Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chem Biodivers ; : e202401567, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117598

RESUMEN

Four new norlignans, noralashinols D-F (1a/b-3), and two known analogues (4 and 5) were isolated from the peeled stems of Syringa pinnatifolia Hemsl. The structures were elucidated by analysis of spectroscopic data, such as IR, HR-ESI-MS, 1D and 2D NMR, and ECD. All compounds were evaluated for anti-inflammatory activities against NO production induced by LPS in BV2 microglia cells. Compounds 1b and 2 exhibited moderate activities with IC50 values of 32.39 ± 9.1 and 47.83 ± 10.44 µM, respectively, compared with positive control indomethacin (IC50 = 21.62 µM). It is worth to note that 1, 3, and 4 have a distinctive woody fragrance.

2.
Environ Res ; 237(Pt 1): 116913, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37597830

RESUMEN

Dissolved organic matter (DOM) derived from wetland plants played a critical role in CWs pollutant migration. This study investigated the character and release pattern of DOM derived from two wetland plants, Phragmites australis and Cladophora sp., and the interaction between DOM with phenanthrene (PHE), benzo(a)pyrene (Bap), and benzo [k]fluoranthene (BkF) under different physical conditions were also studied using spectroscopic techniques. DOM release was related to plant species and withering stage. Humic acid (HA)-like fractions (C3 and C5) were dominated in P. australis (52%) and completely withered Cladophora sp. groups (55%), while protein-like fractions (C1 and C2) dominated in early withered Cladophora sp. groups (52%). Due to the cell and tissue structure difference among plants and their withering stage, DOM derived from early withered P. australis revealed a two-stage slow-fast phase, while other groups were linearly released (R2 0.87207-0.97091). A strong correlation existed between HA-like fractions and water quality index, reflecting the critical influence of plant decay in CWs operation performance. The analysis with Stern-Volmer equation indicated that plant-based DOM interacted with PAHs to form ground state complexes with possible involvement of π-π interaction, hydrogen bonding and cation bridging effect. Aromatic, molecular weight, and hydrophilicity of both DOM and PAHs affected their binding with the interaction capability in the order of BKF > Bap > PHE and C3 > C5 > C2 > C1 > C4. Besides, alkaline environment and high DO condition was highly unsuitable for the combination. Scientific management and appropriate operating condition were important in optimizing operation performance and controlling pollutant migration in CWs.

3.
Mol Ther ; 30(4): 1597-1609, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35121112

RESUMEN

Long non-coding RNA HOX Transcript Antisense RNA (HOTAIR) is overexpressed in multiple cancers with diverse genetic profiles. Importantly, since HOTAIR heavily contributes to cancer progression by promoting tumor growth and metastasis, HOTAIR becomes a potential target for cancer therapy. However, the underlying mechanism leading to HOTAIR deregulation is largely unexplored. Here, we performed a pan-cancer analysis using more than 4,200 samples and found that intragenic exon CpG island (Ex-CGI) was hypermethylated and was positively correlated to HOTAIR expression. Also, we revealed that Ex-CGI methylation promotes HOTAIR expression through enhancing the transcription elongation process. Furthermore, we linked up the aberrant intragenic tri-methylation on H3 at lysine 4 (H3K4me3) and Ex-CGI DNA methylation in promoting transcription elongation of HOTAIR. Targeting the oncogenic CDK7-CDK9-H3K4me3 axis downregulated HOTAIR expression and inhibited cell growth in many cancers. To our knowledge, this is the first time that a positive feedback loop that involved CDK9-mediated phosphorylation of RNA Polymerase II Serine 2 (RNA PolII Ser2), H3K4me3, and intragenic DNA methylation, which induced robust transcriptional elongation and heavily contributed to the upregulation of oncogenic lncRNA in cancer has been demonstrated. Targeting the oncogenic CDK7-CDK9-H3K4me3 axis could be a novel therapy in many cancers through inhibiting the HOTAIR expression.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina , Histonas , Neoplasias , ARN Polimerasa III , ARN Largo no Codificante , Línea Celular Tumoral , Quinasa 9 Dependiente de la Ciclina/metabolismo , Metilación de ADN , Retroalimentación Fisiológica/fisiología , Regulación Neoplásica de la Expresión Génica , Histonas/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo , ARN Polimerasa III/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
4.
Int J Mol Sci ; 23(14)2022 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-35887237

RESUMEN

Drought and salinity have become major environmental problems that affect the production of agriculture, forestry and horticulture. The identification of stress-tolerant genes from plants adaptive to harsh environments might be a feasible strategy for plant genetic improvement to address the challenges brought by global climate changes. In this study, a dehydration-upregulated gene MfWRKY7 of resurrection Plant Myrothamnusflabellifolia, encoding a group IId WRKY transcription factor, was cloned and characterized. The overexpression of MfWRKY7 in Arabidopsis increased root length and tolerance to drought and NaCl at both seedling and adult stages. Further investigation indicated that MfWRKY7 transgenic plants had higher contents of chlorophyll, proline, soluble protein, and soluble sugar but a lower water loss rate and malondialdehyde content compared with wild-type plants under both drought and salinity stresses. Moreover, the higher activities of antioxidant enzymes and lower accumulation of O2- and H2O2 in MfWRKY7 transgenic plants were also found, indicating enhanced antioxidation capacity by MfWRKY7. These findings showed that MfWRKY7 may function in positive regulation of responses to drought and salinity stresses, and therefore, it has potential application value in genetic improvement of plant tolerance to abiotic stress.


Asunto(s)
Arabidopsis , Craterostigma , Arabidopsis/metabolismo , Craterostigma/genética , Sequías , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Cloruro de Sodio/metabolismo , Estrés Fisiológico/genética
5.
Int J Mol Sci ; 23(15)2022 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-35897721

RESUMEN

WRKY transcription factors (TFs), one of the largest transcription factor families in plants, play an important role in abiotic stress responses. The resurrection plant, Myrothamnus flabellifolia, has a strong tolerance to dehydration, but only a few WRKY proteins related to abiotic stress response have been identified and functionally characterized in M. flabellifolia. In this study, we identified an early dehydration-induced gene, MfWRKY40, of M. flabellifolia. The deduced MfWRKY40 protein has a conserved WRKY motif but lacks a typical zinc finger motif in the WRKY domain and is localized in the nucleus. To investigate its potential roles in abiotic stresses, we overexpressed MfWRKY40 in Arabidopsis and found that transgenic lines exhibited better tolerance to both drought and salt stresses. Further detailed analysis indicated that MfWRKY40 promoted primary root length elongation and reduced water loss rate and stomata aperture (width/length) under stress, which may provide Arabidopsis the better water uptake and retention abilities. MfWRKY40 also facilitated osmotic adjustment under drought and salt stresses by accumulating more osmolytes, such as proline, soluble sugar, and soluble protein. Additionally, the antioxidation ability of transgenic lines was also significantly enhanced, represented by higher chlorophyll content, less malondialdehyde and reactive oxygen species accumulations, as well as higher antioxidation enzyme activities. All these results indicated that MfWRKY40 might positively regulate tolerance to drought and salinity stresses. Further investigation on the relationship of the missing zinc finger motif of MfWRKY40 and its regulatory role is necessary to obtain a better understanding of the mechanism underlying the excellent drought tolerance of M. flabellifolia.


Asunto(s)
Arabidopsis , Craterostigma , Arabidopsis/metabolismo , Craterostigma/genética , Deshidratación , Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Estrés Salino , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Agua/metabolismo
6.
BMC Genomics ; 21(1): 242, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32183717

RESUMEN

BACKGROUND: The fall webworm Hyphantria cunea is an invasive and polyphagous defoliator pest that feeds on nearly any type of deciduous tree worldwide. The silk web of H. cunea aids its aggregating behavior, provides thermal regulation and is regarded as one of causes for its rapid spread. In addition, both chemosensory and detoxification genes are vital for host adaptation in insects. RESULTS: Here, a high-quality genome of H. cunea was obtained. Silk-web-related genes were identified from the genome, and successful silencing of the silk protein gene HcunFib-H resulted in a significant decrease in silk web shelter production. The CAFE analysis showed that some chemosensory and detoxification gene families, such as CSPs, CCEs, GSTs and UGTs, were expanded. A transcriptome analysis using the newly sequenced H. cunea genome showed that most chemosensory genes were specifically expressed in the antennae, while most detoxification genes were highly expressed during the feeding peak. Moreover, we found that many nutrient-related genes and one detoxification gene, HcunP450 (CYP306A1), were under significant positive selection, suggesting a crucial role of these genes in host adaptation in H. cunea. At the metagenomic level, several microbial communities in H. cunea gut and their metabolic pathways might be beneficial to H. cunea for nutrient metabolism and detoxification, and might also contribute to its host adaptation. CONCLUSIONS: These findings explain the host and environmental adaptations of H. cunea at the genetic level and provide partial evidence for the cause of its rapid invasion and potential gene targets for innovative pest management strategies.


Asunto(s)
Adaptación Fisiológica/genética , Especies Introducidas , Mariposas Nocturnas/clasificación , Mariposas Nocturnas/genética , Animales , Secuencia de Bases , Perfilación de la Expresión Génica , Genoma , Filogenia
7.
BMC Plant Biol ; 20(1): 542, 2020 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-33267774

RESUMEN

BACKGROUND: The basic helix-loop-helix (bHLH) proteins, a large transcription factors family, are involved in plant growth and development, and defensive response to various environmental stresses. The resurrection plant Myrothamnus flabellifolia is known for its extremely strong drought tolerance, but few bHLHs taking part in abiotic stress response have been unveiled in M. flabellifolia. RESULTS: In the present research, we cloned and characterized a dehydration-inducible gene, MfbHLH38, from M. flabellifolia. The MfbHLH38 protein is localized in the nucleus, where it may act as a transcription factor. Heterologous expression of MfbHLH38 in Arabidopsis improved the tolerance to drought and salinity stresses, as determined by the studies on physiological indexes, such as contents of chlorophyll, malondialdehyde (MDA), proline (Pro), soluble protein, and soluble sugar, water loss rate of detached leaves, reactive oxygen species (ROS) accumulation, as well as antioxidant enzyme activities. Besides, MfbHLH38 overexpression increased the sensitivity of stomatal closure to mannitol and abscisic acid (ABA), improved ABA level under drought stress, and elevated the expression of genes associated with ABA biosynthesis and ABA responding, sucha as NCED3, P5CS, and RD29A. CONCLUSIONS: Our results presented evidence that MfbHLH38 enhanced tolerance to drought and salinity stresses in Arabidopsis through increasing water retention ability, regulating osmotic balance, decreasing stress-induced oxidation damage, and possibly participated in ABA-dependent stress-responding pathway.


Asunto(s)
Aclimatación/genética , Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Magnoliopsida/genética , Proteínas de Plantas/fisiología , Tolerancia a la Sal/genética , Ácido Abscísico/metabolismo , Antioxidantes/metabolismo , Arabidopsis/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Núcleo Celular/fisiología , Clonación Molecular , ADN de Plantas , Sequías , Regulación de la Expresión Génica de las Plantas , Magnoliopsida/fisiología , Proteínas de Plantas/genética , Estomas de Plantas/fisiología , Análisis de Secuencia de ADN
8.
Nanotechnology ; 31(50): 505207, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-32736372

RESUMEN

LED light bulbs that simulate solar spectrum were fabricated using CdSe core-shell quantum dots in combination with GaN blue-light chips. They exhibited excellent optical properties such as white CIE coordinates of (0.33, 0.33), high color rendering index (CRI) of 98 and correlated color temperature (CCT) of 5352 K. Moreover, a circuit system was used to control the LEDs so that the lighting spectrum changes with the time in a day to simulate the actual solar spectrum. The results show that the sun-like spectrum smart bulbs not only have good optical properties and high electrical stability, but also can automatically adjust their spectrum according to the time, making the lighting natural. This work makes sun-like lighting conditions for some special environments to promote the application of smart bulbs in smart lighting.

9.
Int J Mol Sci ; 21(8)2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-32344614

RESUMEN

Phytochrome-interacting factors (PIFs), a subfamily of basic helix-loop-helix (bHLH) transcription factors (TFs), play critical roles in regulating plant growth and development. The resurrection plant Myrothamnus flabellifolia possesses a noteworthy tolerance to desiccation, but no PIFs related to the response to abiotic stress have been functionally studied. In this study, a dehydration-inducible PIF gene, MfPIF1, was cloned and characterized. Subcellular localization assay revealed that MfPIF1 is localized predominantly in the nucleus. Overexpression of MfPIF1 in Arabidopsis thaliana led to enhanced drought and salinity tolerance, which was attributed to higher contents of chlorophyll, proline (Pro), soluble protein, and soluble sugar, activities of antioxidant enzymes as well as lower water loss rate, malondialdehyde (MDA) content, and reactive oxygen species (ROS) accumulation in transgenic lines compared with control plants. Moreover, MfPIF1 decreased stomatal aperture after drought and abscisic acid (ABA) treatment, and increased expression of both ABA biosynthesis and ABA-responsive genes including NCED3, P5CS, and RD29A. Overall, these results indicated that MfPIF1 may act as a positive regulator to drought and salinity responses, and therefore could be considered as a potential gene for plant genetic improvement of drought and salinity tolerance.


Asunto(s)
Arabidopsis/fisiología , Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Salinidad , Estrés Fisiológico , Tracheophyta/genética , Secuencia de Aminoácidos , Antioxidantes/metabolismo , Clonación Molecular , Craterostigma/genética , Fitocromo/metabolismo , Proteínas de Plantas/química , Transporte de Proteínas , Tolerancia a la Sal
10.
Molecules ; 25(18)2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32937894

RESUMEN

Citrus blend black teas are popular worldwide, due to its unique flavor and remarkable health benefits. However, the aroma characteristics, aroma profiles and key odorants of it remain to be distinguished and cognized. In this study, the aroma profiles of 12 representative samples with three different cultivars including citrus (Citrus reticulata), bergamot (Citrus bergamia), and lemon (Citrus limon) were determined by a novel approach combined head space-solid phase microextraction (HS-SPME) with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-TOFMS). A total of 348 volatile compounds, among which comprised esters (60), alkenes (55), aldehydes (45), ketones (45), alcohols (37), aromatic hydrocarbons (20), and some others were ultimately identified. The further partial least squares discrimination analysis (PLS-DA) certified obvious differences existed among the three groups with a screening result of 30 significant differential key volatile compounds. A total of 61 aroma-active compounds that mostly presented green, fresh, fruity, and sweet odors were determined in three groups with gas chromatography-olfactometry/mass spectrometry (GC-O/MS) assisted analysis. Heptanal, limonene, linalool, and trans-ß-ionone were considered the fundamental odorants associated with the flavors of these teas. Comprehensive analysis showed that limonene, ethyl octanoate, copaene, ethyl butyrate (citrus), benzyl acetate, nerol (bergamot) and furfural (lemon) were determined as the characterized odorants for each type.


Asunto(s)
Citrus/química , Odorantes/análisis , Té/química , Monoterpenos Acíclicos/metabolismo , Compuestos de Bencilo/química , Butiratos/química , Caprilatos/química , Furaldehído/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Análisis de los Mínimos Cuadrados , Limoneno/química , Olfatometría , Sesquiterpenos/química , Microextracción en Fase Sólida , Compuestos Orgánicos Volátiles/química
11.
Funct Integr Genomics ; 18(6): 659-671, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29948459

RESUMEN

Yellow-flowering species are unique in the genus Camellia not only for their bright yellow pigments but also the health-improving substances in petals. However, little is known regarding the biosynthesis pathways of pigments and secondary metabolites. Here, we performed comparative genomics studies in two yellow-flowered species of the genus Camellia with distinctive flowering periods. We obtained 112,190 and 89,609 unigenes from Camellia nitidissima and Camellia chuongtsoensis, respectively, and identified 9547 gene family clusters shared with various plant species and 3414 single-copy gene families. Global gene expression analysis revealed six comparisons of differentially expressed gene sets in different developmental stages of floral bud. Through the identification of orthologous pairs, conserved and specific differentially expressed genes (DEGs) between species were compared. Functional enrichment analysis suggested that the gibberellin (GA) biosynthesis pathway might be related to the alteration of flowering responses. Furthermore, the expression patterns of secondary metabolism pathway genes were analyzed between yellow- and red-flowered Camellias. We showed that the key enzymes involved in glycosylation of flavonoids displayed differential expression patterns, indicating that the direct glycosylation of flavonols rather than anthocyanins was pivotal to coloration and health-improving metabolites in the yellow Camellia petals. Finally, the gene family analysis of UDP-glycosyltransferases revealed an expansion of group C members in C. nitidissima. Through comparative genomics analysis, we demonstrate that changes of gene expression and gene family members are critical to the variation of natural traits. This work provides valuable insights into the molecular regulation of trait adaptations of floral pigmentation and flowering timing.


Asunto(s)
Camellia/genética , Flores/genética , Familia de Multigenes/genética , Metabolismo Secundario/genética , Adaptación Fisiológica/genética , Camellia/crecimiento & desarrollo , Camellia/metabolismo , Flavonoides/genética , Flavonoides/metabolismo , Flores/crecimiento & desarrollo , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Genómica , Transcriptoma/genética
12.
Front Plant Sci ; 15: 1403202, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39049860

RESUMEN

Background: Pepper veinal mottle virus (PVMV) belongs to the genus Potyvirus within the family Potyviridae and is a major threat to pepper production, causing reduction in yield and fruit quality; however, efficient pesticides and chemical treatments for plant protection against viral infections are lacking. Hence, there is a critical need to discover highly active and environment-friendly antiviral agents derived from natural sources. Bacillus spp. are widely utilized as biocontrol agents to manage fungal, bacterial, and viral plant diseases. Particularly, Bacillus velezensis HN-2 exhibits a strong antibiotic activity against plant pathogens and can also induce plant resistance. Methods: The experimental subjects employed in this study were Bacillus velezensis HN-2, benzothiadiazole, and dufulin, aiming to evaluate their impact on antioxidant activity, levels of reactive oxygen species, activity of defense enzymes, and expression of defense-related genes in Nicotiana benthamiana. Furthermore, the colonization ability of Bacillus velezensis HN-2 in Capsicum chinense was investigated. Results: The results of bioassays revealed the robust colonization capability of Bacillus velezensis HN-2, particularly in intercellular spaces, leading to delayed infection and enhanced protection against PVMV through multiple plant defense mechanisms, thereby promoting plant growth. Furthermore, Bacillus velezensis HN-2 increased the activities of antioxidant enzymes, thereby mitigating the PVMV-induced ROS production in Nicotiana benthamiana. Moreover, the application of Bacillus velezensis HN-2 at 5 dpi significantly increased the expression of JA-responsive genes, whereas the expression of salicylic acid-responsive genes remained unchanged, implying the activation of the JA signaling pathway as a crucial mechanism underlying Bacillus velezensis HN-2-induced anti-PVMV activity. Immunoblot analysis revealed that HN-2 treatment delayed PVMV infection at 15 dpi, further highlighting its role in inducing plant resistance and promoting growth and development. Conclusions: These findings underscore the potential of Bacillus velezensis HN-2 for field application in managing viral plant diseases effectively.

13.
Int J Med Robot ; 19(1): e2459, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36098624

RESUMEN

BACKGROUND: Traditional commercial master devices and specialied serial master devices meet insufficient workspace, low intuitiveness, low stiffness, and poor accuracy during master-slave mapping for robot-assisted flexible ureteroscopy (FURS). METHODS: This paper presents a 3-DoF master device for FURS. A 2-DoF parallel mechanism was designed and utilised in the master device for higher stiffness based on requirements analysis. A Back Propagation Neural Network was built for the forward kinematics of the parallel mechanism during master-slave mapping. Analysis of mechanical characteristics was carried out for the usability of the master device. A contrast experiment on the phantom was conducted to evaluate the performance between the proposed master device and a previous one. RESULTS: The completion time for each trial of the proposed master devices is shorter than that of the previous master serial device. Meanwhile, the proposed device provides a more comfortable operating style than the previous one. CONCLUSIONS: The proposed 3-DoF configuration for the master device is with more intuitive performance. A better comfort level indicates its usability in clinical applications.


Asunto(s)
Robótica , Humanos , Ureteroscopía , Redes Neurales de la Computación , Fenómenos Biomecánicos , Diseño de Equipo
14.
J Ovarian Res ; 16(1): 37, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36759870

RESUMEN

BACKGROUND: The mortality rate of ovarian cancer ranks first among three common gynecological malignant tumors due to insidious onset and lack of effective early diagnosis methods. Borderline epithelial ovarian tumor (BEOT) is a type of low malignant potential tumor that is typically associated with better outcomes than ovarian cancer. However, BEOTs are easily confused with benign and malignant epithelial ovarian tumors (EOTs) due to similar clinical symptoms and lack of specific tumor biomarkers and imaging examinations. Notably, a small subset of BEOTs will transform into low-grade serous ovarian carcinoma with a poor prognosis. Therefore, searching for potential biomarkers that can be easily obtained and accurately identify malignant epithelial ovarian tumors (MEOTs) as well as BEOTs is essential for the clinician. Cancer antigen 125 (CA125) is a commonly used biomarker for the diagnosis of EOTs in the preoperative scenario but has low sensitivity and specificity. Nowadays, inflammatory biomarkers including inflammatory cell counts and derived ratios such as neutrophil/lymphocyte ratio (NLR) and platelet/lymphocyte ratio (PLR) have been proved to be associated with tumor progression and poor prognosis, and were considered to be the most economically potential surrogate biomarkers for various malignancies. The purpose of this study was to find appropriate combinations of inflammatory and tumor biomarkers to improve the diagnostic efficiency of EOTs, especially the BEOTs. RESULTS: CA125, NLR and PLR increased steadily among benign, borderline and malignant EOTs and tended to be higher in advanced (stage III-IV) and lymph node metastasis MEOT groups than in early stage (stage I-II) and non-lymph node metastasis MEOT groups. CA125, NLR and PLR could be used separately in the differentiation of EOTs but could not take into account both sensitivity and specificity. The combined use of CA125, NLR and PLR was evaluated to be more efficient, especially in the identification of BEOTs, with both high sensitivity and high specificity. CONCLUSIONS: The levels of CA125, NLR and PLR were closely related to the nature of EOTs and malignant progression of MEOTs. The combination of CA125, NLR and PLR was more accurate in identifying the nature of EOTs than either alone or double combination, especially for BEOTs.


Asunto(s)
Carcinoma , Neoplasias Ováricas , Femenino , Humanos , Biomarcadores de Tumor , Antígeno Ca-125 , Linfocitos , Neutrófilos , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/patología , Estudios Retrospectivos , Plaquetas
15.
Biomark Res ; 11(1): 74, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553583

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a dismal prognosis, and despite significant advances in our understanding of its genetic drivers, like KRAS, TP53, CDKN2A, and SMAD4, effective therapies remain limited. Here, we identified a new therapeutic target GRIN2D and then explored its functions and mechanisms in PDAC progression. METHODS: We performed a genome-wide RNAi screen in a PDAC xenograft model and identified GRIN2D, which encodes the GluN2D subunit of N-methyl-D-aspartate receptors (NMDARs), as a potential oncogene. Western blot, immunohistochemistry, and analysis on Gene Expression Omnibus were used for detecting the expression of GRIN2D in PDAC. Cellular experiments were conducted for exploring the functions of GRIN2D in vitro while subcutaneous and orthotopic injections were used in in vivo study. To clarify the mechanism, we used RNA sequencing and cellular experiments to identify the related signaling pathway. Cellular assays, RT-qPCR, and western blot helped identify the impacts of the NMDAR antagonist memantine. RESULTS: We demonstrated that GRIN2D was highly expressed in PDAC cells, and further promoted oncogenic functions. Mechanistically, transcriptome profiling identified GRIN2D-regulated genes in PDAC cells. We found that GRIN2D promoted PDAC progression by activating the p38 MAPK signaling pathway and transcription factor CREB, which in turn promoted the expression of HMGA2 and IL20RB. The upregulated GRIN2D could effectively promote tumor growth and liver metastasis in PDAC. We also investigated the therapeutic potential of NMDAR antagonism in PDAC and found that memantine reduced the expression of GRIN2D and inhibited PDAC progression. CONCLUSION: Our results suggested that NMDA receptor GRIN2D plays important oncogenic roles in PDAC and represents a novel therapeutic target.

16.
Front Plant Sci ; 13: 967352, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35937333

RESUMEN

Myrothamnus flabellifolia is the only woody resurrection plant discovered so far and could recover from extreme desiccation condition. However, few genes related to its strong drought tolerance have been characterized, and the underlying molecular mechanisms remains mysterious. Members of WRKY transcription factor family are effective in regulating abiotic stress responses or tolerance in various plants. An early dehydration-induced gene encoding a WRKY transcription factor namely MfWRKY41 was isolated from M. flabellifolia, which is homologous to AtWRKY41 of Arabidopsis. It contains a typical WRKY domain and zinc finger motif, and is located in the nucleus. Comparing to wild type, the four transgenic lines overexpressing MfWRKY41 showed better growth performance under drought and salt treatments, and exhibited higher chlorophyll content, lower water loss rate and stomatal aperture and better osmotic adjustment capacity. These results indicated that MfWRKY41 of M. flabellifolia positively regulates drought as well as salinity responses. Interestingly, the root system architecture, including lateral root number and primary root length, of the transgenic lines was enhanced by MfWRKY41 under both normal and stressful conditions, and the antioxidation ability was also significantly improved. Therefore, MfWRKY41 may have potential application values in genetic improvement of plant tolerance to drought and salinity stresses. The molecular mechanism involving in the regulatory roles of MfWRKY41 is worthy being explored in the future.

17.
Food Chem ; 375: 131877, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34953244

RESUMEN

In order to investigate the hypolipidaemic and antioxidant effects of various dark teas produced from different post-fermentation using the same raw material, a hyperlipidaemia zebrafish model combined with binding bile salts assay and antioxidant assays were performed in this study. Results showed that the hypolipidaemic effect of dark tea extracts increased significantly (p < 0.05) while the antioxidant ability decreased sharply compared with raw material. Particularly, Liupao tea (50%) and Pu-erh tea (48%) showed promising hypolipidaemic potential; however, the antioxidant capacity of Pu-erh tea decreased (31-49%) most dramatically. Besides, the levels of total polyphenols and catechins decreased sharply, but theabrownin, gallic acid, and caffeine increased significantly after post-fermentation. Moreover, the potential mechanisms of regulating hyperlipidaemia by dark tea extracts were discussed. These results suggest that microbial fermentation significantly affects the bioactivity of dark teas, and provide theoretical basis for processing and improving of dark tea products for hyperlipidaemia therapy.


Asunto(s)
Antioxidantes , , Animales , Antioxidantes/análisis , China , Fermentación , Extractos Vegetales , Pez Cebra
18.
Food Chem ; 377: 132048, 2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35030339

RESUMEN

Citrus-white teas (CWs), which possess a balanced flavour of tea and citrus, are becoming more popular worldwide; however, their characteristic flavour and odourants received limited research. Volatile components of two types of CWs prepared from Citrus reticulata Blanco 'Chachiensis' and Camellia sinensis 'Fudingdabai' were comprehensively investigated using a combination of stir bar sorptive extraction and gas chromatography-mass spectrometry (GC-MS). Ninety-nine crucial odourants in the CWs were quantified by applying GC-olfactometry/MS, significant differences were compared, and their odour activity values (OAVs) were calculated. Twenty-two odourants (in total 2628.09 and 1131.18 mg/kg respectively) were further confirmed as traditional CW (CW-A) and innovated CW (CW-B) characteristic flavour crucial contributors which all possessed > 1 OAVs, particularly limonene (72919 in CW-A) and trans-ß-ionone (138953 in CW-B). The unravelling of CWs aroma composition will greatly expanding our understanding of tea aroma chemistry and the potential aroma interactions will offer insights into tea blending technologies.


Asunto(s)
Camellia sinensis , Citrus , Compuestos Orgánicos Volátiles , Odorantes/análisis , Olfatometría , , Compuestos Orgánicos Volátiles/análisis
19.
Transl Cancer Res ; 10(2): 637-644, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35116397

RESUMEN

BACKGROUND: More than 30% of cancer patients experience neuropathic pain. Opioids, as standard pain-relief agents, cannot achieve satisfactory outcomes to treat neuropathic cancer pain due to drug resistance and side effects. Meanwhile, gabapentin, a third-generation anticonvulsant drug, has great potential in providing relief for neuropathic cancer pain. However, there is currently no sufficient evidence to support the efficacy of a combination of gabapentin and opioids in ameliorating neuropathic cancer pain. Hence, the aim of the present study was to explore the analgesic efficacy of gabapentin combined with opioids in treating neuropathic cancer pain. METHODS: PubMed, EMBASE, and Web of Science (Web of Knowledge) were searched for randomized controlled trials and prospective studies via the following keywords: "gabapentin", "opioid", "cancer", and "neuropathic pain". We used a scale of 0-10 (0 denoting no pain and 10 denoting the worst pain imaginable) to estimate pain intensity and utilized Review Manager 5.3 and Stata12 to analyze data. RESULTS: Seven studies meeting our criterion were selected from 110 records that were primarily searched. The mean difference of pooled pain intensity and the 95% confidence interval (CI) was -1.75 (-2.44, -1.07) (P value <0.00001; treatment group versus control group or time to outcome assessment versus baseline). The pain intensity of cancer patients after a combined treatment of gabapentin and opioids was significantly lower than that of patients receiving opioids alone. CONCLUSIONS: Our meta-analysis showed that gabapentin combined with opioids effectively alleviated neuropathic cancer pain compared with that of opioids alone.

20.
Artículo en Inglés | MEDLINE | ID: mdl-33916425

RESUMEN

With the growth of rural tourism in China, this study aims to determine the destination attributes, tourism satisfaction, and intention of revisiting Inner Mongolia. This study also investigated the mean comparison of tourist satisfaction and revisit intention across domestic tourists' demographic characteristics. Structural analysis revealed that destination attributes have a positive influence on satisfaction and revisit intention. In addition, the result of the mean difference test showed that satisfaction is significantly different between male and female tourists, and revisit intention significantly varies across the season. Our findings have an excellent directive significance to bring forward rural tourism in Inner Mongolia.


Asunto(s)
Satisfacción Personal , Turismo , China , Femenino , Intención , Masculino , Viaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA