaded dissipative operation of the assembly. The experimental results of the different dissipative systems are accompanied by kinetic models and computational simulations. The computational simulations provide useful means to predict the dissipative transient patterns of the systems at different auxiliary conditions.


Asunto(s)
ADN/química , Cinética
8.
J Am Chem Soc ; 143(31): 12120-12128, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34338509

RESUMEN

Gated dissipative artificial photosynthetic systems modeling dynamically modulated environmental effects on the photosynthetic apparatus are presented. Two photochemical systems composed of a supramolecular duplex scaffold, a photosensitizer-functionalized strand (photosensitizer is Zn(II)protoporphyrin IX, Zn(II)PPIX, or pyrene), an electron acceptor bipyridinium (V2+)-modified strand, and a nicking enzyme (Nt.BbvCI) act as functional assemblies driving transient photosynthetic-like processes. In the presence of a fuel strand, the transient electron transfer quenching of the photosensitizers, in each of the photochemical systems, is activated. In the presence of a sacrificial electron donor (mercaptoethanol) and continuous irradiation, the resulting electron transfer process in the Zn(II)PPIX/V2+ photochemical module leads to the transient accumulation and depletion of the bipyridinium radical-cation (V·+) product, and in the presence of ferredoxin-NADP+ reductase and NADP+, to the kinetically modulated photosynthesis of NADPH. By subjecting the mixture of two photochemical modules to one of two inhibitors, the gated transient photoinduced electron transfer in the two modules is demonstrated. Such gated dissipative process highlights its potential as an important pathway to protect artificial photosynthetic module against overdose of irradiance and to minimize photodamage.


Asunto(s)
Ferredoxina-NADP Reductasa/metabolismo , NADP/metabolismo , Fármacos Fotosensibilizantes/metabolismo , Protoporfirinas/metabolismo , Compuestos de Piridinio/metabolismo , Zinc/metabolismo , Transporte de Electrón , Ferredoxina-NADP Reductasa/química , Luz , Estructura Molecular , NADP/química , Fármacos Fotosensibilizantes/química , Protoporfirinas/química , Compuestos de Piridinio/química , Zinc/química
9.
Small ; 17(6): e2007355, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33470517

RESUMEN

The reversible and switchable triggered reconfiguration of tetrahedra nanostructures from monomer tetrahedra structures into dimer or trimer structures is introduced. The triggered bridging of monomer tetrahedra by K+ -ion-stabilized G-quadruplexes or T-A•T triplexes leads to dimer or trimer tetrahedra structures that are separated by crown ether or basic pH conditions, respectively. The signal-triggered dimerization/trimerization of DNA tetrahedra structures is used to develop multiplexed miRNA-sensing platforms, and the tetrahedra mixture is used for intracellular sensing and imaging of miRNAs.


Asunto(s)
G-Cuádruplex , MicroARNs , Nanoestructuras , Neoplasias , ADN , Dimerización , Neoplasias/diagnóstico por imagen
10.
Nat Mater ; 18(3): 273-279, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30397311

RESUMEN

Molecular devices with information-processing capabilities hold great promise for developing intelligent nanorobotics. Here we demonstrate a DNA navigator system that can perform single-molecule parallel depth-first search on a ten-vertex rooted tree defined on a two-dimensional DNA origami platform. Pathfinding by the DNA navigators exploits a localized strand exchange cascade, which is initiated at a unique trigger site on the origami with subsequent automatic progression along paths defined by DNA hairpins containing a universal traversal sequence. Each single-molecule navigator autonomously explores one of the possible paths through the tree. A specific solution path connecting a given pair of start and end vertices can then be easily extracted from the set of all paths taken by the navigators collectively. The solution path laid out on origami is illustrated with single-molecule imaging. Our approach points towards the realization of molecular materials with embedded computational functions operating at the single-molecule level.


Asunto(s)
Computadores Moleculares , ADN/química , Nanotecnología/métodos
11.
Angew Chem Int Ed Engl ; 59(23): 9163-9170, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32125762

RESUMEN

All-DNA scaffolds act as templates for the organization of photosystem I model systems. A series of DNA templates composed of ZnII -protoporphyrin IX (ZnII PPIX)-functionalized G-quadruplex conjugated to the 3'- or 5'-end of the tyrosinamide (TA) aptamer and ZnII PPIX/G-quadruplex linked to the 3'- and 5'-ends of the TA aptamer through a four-thymidine bridge. Effective photoinduced electron transfer (ET) from ZnII PPIX/G-quadruplex to bipyridinium-functionalized tyrosinamide, TA-MV2+ , bound to the TA aptamer units is demonstrated. The effectiveness of the primary ET quenching of ZnII PPIX/G-quadruplex by TA-MV2+ controls the efficiency of the generation of TA-MV+. . The photosystem-controlled formation of TA-MV+. by the different photosystems dictates the secondary activation of the ET cascade corresponding to the ferredoxin-NADP+ reductase (FNR)-catalysed reduction of NADP+ to NADPH by TA-MV+. , and the sequestered alcohol dehydrogenase catalysed reduction of acetophenone to 1-phenylethanol by NADPH.


Asunto(s)
Aptámeros de Nucleótidos/metabolismo , ADN/química , ADN/metabolismo , G-Cuádruplex , Modelos Biológicos , Fotosíntesis , Protoporfirinas/metabolismo , Transporte de Electrón
12.
Nano Lett ; 18(4): 2718-2724, 2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29537286

RESUMEN

The switchable reconfiguration of a mixture of two dimers of DNA origami tiles, AB and CD, into a mixture of two DNA origami dimers composed of AD and CB, using a collection of fuel and antifuel strands, is presented. The reversible reconfiguration of the mixture of dimers AB and CD into AD and CB, is followed by labeling each of the tiles with 0, 1, 2, and 3 4× hairpins labels and by imaging the dimer structures by atomic force microscopy. Subjecting the reconfigurable dimer mixtures to a collection of Mg2+-ion-dependent DNAzyme subunits and the substrates consisting of the ROX/BHQ2-modified substrate and the FAM/BHQ1-modified substrate leads to the triggered and programmed switchable operation, in the presence of appropriate fuel and antifuel strands. In the presence of the AB and CD mixture, the DNAzyme subunits cleaving the ROX/BHQ2-modified substrate is switched on, leading to the fluorescence of ROX. The reconfiguration of the AB and CD dimer mixture to the AD and CB dimer mixture leads to the assembly of the DNAzyme subunits that switches on the cleavage of the FAM/BHQ1-modified substrate and to the fluorescence of FAM. By the cyclic and reversible reconfiguration of the AB and CD dimer mixture to the AD and CB dimer mixture, in the presence of the appropriate fuel and antifuel strands, the switchable catalytic operation of two Mg2+-ion-dependent DNAzymes, leading to the fluorescence of ROX or FAM, is demonstrated.


Asunto(s)
ADN Catalítico/química , ADN/química , Magnesio/química , Nanoestructuras/química , Cationes Bivalentes/química , Dimerización , Nanoestructuras/ultraestructura , Nanotecnología/métodos
13.
Nano Lett ; 17(9): 5193-5198, 2017 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-28771008

RESUMEN

Circulating tumor cells (CTCs) contain molecular information on the primary tumor and can be used for predictive cancer diagnostics. Capturing rare live CTCs and their quantification in whole blood remain technically challenging. Here we report an aptamer-trigger clamped hybridization chain reaction (atcHCR) method for in situ identification and subsequent cloaking/decloaking of CTCs by porous DNA hydrogels. These decloaked CTCs were then used for live cell analysis. In our design, a DNA staple strand with aptamer-toehold biblocks specifically recognizes epithelial cell adhesion molecule (EpCAM) on the CTC surface that triggers subsequent atcHCR via toehold-initiated branch migration. Porous DNA hydrogel based-cloaking of single/cluster of CTCs allows capturing of living CTCs directly with minimal cell damage. The ability to identify a low number of CTCs in whole blood by DNA hydrogel cloaking would allow high sensitivity and specificity for diagnosis in clinically relevant settings. More significantly, decloaking of CTCs using controlled and defined chemical stimuli can release living CTCs without damages for subsequent culture and live cell analysis. We expect this liquid biopsy tool to open new powerful and effective routes for cancer diagnostics and therapeutics.


Asunto(s)
Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Neoplasias de la Mama/patología , Molécula de Adhesión Celular Epitelial/análisis , Hidrogeles/química , Células Neoplásicas Circulantes/patología , Biomarcadores de Tumor/análisis , Femenino , Humanos , Células MCF-7
14.
J Am Chem Soc ; 139(30): 10176-10179, 2017 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-28712291

RESUMEN

Programmable remodelling of cell surfaces enables high-precision regulation of cell behavior. In this work, we developed in vitro constructed DNA-based chemical reaction networks (CRNs) to program on-chip cell adhesion. We found that the RGD-functionalized DNA CRNs are entirely noninvasive when interfaced with the fluidic mosaic membrane of living cells. DNA toehold with different lengths could tunably alter the release kinetics of cells, which shows rapid release in minutes with the use of a 6-base toehold. We further demonstrated the realization of Boolean logic functions by using DNA strand displacement reactions, which include multi-input and sequential cell logic gates (AND, OR, XOR, and AND-OR). This study provides a highly generic tool for self-organization of biological systems.


Asunto(s)
ADN/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Adhesión Celular , ADN/química , Células HeLa , Humanos
15.
Angew Chem Int Ed Engl ; 56(8): 2171-2175, 2017 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-28079290

RESUMEN

DNA hydrogels hold great potential for biological and biomedical applications owing to their programmable nature and macroscopic sizes. However, most previous studies involve spontaneous and homogenous gelation procedures in solution, which often lack precise control. A clamped hybridization chain reaction (C-HCR)-based strategy has been developed to guide DNA self-assembly to form macroscopic hydrogels. Analogous to catalysts in chemical synthesis or seeds in crystal growth, we introduced DNA initiators to induce the gelation process, including crosslinked self-assembly and clamped hybridization in three dimensions with spatial and temporal control. The formed hydrogels show superior mechanical properties. The use of printed, surface-confined DNA initiators was also demonstrated for fabricating 2D hydrogel patterns without relying on external confinements. This simple method can be used to construct DNA hydrogels with defined geometry, composition, and order for various bioapplications.


Asunto(s)
ADN/química , Hidrogeles/química , Fenómenos Biomecánicos , Bioimpresión/métodos , Catálisis , Cristalización , Nanotecnología/métodos , Hibridación de Ácido Nucleico/métodos , Transición de Fase
16.
Biochim Biophys Acta ; 1852(2): 343-52, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24993069

RESUMEN

Autophagy, a conservative degradation process for long-lived and damaged proteins, participates in a variety of biological processes including obesity. However, the precise mechanism of action behind obesity-induced changes in autophagy still remains elusive. This study was designed to examine the role of the antioxidant catalase in high fat diet-induced changes in cardiac geometry and function as well as the underlying mechanism of action involved with a focus on autophagy. Wild-type (WT) and transgenic mice with cardiac overexpression of catalase were fed low or high fat diet for 20 weeks prior to assessment of myocardial geometry and function. High fat diet intake triggered obesity, hyperinsulinemia, and hypertriglyceridemia, the effects of which were unaffected by catalase transgene. Myocardial geometry and function were compromised with fat diet intake as manifested by cardiac hypertrophy, enlarged left ventricular end systolic and diastolic diameters, fractional shortening, cardiomyocyte contractile capacity and intracellular Ca²âº mishandling, the effects of which were ameliorated by catalase. High fat diet intake promoted reactive oxygen species production and suppressed autophagy in the heart, the effects of which were attenuated by catalase. High fat diet intake dampened phosphorylation of inhibitor kappa B kinase ß(IKKß), AMP-activated protein kinase (AMPK) and tuberous sclerosis 2 (TSC2) while promoting phosphorylation of mTOR, the effects of which were ablated by catalase. In vitro study revealed that palmitic acid compromised cardiomyocyte autophagy and contractile function in a manner reminiscent of fat diet intake, the effect of which was significantly alleviated by inhibition of IKKß, activation of AMPK and induction of autophagy. Taken together, our data revealed that the antioxidant catalase counteracts against high fat diet-induced cardiac geometric and functional anomalies possibly via an IKKß-AMPK-dependent restoration of myocardial autophagy. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Antioxidantes/metabolismo , Autofagia , Catalasa/metabolismo , Dieta Alta en Grasa , Corazón/fisiopatología , Quinasa I-kappa B/metabolismo , Animales , Autofagia/efectos de los fármacos , Calcio/metabolismo , Cardiomegalia/enzimología , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Ecocardiografía , Conducta Alimentaria/efectos de los fármacos , Corazón/efectos de los fármacos , Espacio Intracelular/metabolismo , Masculino , Ratones Transgénicos , Modelos Biológicos , Contracción Miocárdica/efectos de los fármacos , Ácido Palmítico/farmacología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
17.
Angew Chem Int Ed Engl ; 54(7): 2151-5, 2015 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-25556850

RESUMEN

Self-assembled DNA nanostructures with precise sizes allow a programmable "soft lithography" approach to engineer the interface of electrochemical DNA sensors. By using millimeter-sized gold electrodes modified with several types of tetrahedral DNA nanostructures (TDNs) of different sizes, both the kinetics and thermodynamics of DNA hybridization were profoundly affected. Because each DNA probe is anchored on an individual TDN, its lateral spacing and interactions are finely tuned by the TDN size. By simply varying the size of the TDNs, the hybridization time was decreased and the hybridization efficiency was increased. More significantly, the detection limit for DNA detection was tuned over four orders of magnitude with differentially nanostructured electrodes, and achieved attomolar sensitivity with polymeric enzyme amplification.


Asunto(s)
Técnicas Biosensibles/instrumentación , ADN/análisis , Nanoestructuras/química , Técnicas Electroquímicas/instrumentación , Diseño de Equipo , Límite de Detección , Hibridación de Ácido Nucleico , Propiedades de Superficie
18.
ACS Nano ; 17(18): 18266-18279, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37669432

RESUMEN

Emulating native transient transcription machineries modulating temporal gene expression by synthetic circuits is a major challenge in the area of systems chemistry. Three different methods to operate transient transcription machineries and to modulate the gated transcription processes of target RNAs are introduced. One method involves the design of a reaction module consisting of transcription templates being triggered by promoter fuel strands transcribing target RNAs and in parallel generating functional DNAzymes in the transcription templates, modulating the dissipative depletion of the active templates and the transient operation of transcription circuits. The second approach involves the application of a reaction module consisting of two transcription templates being activated by a common fuel promoter strand. While one transcription template triggers the transcription of the target RNA, the second transcription template transcribes the anti-fuel strand, displacing the promoter strand associated with the transcription templates, leading to the depletion of the transcription templates and to the dynamic transient modulation of the transcription process. The third strategy involves the assembly of a reaction module consisting of a reaction template triggered by a fuel promoter strand transcribing the target RNA. The concomitant nickase-stimulated depletion of the promoter strand guides the transient modulation of the transcription process. Via integration of two parallel fuel-triggered transcription templates in the three transcription reaction modules and application of template-specific blocker units, the parallel and gated transiently modulated transcription of two different RNA aptamers is demonstrated. The nickase-stimulated transiently modulated transcription reaction module is applied as a functional circuit guiding the dynamic expression of gated, transiently operating, catalytic DNAzymes.


Asunto(s)
Aptámeros de Nucleótidos , ADN Catalítico , Catálisis , Desoxirribonucleasa I , ARN/genética
19.
ACS Nano ; 17(16): 15308-15327, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37549398

RESUMEN

Membrane fusion processes play key roles in biological transformations, such as endocytosis/exocytosis, signal transduction, neurotransmission, or viral infections, and substantial research efforts have been directed to emulate these functions by artificial means. The recognition and dynamic reconfiguration properties of nucleic acids provide a versatile means to induce membrane fusion. Here we address recent advances in the functionalization of liposomes or membranes with structurally engineered lipidated nucleic acids guiding the fusion of cell-like containments, and the biophysical and chemical parameters controlling the fusion of the liposomes will be discussed. Intermembrane bridging by duplex or triplex nucleic acids and light-induced activation of membrane-associated nucleic acid constituents provide the means for spatiotemporal fusion of liposomes or nucleic acid modified liposome fusion with native cell membranes. The membrane fusion processes lead to exchange of loads in the fused containments and are a means to integrate functional assemblies. This is exemplified with the operation of biocatalytic cascades and dynamic DNA polymerization/nicking or transcription machineries in fused protocell systems. Membrane fusion processes of protocell assemblies are found to have important drug-delivery, therapeutic, sensing, and biocatalytic applications. The future challenges and perspectives of DNA-guided fused containments and membranes are addressed.


Asunto(s)
Ácidos Nucleicos , Ácidos Nucleicos/química , Liposomas/química , ADN/química , Fusión de Membrana , Membrana Celular/metabolismo
20.
Redox Biol ; 62: 102702, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37116257

RESUMEN

Brain natriuretic peptide (BNP) belongs to the family of natriuretic peptides, which are responsible for a wide range of actions. Diabetic cardiomyopathy (DCM) is often associated with increased BNP levels. This present research intends to explore the role of BNP in the development of DCM and the underlying mechanisms. Diabetes was induced in mice using streptozotocin (STZ). Primary neonatal cardiomyocytes were treated with high glucose. It was found that the levels of plasma BNP started to increase at 8 weeks after diabetes, which preceded the development of DCM. Addition of exogenous BNP promoted Opa1-mediated mitochondrial fusion, inhibited mitochondrial oxidative stress, preserved mitochondrial respiratory capacity and prevented the development of DCM, while knockdown of endogenous BNP exacerbated mitochondrial dysfunction and accelerated DCM. Opa1 knockdown attenuated the aforementioned protective action of BNP both in vivo and in vitro. BNP-induced mitochondrial fusion requires the activation of STAT3, which facilitated Opa1 transcription by binding to its promoter regions. PKG, a crucial signaling biomolecule in the BNP signaling pathway, interacted with STAT3 and induced its activation. Knockdown of NPRA (the receptor of BNP) or PKG blunted the promoting effect of BNP on STAT3 phosphorylation and Opa1-mediated mitochondrial fusion. The results of this study demonstrate for the first time that there is a rise in BNP during the early stages of DCM as a compensatory protection mechanism. BNP is a novel mitochondrial fusion activator in protecting against hyperglycemia-induced mitochondrial oxidative injury and DCM through the activation of NPRA-PKG-STAT3-Opa1 signaling pathway.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Animales , Ratones , Diabetes Mellitus/metabolismo , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/metabolismo , Dinámicas Mitocondriales , Miocitos Cardíacos/metabolismo , Péptido Natriurético Encefálico/genética , Péptido Natriurético Encefálico/metabolismo , Transducción de Señal , Proteínas Quinasas Dependientes de GMP Cíclico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA