Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Inorg Chem ; 63(5): 2597-2605, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38266171

RESUMEN

The bonding covalency between trivalent lanthanides (Ln = La, Pr, Nd, Eu, Gd) and triphenylphosphine oxide (TPPO) is studied by X-ray absorption spectra (XAS) and density functional theory (DFT) calculations on the LnCl3(TPPO)3 complexes. The O, P, and Cl K-edge XAS for the single crystals of LnCl3(TPPO)3 were collected, and the spectra were interpreted based on DFT calculations. The O and P K-edge XAS spectra showed no significant change across the Ln series in the LnCl3(TPPO)3 complexes, unlike the Cl K-edge XAS spectra. The experimental O K-edge XAS spectra suggest no mixing between the Ln 4f- and the O 2p-orbitals in the LnCl3(TPPO)3 complexes. DFT calculations indicate that the amount of the O 2p character per Ln-O bond is less than 0.1% in the Ln 4f-based orbitals in all of the LnCl3(TPPO)3 complexes. The experimental spectra and theoretical calculations demonstrate that Ln 4f-orbitals are not engaged in the covalent bonding of lanthanides with TPPO, which contrasts the involvement of U 5f-orbitals in covalent bonding in the UO2Cl2(TPPO)2 complex. Results in this work reinforce our previous speculation that bonding covalency is potentially responsible for the extractability of monodentate organophosphorus ligands toward metal ions.

2.
Chem Soc Rev ; 52(1): 97-162, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36448270

RESUMEN

Uranium extraction from seawater (UES), a potential approach to securing the long-term uranium supply and sustainability of nuclear energy, has experienced significant progress in the past decade. Promising adsorbents with record-high capacities have been developed by diverse innovative synthetic strategies, and scale-up marine field tests have been put forward by several countries. However, significant challenges remain in terms of the adsorbents' properties in complex marine environments, deployment methods, and the economic viability of current UES systems. This review presents an up-to-date overview of the latest advancements in the UES field, highlighting new insights into the mechanistic basis of UES and the methodologies towards the function-oriented development of uranium adsorbents with high adsorption capacity, selectivity, biofouling resistance, and durability. A distinctive emphasis is placed on emerging electrochemical and photochemical strategies that have been employed to develop efficient UES systems. The most recent achievements in marine tests by the major countries are summarized. Challenges and perspectives related to the fundamental, technical, and engineering aspects of UES are discussed. This review is envisaged to inspire innovative ideas and bring technical solutions towards the development of technically and economically viable UES systems.


Asunto(s)
Uranio , Uranio/química , Agua de Mar/química , Adsorción
3.
Inorg Chem ; 62(34): 13953-13963, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37584949

RESUMEN

The actinide-halogen complexes (AnO2X42-, X = Cl, Br, and I) are the simplest and most representative compounds for studying the bonding nature of actinides with ligands. In this work, we attempted to synthesize the crystals of NpO2X42- (X = Cl, Br, and I). The crystals of NpO2Cl42- and NpO2Br42- were successfully synthesized, in which the structure of NpO2Br42- was obtained for the first time. The crystal of NpO2I42- could not be obtained due to the rapid reduction of Np(VI) to Np(V) by I-. The molecular structures of NpO2Cl42- and NpO2Br42- were characterized by single-crystal X-ray diffraction and infrared, Raman, and UV-Vis-NIR absorption spectroscopy. The complexes of NpO2X42- (X = Cl, Br, and I) were also investigated by density functional theory calculations, and the calculated vibration frequencies and absorption features were comparable to the experimental results. Both the experimental results and theoretical calculations demonstrate the strengthened Np-O bonds and the weakened Np-X bonds across the NpO2X42- series; however, the population analysis on the frontier molecular orbitals (MOs) of NpO2X42- indicates a slight reduction in the Np-O bonding covalency and an enhancement in the Np-X bonding covalency from NpO2Cl42- to NpO2I42-. Results in this work have enriched the crystal database of the AnO2X42- family and provided insights into the bonding nature in the actinide complexes with soft- and hard-donor ligands.

4.
Ecotoxicol Environ Saf ; 267: 115664, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37948940

RESUMEN

Ageratina adenophora (A. adenophora), one of the prominent invasive plants in the Asian continent has shown toxicity in animals. However, studies examining the gene expression and metabolic profiles of animals that ingest A. adenophora have not yet been reported in the literature. Therefore, considering the wide distribution of A. adenophora, it is necessary to elucidate the toxic mechanisms of A. adenophora via multiomics approach. In this study, we identified and evaluated the toxic mechanisms of action associated with bioactive compounds in A. adenophora by using network toxicology studies combined with metabolomics and transcriptomics and found that 2-deoxo-2-(acetyloxy)- 9-oxoageraphorone, 10Hß-9-oxo-agerophorone, 10Hα-9-oxo-agerophorone, nerolidol, 9-oxo-10,11-dehydro-agerophorone were the main active toxic compounds in A. adenophora. In addition, using metabolomics approach we identified differential metabolites such as L-pyroglutamic acid, 1-methylhistidine, prostaglandin F2alpha and hydrocortisone from A. adenophora and these metabolites were involved in amino acid metabolism, lipid metabolism and signal conducting media regulation. Based on network toxicological analysis, we observed that, A. adenophora can affect the Ras signaling, Phospholipase D signaling and MAPK signaling pathways by regulating EGFR, PDGFRB, KIT and other targets. From the results of this study we concluded that A. adenophora induces liver inflammatory damage by activating the EGFR expression and Ras/Raf/MEK/ERK signaling pathways as well as affect nutrients metabolism and neuron conduction.


Asunto(s)
Ageratina , Enfermedad Hepática Inducida por Sustancias y Drogas , Animales , Ageratina/genética , Transcriptoma , Metabolómica , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Receptores ErbB
5.
Angew Chem Int Ed Engl ; 62(49): e202313951, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37877955

RESUMEN

Hybrid hydrogen-bonded (H-bonded) frameworks built from charged components or metallotectons offer diverse guest-framework interactions for target-specific separations. We present here a study to systematically explore the coordination chemistry of monovalent halide anions, i.e., F- , Cl- , Br- , and I- , with the aim to develop hybrid H-bond synthons that enable the controllable construction of microporous H-bonded frameworks exhibiting fine-tunable surface polarity within the adaptive cavities for realistic xenon/krypton (Xe/Kr) separation. The spherical halide anions, especially Cl- , Br- , and I- , are found to readily participate in the charge-assisted H-bonding assembly with well-defined coordination behaviors, resulting in robust frameworks bearing open halide anions within the distinctive 1D pore channels. The activated frameworks show preferential binding towards Xe (IAST Xe/Kr selectivity ca. 10.5) because of the enhanced polarizability and the pore confinement effect. Specifically, dynamic column Xe/Kr separation with a record-high separation factor (SF=7.0) among H-bonded frameworks was achieved, facilitating an efficient Xe/Kr separation in dilute, CO2 -containing gas streams exactly mimicking the off-gas of spent nuclear fuel (SNF) reprocessing.

6.
J Synchrotron Radiat ; 29(Pt 1): 11-20, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34985418

RESUMEN

The dithiophosphinic acids (HS2PR2) have been used for the selective separation of trivalent actinides (AnIII) from lanthanides (LnIII) over the past decades. The substituents on the dithiophosphinic acids dramatically impact the separation performance, but the mechanism is still open for debate. In this work, two dithiophosphinic acids with significantly different AnIII/LnIII separation performance, i.e. diphenyl dithiophosphinic acid (HS2PPh2) and bis(ortho-trifluoromethylphenyl) dithiophosphinic acid [HS2P(o-CF3C6H4)2], are employed to understand the substituent effect on the bonding covalency between the S2PR2- anions (R = Ph and o-CF3C6H4) and the uranyl ion by sulfur K-edge X-ray absorption spectroscopy (XAS) in combination with density functional theory calculations. The two UO2(S2PR2)(EtOH) complexes display similar XAS spectra, in which the first pre-edge feature with an intensity of 0.16 is entirely attributed to the transitions from S 1s orbitals to the unoccupied molecular orbitals due to the mixing between U 5f and S 3p orbitals. The Mulliken population analysis indicates that the amount of \% S 3p character in these orbitals is essentially identical for the UO2(S2PPh2)2(EtOH) and UO2[S2P(o-CF3C6H4)2]2(EtOH) complexes, which is lower than that in the U 6d-based orbitals. The essentially identical covalency in U-S bonds for the two UO2(S2PR2)2(EtOH) complexes are contradictory to the significantly different AnIII/LnIII separation performance of the two dithiophosphinic acids, thus the covalency seems to be unable to account for substituent effects in the AnIII/LnIII separation by the dithiophosphinic acids. The results in this work provide valuable insight into the understanding of the mechanism in the AnIII/LnIII separation by the dithiophosphinic acids.

7.
Inorg Chem ; 61(1): 92-104, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34817979

RESUMEN

Monodentate organophosphorus ligands have been used for the extraction of the uranyl ion (UO22+) for over half a century and have exhibited exceptional extractability and selectivity toward the uranyl ion due to the presence of the phosphoryl group (O═P). Tributyl phosphate (TBP) is the extractant of the world-renowned PUREX process, which selectively recovers uranium from spent nuclear fuel. Trialkyl phosphine oxide (TRPO) shows extractability toward the uranyl ion that far exceeds that for other metal ions, and it has been used in the TRPO process. To date, however, the mechanism of the high affinity of the phosphoryl group for UO22+ remains elusive. We herein investigate the bonding covalency in a series of complexes of UO22+ with TRPO by oxygen K-edge X-ray absorption spectroscopy (XAS) in combination with density functional theory (DFT) calculations. Four TRPO ligands with different R substituents are examined in this work, for which both the ligands and their uranyl complexes are crystallized and investigated. The study of the electronic structure of the TRPO ligands reveals that the two TRPO molecules, irrespective of their substituents, can engage in σ- and π-type interactions with U 5f and 6d orbitals in the UO2Cl2(TRPO)2 complexes. Although both the axial (Oyl) and equatorial (Oeq) oxygen atoms in the UO2Cl2(TRPO)2 complexes contribute to the X-ray absorption, the first pre-edge feature in the O K-edge XAS with a small intensity is exclusively contributed by Oeq and is assigned to the transition from Oeq 1s orbitals to the unoccupied molecular orbitals of 1b1u + 1b2u + 1b3u symmetries resulting from the σ- and π-type mixing between U 5f and Oeq 2p orbitals. The small intensity in the experimental spectra is consistent with the small amount of Oeq 2p character in these orbitals for the four UO2Cl2(TRPO)2 complexes as obtained by Mulliken population analysis. The DFT calculations demonstrate that the U 6d orbitals are also involved in the U-TRPO bonding interactions in the UO2Cl2(TRPO)2 complexes. The covalent bonding interactions between TRPO and UO22+, especially the contributions from U 5f orbitals, while appearing to be small, are sufficiently responsible for the exceptional extractability and selectivity of monodentate organophosphorus ligands for the uranyl ion. Our results provide valuable insight into the fundamental actinide chemistry and are expected to directly guide actinide separation schemes needed for the development of advanced nuclear fuel cycle technologies.

8.
Inorg Chem ; 60(7): 5131-5139, 2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33769038

RESUMEN

The extraction and complexation of trivalent americium (Am) and lanthanides (Ln) by four 2,9-diamide-1,10-phenanthroline (DAPhen) ligands with different alkyl substituent groups on the diamide moiety in an ionic liquid (IL), C4mimNTf2, were studied through a combination of batch extraction, spectroscopic, and calorimetric approaches. All four DAPhen ligands can achieve selective separation of Am(III) from Eu(III), but the detailed extractability and the extraction kinetics are affected significantly by the length of the alkyl substituent groups. UV-vis absorption spectrophotometric titrations indicate that Ln(III) coordinates with all four ligands in a 1:2 mode in the ionic liquid and the binding strength decreases with the increase of the alkyl chain length. The complexation of the DAPhen ligands with Ln(III) in the ionic liquid is driven by highly positive entropies and opposed by endothermic enthalpies. A luminescence spectroscopy study suggests that each DAPhen ligand coordinates in a tetradentate form with Eu(III). This work further unravels the unique extraction and coordination behavior in an ionic liquid system and offers additional guidelines to design more efficient DAPhen ligands for Ln(III)/An(III) separation.

9.
Int J Mol Sci ; 22(21)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34769012

RESUMEN

Ageratina adenophora is one of the major invasive weeds that causes instability of the ecosystem. Research has reported that A. adenophora produces allelochemicals that inhibit the growth and development of food crops, and also contain some toxic compounds that cause toxicity to animals that consume it. Over the past decades, studies on the identification of major toxic compounds of A. adenophora and their toxic molecular mechanisms have been reported. In addition, weed control interventions, such as herbicides application, was employed to reduce the spread of A. adenophora. However, the development of therapeutic and prophylactic measures to treat the various A. adenophora-induced toxicities, such as hepatotoxicity, splenotoxicity and other related disorders, have not been established to date. The main toxic pathogenesis of A. adenophora is oxidative stress and inflammation. However, numerous studies have verified that some extracts and secondary metabolites isolated from A. adenophora possess anti-oxidation and anti-inflammation activities, which implies that these extracts can relieve toxicity and aid in the development of drug or feed supplements to treat poisoning-related disorders caused by A. adenophora. Furthermore, beneficial bacteria isolated from rumen microbes and A. adenophora can degrade major toxic compounds in A. adenophora so as to be developed into microbial feed additives to help ameliorate toxicity mediated by A. adenophora. This review presents an overview of the toxic mechanisms of A. adenophora, provides possible therapeutic strategies that are available to mitigate the toxicity of A. adenophora and introduces relevant information on identifying novel prophylactic and therapeutic measures against A. adenophora-induced toxicity.


Asunto(s)
Ageratina/efectos adversos , Animales , Antioxidantes/farmacología , Ecosistema , Humanos , Inflamación/tratamiento farmacológico , Especies Introducidas , Malezas/efectos adversos
10.
Inorg Chem ; 59(6): 3905-3911, 2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-32133859

RESUMEN

The selective separation of trivalent americium from lanthanides in a nitric acid medium by a tetradentate ligand, N,N'-diethyl-N,N'-ditolyl-2,9-diamide-1,10-phenanthroline (Et-Tol-DAPhen), in an ionic liquid (IL), C4mimNTf2, was studied by batch solvent extraction and spectroscopic approaches. The effect of various parameters such as the contact time, temperature, extractant concentration, and acidity on the extraction of Am3+ and Eu3+ have been evaluated. A significant enhancement in the extraction ability of Et-Tol-DAPhen dissolved in IL was observed as compared to that in molecular diluents under low-acid conditions. The chemical stoichiometry of Am3+ and Eu3+ complexes during extraction was determined to be 1:2 (metal/ligand) by slope analysis of the extraction data. The extraction mechanism of Am3+ and Eu3+ by Et-Tol-DAPhen in IL was determined to be cation exchange on the basis of the effect of nitrate, NTf2-, and C4mim+ ions on extraction. The coordination chemistry of Ln3+ with the ligand in C4mimNTf2 was studied by spectroscopic titrations, which helped to further identify and confirm the extracted species as well as the extraction mechanism. Results from the present study emphasize the unique role of IL in altering the extraction behavior and suggest that the Et-Tol-DAPhen/IL system has potential applications in trivalent actinide/lanthanide separation under low-acid conditions.

11.
Chem Soc Rev ; 46(5): 1427-1463, 2017 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-28165079

RESUMEN

High-temperature solid oxide electrolysis cells (SOECs) are advanced electrochemical energy storage and conversion devices with high conversion/energy efficiencies. They offer attractive high-temperature co-electrolysis routes that reduce extra CO2 emissions, enable large-scale energy storage/conversion and facilitate the integration of renewable energies into the electric grid. Exciting new research has focused on CO2 electrochemical activation/conversion through a co-electrolysis process based on the assumption that difficult C[double bond, length as m-dash]O double bonds can be activated effectively through this electrochemical method. Based on existing investigations, this paper puts forth a comprehensive overview of recent and past developments in co-electrolysis with SOECs for CO2 conversion and utilization. Here, we discuss in detail the approaches of CO2 conversion, the developmental history, the basic principles, the economic feasibility of CO2/H2O co-electrolysis, and the diverse range of fuel electrodes as well as oxygen electrode materials. SOEC performance measurements, characterization and simulations are classified and presented in this paper. SOEC cell and stack designs, fabrications and scale-ups are also summarized and described. In particular, insights into CO2 electrochemical conversions, solid oxide cell material behaviors and degradation mechanisms are highlighted to obtain a better understanding of the high temperature electrolysis process in SOECs. Proposed research directions are also outlined to provide guidelines for future research.

12.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38142130

RESUMEN

The aim of this experiment was to investigate the effects of Ageratina adenophora on the expression of epithelium tight junction proteins and inflammatory factors in the rumen of goats. Twelve goats were randomly divided into three groups. The first group was the blank control group (n = 3, C) which was fed normal diet. The second group was fistulas control group (n = 3, RFC), which was fitted with rumen fistulas, and fed normal diet. The third group was the A. adenophora test group (n = 6, AA), which was fitted with rumen fistulas and fed a mixture of 60% of normal diet and 40% of A. adenophora grass powder. The feeding experiment lasted for 90 d, after which all goats were sacrificed and samples were collected from the rumen dorsal sac and ventral sac. The relative expression of mRNA of inflammatory factors in the rumen epithelium (tumor necrosis factor alpha [TNF-α], interferon gamma [IFN-γ], interleukin 1 beta [IL-1ß], IL-2, IL-4, IL-6, and IL-10) and tight junction protein genes (occludin, claudin-1, and ZO-1) was measured by quantitative real-time fluorescence PCR. Expression of tight junction proteins in the rumen epithelium was measured by Western blot. A correlation was established between the expression of inflammatory factors and tight junction protein genes using Graph Pad Prism. The results showed that A. adenophora caused a significant increase in the mRNA expression levels of TNF-α, IFN-γ, IL-1ß, IL-2, IL-6, and IL-10 in the rumen epithelial (P < 0.05 or P < 0.01). The expression of tight junction proteins at both gene and protein levels was significantly decreased (P < 0.05 or P < 0.01). Furthermore, the correlation analysis revealed that the changes in tight junction protein expression in the test group were closely related to the upregulation of the expression of inflammatory factors TNF-α and IFN-γ in rumen epithelial cells. In conclusion, the expression of inflammatory factors was increased and the expression of tight junction proteins was decreased in goats after feeding on A. adenophora, which caused some damage to the rumen epithelium.


The article aims to investigate the toxic effects of Ageratina adenophora, an invasive plant on the integrity of the rumen epithelium by measuring the changes in the expression of inflammatory factors and tight junction proteins after the consumption of A. adenophora in goats. The results showed that A. adenophora causes damage to the rumen epithelium by increasing the expression of pro-inflammatory markers like TNF-α and IFN-γ and reducing the expression of tight junction proteins such as occludin and claudin-1 in goats.


Asunto(s)
Ageratina , Fístula , Enfermedades de las Cabras , Animales , Rumen/metabolismo , Interleucina-10 , Ageratina/genética , Ageratina/metabolismo , Cabras/fisiología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-2/metabolismo , Interleucina-6/metabolismo , Epitelio/metabolismo , ARN Mensajero/genética , Proteínas de Uniones Estrechas/genética , Proteínas de Uniones Estrechas/metabolismo , Fístula/metabolismo , Fístula/veterinaria
13.
Toxicon ; 239: 107610, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38218385

RESUMEN

Ageratina adenophora (A. adenophora) is an invasive plant that is harmful to animals. The plants toxic effects on the liver have been studied in detail, however, the inflammation aspects of the hepatotoxicity are rarely discussed in literature. Therefore, in this study, we investigated the level of inflammation and the associated changes in liver metabolism caused by A. adenophora ingestion. Goat were fed with A. adenophora powder which accounts for 40% of the forage for 90 d. After the feeding period, the liver tissues were collected and the level of inflammation was detected using H & E staining and the changes in metabolites by LC-MS/MS. The results indicated that A. adenophora changes the liver metabolites, The test group shown 153 different metabolites in liver of which 71 were upregulated and 82 down regulated. We also found two differential metabolic pathways: neuroactive ligand-receptor interaction and pyrimidine metabolism. The changes in the pathway suggested an association with inflammation and with pathological processes such as oxidative stress and apoptosis. In addition, we observed an increase in the levels of serum liver function indexes (AST and ALT), indicating the liver injury. Furthermore, inflammatory cell infiltration and cell degeneration were observed in histopathological sections. In conclusion, this study reveals that A. adenophora causes chronic inflammation and upregulate metabolites related to inflammation in the liver. The study complements the research content of A. adenophora hepatotoxicity and provides a basis for further research by analyzing changes in the liver metabolites.


Asunto(s)
Ageratina , Enfermedad Hepática Inducida por Sustancias y Drogas , Animales , Cabras , Cromatografía Liquida , Espectrometría de Masas en Tándem , Inflamación/inducido químicamente , Metabolómica
14.
Toxicon ; 240: 107633, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38331107

RESUMEN

As a global toxin invasive species, the whole herb of Ageratina adenophora (A. adenophora) contains various sesquiterpenes, which can cause various degrees of toxic reactions characterized by inflammatory damage when ingested by animals. Current studies on the toxicity of A. adenophora have focused on parenchymatous organs such as the liver and spleen, but few studies have been conducted on the intestine as the organ that is first exposed to A. adenophora and digests and absorbs its toxic components. In this study, after feeding goats with 40 % A. adenophora herb powder for 90 d, we found that the intestinal structure of goats showed pathological changes characterized, and the damage to the small intestinal segments was more severe than that of the large intestine. The MLCK/ROCK signaling pathway was activated, the cytoskeleton underwent centripetal contraction, the composition of tight junctions between intestinal epithelial cells was altered table, Occludin, Claudin-1 and Zonula occluden (ZO-1) amount was decreased, and the intestinal mechanical barrier was disrupted. The intestinal damage markers diamine oxidase (DAO) and D-lactate (D-LA) levels were elevated. In addition, we also found that intestinal bacteria translocate and enter the portal vein to colonize the liver and mesenteric lymph nodes. The expression of intestinal pro-inflammatory factors and anti-inflammatory factors was changed, the intestinal immune function was disrupted. The present study is the first to analyze the mechanism of poisoning of A. adenophora from the intestinal tract in compound-gastric animals.


Asunto(s)
Ageratina , Animales , Ageratina/metabolismo , Cabras , Intestinos , Ocludina/metabolismo , Transducción de Señal , Mucosa Intestinal/metabolismo
15.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(7): 1957-60, 2013 Jul.
Artículo en Zh | MEDLINE | ID: mdl-24059209

RESUMEN

The determination method of Ru, Rh and Pd in 30% TRPO-kerosene ICP-AES was studied by using aqueous calibration reference solution and choosing ethanol as diluent. The effects of the contents of 30% TRPO-kerosene and aqueous solution and the concentration of HNO3 in 30% TRPO-kerosene on the intensities of Ru, Rh and Pd were described. The optimized condition for preparing samples and calibration solutions was chosen as follows: The contents of 30% TRPO-kerosene and aqueous phase were 10% (V/V) and 5% (V/V) respectively and the concentration of HNO3 30% TRPO-kerosene was 0.20 mol x L(-1). The determination method of Au, Ru and Pd was set up according to the above condition. The detection limit, precision and recovery ratio of Ru, Rh and Pd are well. The method is not only used in determination of Au, Ru and Pd in 30% TRPO-kerosene, but also used in other organic phases.

16.
Sci Prog ; 106(4): 368504231208503, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37926995

RESUMEN

To improve the output flow characteristics of the piezoelectric pump in one direction, a new valveless piezoelectric pump with a crescent dune bluff body has been proposed. The pump can achieve low damage to the active substance on the premise that the active cell can guarantee the transport volume. By comparing with the hemispherically deficient and imitated meniscus resistance fluid, the barchan dune resistance fluid which can effectively improve the unidirectional output of the piezoelectric pump is obtained. Combined with the pump theoretical flow calculation formula, these influencing parameters, the degree of inclination, the sand ridge radius and the order of the crescent dune were analyzed. Finally, an experimental prototype of a valveless piezoelectric pump has been fabricated by 3D printing technology, and the pump flow test is being conducted. The relationship between frequency, voltage and output flow has been obtained. The test results show that with a dune inclination of 37.5, a sand ridge radius of 6.75 mm and a dune order of 4, the flow rate of the piezoelectric pump is best at 194.7 mL/min. The experimental results agree with the simulation results, showing the effectiveness of the valveless piezoelectric pump structure.

17.
Plants (Basel) ; 12(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36771733

RESUMEN

Multidrug-resistant bacteria such as Staphylococcus aureus (MRSA) cause infections that are difficult to treat globally, even with current available antibiotics. Therefore, there is an urgent need to search for novel antibiotics to tackle this problem. Endophytes are a potential source of novel bioactive compounds; however, the harnessing of novel pharmacological compounds from endophytes is infinite. Therefore, this study was designed to identify endophytic fungi (from Ageratina adenophora) with antibacterial activity against multidrug-resistant bacteria. Using fungal morphology and ITS-rDNA, endophytic fungi with antibacterial activities were isolated from A. adenophora. The results of the ITS rDNA sequence analysis showed that a total of 124 morphotype strains were identified. In addition, Species richness (S, 52), Margalef index (D/, 7.3337), Shannon-Wiener index (H/,3.6745), and Simpson's diversity index (D, 0.9304) showed that A. adenophora have abundant endophytic fungi resources. Furthermore, the results of the agar well diffusion showed that the Penicillium sclerotigenum, Diaporthe kochmanii, and Pestalotiopsis trachycarpicola endophytic fungi's ethyl acetate extracts showed moderate antibacterial and bactericidal activities, against methicillin-resistant Staphylococcus aureus (MRSA) SMU3194, with a MIC of 0.5-1 mg/mL and a MBC of 1-2 mg/mL. In summary, A. adenophora contains endophytic fungi resources that can be pharmacologically utilized, especially as antibacterial drugs.

18.
J Fungi (Basel) ; 8(2)2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-35205959

RESUMEN

Plant-associated fungi (endophytic fungi) are a biodiversity-rich group of microorganisms that are normally found asymptomatically within plant tissues or in the intercellular spaces. Endophytic fungi promote the growth of host plants by directly producing secondary metabolites, which enhances the plant's resistance to biotic and abiotic stresses. Additionally, they are capable of biosynthesizing medically important "phytochemicals" that were initially thought to be produced only by the host plant. In this review, we summarized some compounds from endophyte fungi with novel structures and diverse biological activities published between 2011 and 2021, with a focus on the origin of endophytic fungi, the structural and biological activity of the compounds they produce, and special attention paid to the exploration of pharmacological activities and mechanisms of action of certain compounds. This review revealed that endophytic fungi had high potential to be harnessed as an alternative source of secondary metabolites for pharmacological studies.

19.
Front Microbiol ; 13: 820236, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35250935

RESUMEN

This study was performed to identify potential probiotic endophytes from Ageratina adenophora and evaluate their ameliorating effects on gut injury and integrity damage associated with microbiota dysbiosis in mice fed high fat diet. Using morphological and biochemical tests, and 16S rRNA gene sequencing technique, two bacteria endophytes were identified as strains of Bacillus toyonensis and were named Bacillus toyonensis SAU-19 (GenBank No. MW287198) and Bacillus toyonensis SAU-20 (GenBank No. MW287199). Sixty (60) mice were divided into five groups, group 1 was the negative control fed normal diet (NS), group 2 was fed High fat diet (HF), Group 3 was fed High fat diet + 106 Lactobacillus rhamnosus (LGG), group 4 was fed High fat + 106 Bacillus toyonensis SAU-19 and group 5 fed High fat diet + 106 Bacillus toyonensis SAU-20. After 35 days, histological and immunohistochemistry examination were performed in the ileum tissues. Furthermore, DAO and antioxidants activities were measured in serum, mRNA expressions of tight junction proteins (occludin and ZO-1) and inflammation related cytokines (IL-1ß, TFN-α, IL-2, IL-4, and IL-10) in the ileum tissues as well as sIgA levels and total bacteria (Escherichia coli, Salmonella, Staphylococcus, and Lactobacillus) in the small intestine and cecum content. The results showed an increase in the DAO activity, oxidative stress parameter (MDA), pro-inflammation cytokines (IL-1ß, TFN-α, IL-2), reduce immunity (sIgA), and destroyed intestinal structure and integrity (reduce tight junction proteins) in the high fat diet group and this was associated with destruction of the gut microbiota composition (increasing pathogenic bacteria; E. coli, Salmonella, Staphylococcus and reducing beneficial bacteria, Lactobacillus spp.) in mice (P < 0.05). However, the administration of Bacillus toyonensis SAU-19 and SAU-20 reverted these effects. Our findings indicated that, Bacillus toyonensis SAU-19 and SAU-20 isolated from A. adenophora could prevent the excess weight gain from high fat diet feeding, improved antioxidant status and alleviated the intestine integrity damage as well as reduce the population of enteric bacteria such as E. coli, Salmonella, and S. aureus and increasing the population of beneficial bacteria such as Lactobacillus in the gut of mice fed high fat diet, therefore, can serve as a potential probiotics in humans and animals.

20.
Front Immunol ; 13: 1027158, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439094

RESUMEN

Background and objective: Neuromyelitis optica spectrum disorders (NMOSD) are chronical inflammatory demyelinating diseases of the central nervous system (CNS) and the underlying mechanism remains unclear. Several recent studies have demonstrated that T cells play a pivotal role in the pathogenesis of NMOSD.In this study, we investigated CD8+ T cell phenotypes and levels of the cytotoxic protein granzyme B (GzmB), as well as their potential clinical application in NMOSD. Methods: In this study, 90 peripheral blood samples were collected from 59 NMOSD patients with seropositive anti-aquaporin-4 (AQP4) antibodies and 31 sex- and age-matched healthy donors (HDs). Flow cytometry was used to detect circulating levels of GzmB and CD8+ T cell subpopulations, including naïve (TN, CCD7+CD45RA+), central memory (TCM, CCD7+CD45RA-), effector memory (TEM, CCD7-CD45RA-), terminal differentiation effector memory cells (TEMRA, CCD7-CD45RA+) in both groups. The associations between GzmB levels in CD8+T cells and clinical characteristics of NMOSD were evaluated. Results: NMOSD patients exhibited significantly decreased proportions of CD8+TN cells and increased proportions of highly differentiated CD8+T cells (TEMRA) compared with HDs. In addition, levels of GzmB in CD8+ T cells were markedly higher in NMOSD patients than in HDs. Moreover, we observed that high proportions of GzmB-expressing CD8+ T cells were more common in patients with a poor response to immunotherapies, and showed a good potential to distinguish poor responders from responders (ACU=0.89). Clinical correlation analysis indicated that high levels of GzmB in CD8+ T cells were not only related to severe disability but also significantly associated with increased serum levels of neurofilament light (NFL) and glial fibrillary acidic protein (GFAP). Multivariate linear regression analyses further suggested that GzmB expression in CD8+ T cells was predominantly associated with disability and immunotherapy effectiveness in NMOSD, independent of the sex, age, and disease phase. Transcription factor T-bet in CD8+ T cells were also significantly elevated in NMOSD and were associated with increasing number of circulating CD8+TEMRA cells and GzmB-expressing CD8+T cells. Conclusions: Our study support the involvement of GzmB-expressing CD8+ T cells in the inflammatory response in patients with NMOSD and provide a potential biomarker for disease immunotherapy effectiveness and disability progression.


Asunto(s)
Linfocitos T CD8-positivos , Granzimas , Neuromielitis Óptica , Humanos , Biomarcadores/metabolismo , Linfocitos T CD8-positivos/inmunología , Granzimas/genética , Granzimas/inmunología , Factores Inmunológicos/genética , Factores Inmunológicos/inmunología , Inmunoterapia , Neuromielitis Óptica/genética , Neuromielitis Óptica/inmunología , Neuromielitis Óptica/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA