Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 284
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(36): e2406925121, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39196627

RESUMEN

Endosymbionts provide essential nutrients for hosts, promoting growth, development, and reproduction. However, the molecular regulation of nutrient transport from endosymbiont to host is not well understood. Here, we used bioinformatic analysis, RNA-Sequencing, luciferase assays, RNA immunoprecipitation, and in situ hybridization to show that a bacteriocyte-distributed MRP4 gene (multidrug resistance-associated protein 4) is negatively regulated by a host (aphid)-specific microRNA (miR-3024). Targeted metabolomics, microbiome analysis, vitamin B6 (VB6) supplements, 3D modeling/molecular docking, in vitro binding assays (voltage clamp recording and microscale thermophoresis), and functional complementation of Escherichia coli were jointly used to show that the miR-3024/MRP4 axis controls endosymbiont (Serratia)-produced VB6 transport to the host. The supplementation of miR-3024 increased the mortality of aphids, but partial rescue was achieved by providing an external source of VB6. The use of miR-3024 as part of a sustainable aphid pest-control strategy was evaluated by safety assessments in nontarget organisms (pollinators, predators, and entomopathogenic fungi) using virus-induced gene silencing assays and the expression of miR-3024 in transgenic tobacco. The supplementation of miR-3024 suppresses MRP4 expression, restricting the number of membrane channels, inhibiting VB6 transport, and ultimately killing the host. Under aphids facing stress conditions, the endosymbiont titer is decreased, and the VB6 production is also down-regulated, while the aphid's autonomous inhibition of miR-3024 enhances the expression of MRP4 and then increases the VB6 transport which finally ensures the VB6 homeostasis. The results confirm that miR-3024 regulates nutrient transport in the endosymbiont-host system and is a suitable target for sustainable pest control.


Asunto(s)
Áfidos , Homeostasis , MicroARNs , Simbiosis , MicroARNs/genética , MicroARNs/metabolismo , Animales , Áfidos/microbiología , Áfidos/metabolismo , Vitamina B 6/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Nutrientes/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética
2.
PLoS Genet ; 18(9): e1010411, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36112661

RESUMEN

Fecundity is arguably one of the most important life history traits, as it is closely tied to fitness. Most arthropods are recognized for their extreme reproductive capacity. For example, a single female of the oriental fruit fly Bactrocera dorsalis, a highly invasive species that is one of the most destructive agricultural pests worldwide, can lay more than 3000 eggs during its life span. The ovary is crucial for insect reproduction and its development requires further investigation at the molecular level. We report here that miR-309a is a regulator of ovarian development in B. dorsalis. Our bioinformatics and molecular studies have revealed that miR-309a binds the transcription factor pannier (GATA-binding factor A/pnr), and this activates yolk vitellogenin 2 (Vg 2) and vitellogenin receptor (VgR) advancing ovarian development. We further show that miR-309a is under the control of juvenile hormone (JH) and independent from 20-hydroxyecdysone. Thus, we identified a JH-controlled miR-309a/pnr axis that regulates Vg2 and VgR to control the ovarian development. This study has further enhanced our understanding of molecular mechanisms governing ovarian development and insect reproduction. It provides a background for identifying targets for controlling important Dipteran pests.


Asunto(s)
MicroARNs , Tephritidae , Animales , Drosophila/metabolismo , Ecdisterona/metabolismo , Femenino , Hormonas Juveniles/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Tephritidae/genética , Tephritidae/metabolismo , Factores de Transcripción/metabolismo , Vitelogeninas/genética , Vitelogeninas/metabolismo
3.
Insect Mol Biol ; 33(3): 218-227, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38319237

RESUMEN

Zeugodacus cucurbitae Coquillett (Diptera: Tephritidae) is an agriculturally and economically important pest worldwide that has developed resistance to ß-cypermethrin. Glutathione S-transferases (GSTs) have been reported to be involved in the detoxification of insecticides in insects. We have found that both ZcGSTd6 and ZcGSTd10 were up-regulated by ß-cypermethrin induction in our previous study, so we aimed to explore their potential relationship with ß-cypermethrin tolerance in this study. The heterologous expression of ZcGSTd6 and ZcGSTd10 in Escherichia coli showed significantly high activities against 1-chloro-2,4-dinitrobenzene (CDNB). The kinetic parameters of ZcGSTd6 and ZcGSTd10 were determined by Lineweaver-Burk. The Vmax and Km of ZcGSTd6 were 0.50 µmol/min·mg and 0.3 mM, respectively. The Vmax and Km of ZcGSTd10 were 1.82 µmol/min·mg and 0.53 mM. The 3D modelling and molecular docking results revealed that ß-cypermethrin exhibited a stronger bounding to the active site SER-9 of ZcGSTd10. The sensitivity to ß-cypermethrin was significantly increased by 18.73% and 27.21%, respectively, after the knockdown of ZcGSTd6 and ZcGSTd10 by using RNA interference. In addition, the inhibition of CDNB at 50% (IC50) and the inhibition constants (Ki) of ß-cypermethrin against ZcGSTd10 were determined as 0.41 and 0.33 mM, respectively. The Ki and IC50 of ß-cypermethrin against ZcSGTd6 were not analysed. These results suggested that ZcGSTd10 could be an essential regulator involved in the tolerance of Z. cucurbitae to ß-cypermethrin.


Asunto(s)
Glutatión Transferasa , Proteínas de Insectos , Resistencia a los Insecticidas , Insecticidas , Tephritidae , Animales , Glutatión Transferasa/metabolismo , Glutatión Transferasa/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Resistencia a los Insecticidas/genética , Simulación del Acoplamiento Molecular , Piretrinas/farmacología , Interferencia de ARN , Tephritidae/genética , Tephritidae/enzimología , Tephritidae/efectos de los fármacos , Tephritidae/metabolismo
4.
Pestic Biochem Physiol ; 202: 105964, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38879312

RESUMEN

Pesticides remain a cornerstone in pest control, yet their extensive and irrational use also fuel the evolution of resistance. This review analyzes globally published experimental data spanning from the 1970s to 2023 to focus on how phenotypic and underlying genotypic variations are shaped during the selective response. The discussion commences with an examination of sex-linked/maternal resistance. Observations related to maternal inheritance have enriched our understanding of pesticide mode of action, notably exemplified by bifenazate. However, the predominant control of the resistant phenotype is attributed to autosomal traits, with a high prevalence of dominance and monogenic inheritance observed, also evident in field strains. This observation raises concerns regarding resistance management strategies due to their potential to accelerate the spread of resistance. The interplay between dominance levels and monogenic inheritance is further explored, with dominant traits being significantly more prevalent in polygenic inheritance. This observation may be attributed to the accumulation of enhanced metabolism. Notably, further analysis indicated that field strains exhibit a higher incidence of monogenic inheritance compared to other selected strains, aligning with established theoretical frameworks. In conclusion, the genetic architecture of resistance warrants increased research focus for its pivotal role in guiding resistance management strategies and advancing fundamental research.


Asunto(s)
Plaguicidas , Plaguicidas/toxicidad , Animales , Resistencia a los Insecticidas/genética , Fenotipo
5.
Pestic Biochem Physiol ; 198: 105727, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38225066

RESUMEN

The citrus red mite, Panonychus citri (McGregor), is a globally important pest that has developed severe resistance to various pesticides. Lufenuron has been widely used in the control of the related pests in citrus orchard ecosystem. In this study, the susceptibilities of egg, larva, deutonymph and female adult of P. citri to lufenuron was determined, and the LC50 values were 161.354 mg/L, 49.595 mg/L, 81.580 mg/L, and 147.006 mg/L, respectively. Life-table analysis indicated that the fecundities were significantly increased by 11.86% and 26.84% after the mites were treated with LC20 concentrations of lufenuron at the egg or deutonymph stages, respectively. After eggs were treated with lufenuron, the immature stage and longevity were also affected, and resulted in a significant increase in r, R0 and λ. After exposure of female adults to LC20 of lufenuron, the fecundity and longevity of F0 generation significantly decreased by 31.99% and 10.94%, respectively. Furthermore, the expression level of EcR and Vg was significantly inhibited upon mites was treated with lufenuron. However, lufenuron exposure has a positive effect on fecundity and R0 in F1 generation, the expression of all reproduction-related genes was significantly up-regulated. In conclusion, there was a stimulating effect on the offspring population. Our results will contribute to the assessment of the resurgence of P. citri in the field after the application of lufenuron and the development of integrated pest control strategies in citrus orchards.


Asunto(s)
Benzamidas , Fluorocarburos , Ácaros , Tetranychidae , Animales , Ecosistema , Reproducción
6.
Pestic Biochem Physiol ; 199: 105763, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38458663

RESUMEN

The oriental fruit fly, Bactrocera dorsalis (Hendel), an invasive insect pest infesting fruits and vegetables, possesses a remarkable capacity for environmental adaptation. The investigation of behind mechanisms of the stress adaptability in B. dorsalis holds significantly practical relevance. Previous studies on the molecular mechanism underlying stress resistance in B. dorsalis have predominantly focused on nuclear-coding genes, with limited exploration on organelle-coding genes. In this study, we assessed alterations in the mitochondrial physiological parameters of B. dorsalis under exposure to malathion, avermectin, and beta-cypermethrin at LD50 dosages. The results showed that all three insecticides were capable of reducing mitochondrial complex IV activity and ATP content. Expression patterns of mitochondrial coding genes across different developmental stages, tissues and insecticide exposures were analyzed by RT-qPCR. The results revealed that these mitochondrial coding genes were expressed in various tissues and at different developmental stages. Particularly noteworthy, atp6, cox2, and cytb exhibited substantial up-regulation in response to malathion and avermectin treatment. Furthermore, RNAi-mediated knockdown of atp6 and cox2 resulted in the increased toxicity of malathion and avermectin against B. dorsalis, and cox2 silencing was also associated with the decreased complex IV activity. These findings suggest that atp6 and cox2 most likely play pivotal roles in mediating tolerance or resistance to malathion and avermectin in B. dorsalis. Our results provide novel insights into the role of mitochondrial coding genes in conferring tolerance to insecticides in B. dorsalis, with practical implications for controlling this pest in the field.


Asunto(s)
Insecticidas , Ivermectina/análogos & derivados , Tephritidae , Animales , Insecticidas/farmacología , Malatión/toxicidad , Ciclooxigenasa 2 , Resistencia a los Insecticidas/genética , Tephritidae/genética
7.
Pestic Biochem Physiol ; 200: 105816, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38582574

RESUMEN

The melon fly Zeugodacus cucurbitae Coquillett (Diptera: Tephritidae) is an agricultural quarantine pest threatening fruit and vegetable production. Heat shock cognate 70 (Hsc70), which is a homolog of the heat shock protein 70 (Hsp70), was first discovered in mice testes and plays an important role in spermatogenesis. In this study, we identified and cloned five Hsc70 genes from melon fly, namely ZcHsc70_1/2/3/4/5. Phylogenetic analysis showed that these proteins are closely related to Hsc70s from other Diptera insects. Spatiotemporal expression analysis showed that ZcHsc70_1 and ZcHsc70_2 are highly expressed in Z. cucurbitae testes. Fluorescence in situ hybridization further demonstrated that ZcHsc70_1 and ZcHsc70_2 are expressed in the transformation and maturation regions of testes, respectively. Moreover, RNA interference-based suppression of ZcHsc70_1 or ZcHsc70_2 resulted in a significant decrease of 74.61% and 63.28% in egg hatchability, respectively. Suppression of ZcHsc70_1 expression delayed the transformation of sperm cells to mature sperms. Meanwhile, suppression of ZcHsc70_2 expression decreased both sperm cells and mature sperms by inhibiting the meiosis of spermatocytes. Our findings show that ZcHsc70_1/2 regulates spermatogenesis and further affects the male fertility in the melon fly, showing potential as targets for pest control in sterile insect technique by genetic manipulation of males.


Asunto(s)
Semillas , Tephritidae , Masculino , Animales , Ratones , Filogenia , Hibridación Fluorescente in Situ , Tephritidae/genética , Control de Insectos/métodos , Espermatogénesis/genética , Fertilidad/genética , Respuesta al Choque Térmico
8.
Pestic Biochem Physiol ; 205: 106114, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39477575

RESUMEN

RNA interference (RNAi) is an effective pest management strategy through silencing the crucial genes in target organisms. However, the effectiveness of targeting a single gene is often limited by the silencing efficiency due to tissue or developmental stage-specific gene expression. Moreover, multiple pests often infest the same crop simultaneously under current ecological conditions. Therefore, a combined strategy of "targeting multiple genes" and "controlling multiple pests" is expected to yield better management results. In this study, homologous genes from two globally sap-sucking pests, the peach aphid (Myzus persicae) and the whitefly (Bemisia tabaci), were screened on a genome-wide scale. Subsequently, RNAi bioassays showed silencing the genes (MpAbd-A, MpH3, MpRpL27a, and MpScr) exhibited high mortalities in both species, which were further selected for designing fusion dsRNAs. These fusion dsRNAs resulted in higher mortalities in both pests than single gene silencing and posed a minimal off-target risk to the predator ladybeetle (Propylaea japonica) based on the sequence analysis. Finally, the tobacco plants expressing the fusion dsRNAs through virus-induced gene silencing (VIGS) technology enhanced the resistance to both pests. In conclusion, this study proposes a novel RNAi-based approach for managing two sap-sucking pests simultaneously.


Asunto(s)
Áfidos , Hemípteros , Interferencia de ARN , ARN Bicatenario , Animales , Áfidos/genética , Hemípteros/genética , ARN Bicatenario/genética , Nicotiana/genética , Nicotiana/parasitología , Plantas Modificadas Genéticamente
9.
BMC Biol ; 21(1): 187, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37667263

RESUMEN

BACKGROUND: The continuously developing pesticide resistance is a great threat to agriculture and human health. Understanding the mechanisms of insecticide resistance is a key step in dealing with the phenomenon. Insect cuticle is recently documented to delay xenobiotic penetration which breaks the previous stereotype that cuticle is useless in insecticide resistance, while the underlying mechanism remains scarce. RESULTS: Here, we find the integument contributes over 40.0% to insecticide resistance via different insecticide delivery strategies in oriental fruit fly. A negative relationship exists between cuticle thickening and insecticide penetration in resistant/susceptible, also in field strains of oriental fruit fly which is a reason for integument-mediated resistance. Our investigations uncover a regulator of insecticide penetration that miR-994 mimic treatment causes cuticle thinning and increases susceptibility to malathion, whereas miR-994 inhibitor results in opposite phenotypes. The target of miR-994 is a most abundant cuticle protein (CPCFC) in resistant/susceptible integument expression profile, which possesses capability of chitin-binding and influences the cuticle thickness-mediated insecticide penetration. Our analyses find an upstream transcriptional regulatory signal of miR-994 cascade, long noncoding RNA (lnc19419), that indirectly upregulates CPCFC in cuticle of the resistant strain by sponging miR-994. Thus, we elucidate the mechanism of cuticular competing endogenous RNAs for regulating insecticide penetration and demonstrate it also exists in field strain of oriental fruit fly. CONCLUSIONS: We unveil a regulatory axis of lnc19419 ~ miR-994 ~ CPCFC on the cuticle thickness that leads to insecticide penetration resistance. These findings indicate that competing endogenous RNAs regulate insecticide resistance by modulating the cuticle thickness and provide insight into the resistance mechanism in insects.


Asunto(s)
Insecticidas , MicroARNs , Humanos , Animales , Insecticidas/farmacología , Malatión/farmacología , Piel , Agricultura , Drosophila , MicroARNs/genética
10.
Proc Natl Acad Sci U S A ; 117(15): 8404-8409, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32217736

RESUMEN

Wing dimorphism is a phenomenon of phenotypic plasticity in aphid dispersal. However, the signal transduction for perceiving environmental cues (e.g., crowding) and the regulation mechanism remain elusive. Here, we found that aci-miR-9b was the only down-regulated microRNA (miRNA) in both crowding-induced wing dimorphism and during wing development in the brown citrus aphid Aphis citricidus We determined a targeted regulatory relationship between aci-miR-9b and an ABC transporter (AcABCG4). Inhibition of aci-miR-9b increased the proportion of winged offspring under normal conditions. Overexpression of aci-miR-9b resulted in decline of the proportion of winged offspring under crowding conditions. In addition, overexpression of aci-miR-9b also resulted in malformed wings during wing development. This role of aci-miR-9b mediating wing dimorphism and development was also confirmed in the pea aphid Acyrthosiphon pisum The downstream action of aci-miR-9b-AcABCG4 was based on the interaction with the insulin and insulin-like signaling pathway. A model for aphid wing dimorphism and development was demonstrated as the following: maternal aphids experience crowding, which results in the decrease of aci-miR-9b. This is followed by the increase of ABCG4, which then activates the insulin and insulin-like signaling pathway, thereby causing a high proportion of winged offspring. Later, the same cascade, "miR-9b-ABCG4-insulin signaling," is again involved in wing development. Taken together, our results reveal that a signal transduction cascade mediates both wing dimorphism and development in aphids via miRNA. These findings would be useful in developing potential strategies for blocking the aphid dispersal and reducing viral transmission.


Asunto(s)
Áfidos/genética , MicroARNs/genética , Alas de Animales/crecimiento & desarrollo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Áfidos/crecimiento & desarrollo , Áfidos/metabolismo , Femenino , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Masculino , MicroARNs/metabolismo , Caracteres Sexuales , Alas de Animales/metabolismo
11.
Pestic Biochem Physiol ; 197: 105690, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38072545

RESUMEN

Bactrocera dorsalis is a notable invasive pest that has developed resistance to several commonly used insecticides in the field, such as avermectin, beta-cypermethrin and malathion. Investigating the mechanisms of insecticide resistance in this pest is of paramount importance for ensuring its effective control. The ATP-binding cassette transporter subfamily B (ABCB) genes, responsible for encoding transmembrane efflux transporters, represent a potential source of insecticide detoxification activity or transportation that remains largely unexplored in B. dorsalis. In this study, seven BdABCB genes were identified and comprehensive analyzed based on the latest genome and transcriptome dataset. Subsequently, we characterized the expression profiles of these genes across different development stages and tissues, as well as under different insecticide exposures. The results showed that the BdABCB genes were expressed at all stages in B. dorsalis, with BdABCB2 and BdABCB7 being highly expressed in the pupal stage, while BdABCB5 and BdABCB6 were highly expressed in the larval stage. Besides, the BdABCBs were highly expressed in the detoxification metabolic tissues. Among them, BdABCB5 and BdABCB6 were significantly overexpressed in the midgut and Malpighian tubules, respectively. Furthermore, with the exception of BdABCB6, the expression levels of the other six BdABCBs were significantly up-regulated following induction with avermectin, beta-cypermethrin and malathion. Six BdABCBs (BdABCB1-5 and BdABCB7) were knocked down by RNA interference, and the interference efficiencies were 46.58%, 39.50%, 45.60%, 33.74%, 66.37% and 63.83%, respectively. After injecting dsBdABCBs, the mortality of flies increased by 25.23% to 39.67% compared to the control upon exposure to the three insecticides. These results suggested that BdABCBs play crucial roles in the detoxification or tolerance of B. dorsalis to multiple insecticides.


Asunto(s)
Insecticidas , Tephritidae , Animales , Insecticidas/farmacología , Malatión/toxicidad , Tephritidae/genética , Resistencia a los Insecticidas/genética
12.
Pestic Biochem Physiol ; 197: 105645, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38072520

RESUMEN

RNA interference (RNAi) is a promising tool for pest control and relies on sequence-specific gene silencing. Salivary proteins are cooperatively secreted into plants to guarantee the feeding of aphids; thus they have potential to develop as selective targets for RNAi-based pest control strategy. For this purpose, we firstly analyzed 18 salivary proteomes of various aphid species, and these salivary proteins can be mainly categorized into seven functional groups. Secondly, we created a work-flow for fusion dsRNA design that can target multiple genes but were selectively safe to beneficial insects. Based on this approach, seven fusion dsRNAs were designed to feed the green peach aphid, which induced a significant reduction in aphid fitness. Among them, ingestion of dsperoxidase induced the highest mortality in aphids, which was also significantly higher than that of traditional dsRNAs in targeting three peroxidases separately. In addition, dsperoxidase-fed green peach aphids triggered the highest H2O2 content of host plants as well as the attraction to natural enemies (ladybeetle and parasitic wasp) but repellent to other control aphids. Our results indicate that the fusion dsRNA design approach can improve aphid control capacity, and the fusion dsRNA targeting salivary protein-encoding genes can enhance the direct and indirect defenses of host plants, thus providing a new strategy for RNAi-based aphid control.


Asunto(s)
Áfidos , Animales , Interferencia de ARN , Áfidos/genética , Áfidos/metabolismo , Peróxido de Hidrógeno/metabolismo , Silenciador del Gen , ARN Bicatenario/genética , Proteínas y Péptidos Salivales/genética , Proteínas y Péptidos Salivales/metabolismo
13.
Insect Mol Biol ; 31(6): 772-781, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35860987

RESUMEN

The oriental fruit fly Bactrocera dorsalis (Hendel) is expanding its distribution to higher latitudes. Our goal in this study was to understand how B. dorsalis adapts to higher latitude environments that are more arid than tropical regions. Cuticular hydrocarbons (CHCs) on the surface of the epicuticle in insects act as a hydrophobic barrier against water loss. The essential decarbonylation reaction in CHC synthesis is catalysed by CYP4G, a cytochrome P450 subfamily protein. Hence, in B. dorsalis it is necessary to clarify the function of the CYP4G gene and its role in desiccation resistance. CYP4G100 was identified in the B. dorsalis genome. The complete open reading frame (ORF) encodes a CYP4 family protein (552 amino acid residues) that has the CYP4G-specific insertion. This CYP4G gene was highly expressed in adults, especially in the oenocyte-rich peripheral fat body. The gene can be induced by desiccation treatment, suggesting its role in CHC synthesis and waterproofing. Silencing of CYP4G100 resulted in a decrease of CHC levels and the accumulation of triglycerides. It also increased water loss and resulted in higher desiccation susceptibility. CYP4G100 is involved in hydrocarbon synthesis and contributes to cuticle waterproofing to help B. dorsalis resist desiccation in arid environments.


Asunto(s)
Proteínas de Insectos , Tephritidae , Animales , Proteínas de Insectos/metabolismo , Desecación , Tephritidae/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Hidrocarburos/metabolismo , Drosophila/genética , Agua
14.
Microb Ecol ; 83(3): 739-752, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34173031

RESUMEN

RNA viruses are extremely diverse and rapidly evolving in various organisms. Our knowledge on viral evolution with interacted hosts in the manner of ecology is still limited. In the agricultural ecosystem, invasive insect species are posing a great threat to sustainable crop production. Among them, fruit flies (Diptera: Tephritidae Bactrocera and Zeugodacus) are destructive to fruits and vegetables, which are also closely related and often share similar ecological niches. Thus, they are ideal models for investigating RNA virome dynamics in host species. Using meta-transcriptomics, we found 39 viral sequences in samples from 12 fly species. These viral species represented the diversity of the viromes including Dicistroviridae, negev-like virus clades, Thika virus clades, Solemoviridae, Narnaviridae, Nodaviridae, Iflaviridae, Orthomyxoviridae, Bunyavirales, Partitiviridae, and Reoviridae. In particular, dicistrovirus, negev-like virus, orthomyxovirus, and orbivirus were common in over four of the fly species, which suggests a positive interaction between fly viromes that exist under the same ecological conditions. For most of the viruses, the virus-derived small RNAs displayed significantly high peaks in 21 nt and were symmetrically distributed throughout the viral genome. These results suggest that infection by these viruses can activate the host's RNAi immunity. Our study provides RNA virome diversity and evidence on their infection activity in ecologically associated invasive fruit fly species, which could help our understanding of interactions between complex species and viruses.


Asunto(s)
Virus ARN , Tephritidae , Animales , Ecosistema , Kenia , Virus ARN/genética , Transcriptoma
15.
Pestic Biochem Physiol ; 188: 105285, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36464328

RESUMEN

The oriental fruit fly, Bactrocera dorsalis (Hendel), is a notoriously agricultural pest that causes serious economic losses to fruits and vegetables. Widespread insecticide resistance in B. dorsalis is a major obstacle in successful control. Therefore, new pest control strategies, such as those targeting specific genes that can block pest development, are urgently needed. In the current study, the function of JHAMT in B. dorsalis was systematically investigated. A methyltransferase gene in B. dorsalis (BdJHAMT) that is homologous to JHAMT of Drosophila melanogaster was cloned firstly. The subsequently spatiotemporal expression analysis indicated that BdJHAMT mRNA was continuously present in the larval stage, declined sharply immediately before pupation, and then increased in the adult. Subcellular localization showed that BdJHAMT was localized in the adult corpora allata and larval intestinal wall cells. The JH III titer in B. dorsalis was closely related to the transcription level of BdJHAMT in different developmental stages. The dsBdJHAMT feeding-based RNAi resulted in a greatly decreased JH III titer that disrupted fly development. The slow growth caused by BdJHAMT silencing was partially rescued by application of the JH mimic, methoprene. These results demonstrated that BdJHAMT was crucial for JH biosynthesis and thus regulated larval development in B. dorsalis, indicating it may serve as a prospective target for the development of novel control strategies against this pest.


Asunto(s)
Hormonas Juveniles , Tephritidae , Animales , Hormonas Juveniles/farmacología , Interferencia de ARN , Metiltransferasas/genética , Drosophila melanogaster , Tephritidae/genética , Drosophila , Larva/genética
16.
BMC Genomics ; 22(1): 25, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407105

RESUMEN

BACKGROUND: Olfactory systems take on important tasks to distinguish salient information from a complex olfactory environment, such as locating hosts, mating, aggression, selecting oviposition sites, and avoiding predators. The olfactory system of an adult insect consists of two pairs of main olfactory appendages on the head, the antennae, and the palps, which are covered with sensilla. Benzothiazole and 1-octen-3-ol could elicit oviposition behavior in gravid B. dorsalis are regarded as oviposition stimulants. However, the mechanism for how B. dorsalis percepts benzothiazole and 1-octen-3-ol still remains unknown. RESULTS: We conducted a comparative analysis of the antennal transcriptomes in different genders of B. dorsalis using Illumina RNA sequencing (RNA-seq). We identified a total of 1571 differentially expressed genes (DEGs) among the two sexes, including 450 female-biased genes and 1121 male-biased genes. Among these DEGs, we screened out 24 olfaction-related genes and validated them by qRT-PCR. The expression patterns of these genes in different body parts were further determined. In addition, we detected the expression profiles of the screened female-biased chemosensory genes in virgin and mated female flies. Furthermore, the oviposition stimulants-induced expression profilings were used to identify chemosensory genes potentially responsible for benzothiazole and 1-octen-3-ol perception in this fly. CONCLUSIONS: The results from this study provided fundamental data of chemosensory DEGs in the B. dorsalis antenna. The odorant exposure assays we employed lay a solid foundation for the further research regarding the molecular mechanism of benzothiazole and 1-octen-3-ol mediated oviposition behavior in B. dorsalis.


Asunto(s)
Receptores Odorantes , Tephritidae , Animales , Antenas de Artrópodos/metabolismo , Femenino , Perfilación de la Expresión Génica , Proteínas de Insectos/genética , Masculino , Oviposición , Receptores Odorantes/genética , Olfato/genética , Tephritidae/genética , Transcriptoma
17.
Pestic Biochem Physiol ; 174: 104808, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33838709

RESUMEN

The neuropeptide adipokinetic hormone (AKH) binds to the AKH receptor (AKHR) to regulate carbohydrate and lipid metabolism. It also participates in the insect anti-stress response. We used RT-qPCR to detect the expression levels of 39 neuropeptides in malathion-susceptible (MS) and malathion-resistant (MR) strains of Bactrocera dorsalis. AKH and AKHR were highly expressed in the MR strain. Using a malathion bioassay and RNA interference (RNAi), we demonstrated that AKHR is involved in the susceptibility of B. dorsalis to malathion. We found significantly reduced expression of two detoxification enzyme genes (glutathione-S-transferase, GST and α-esterase, CarE) after AKHR RNAi. Based on our previous data, GSTd10 and CarE6 participate the direct metabolism of malathion in this fly, which is also verified by a malathion metabolism assay by HPLC using the crude enzymes in the current study. These results suggest that AKHR plays an important role in affecting malathion susceptibility via detoxification enzyme genes.


Asunto(s)
Hormonas de Insectos , Tephritidae , Animales , Hormonas de Insectos/genética , Malatión/farmacología , Oligopéptidos , Ácido Pirrolidona Carboxílico/análogos & derivados , Tephritidae/genética
18.
J Insect Sci ; 21(4)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34280294

RESUMEN

Euproctis pseudoconspersa is a major pest of tea plants, and also causes a skin rash on workers in tea plantations. Research on virus could provide fundamental insights for classification, genetic diversity, evolution, and host-virus interaction mechanisms. Here, we identified a novel RNA virus, Euproctis pseudoconspersa bunyavirus (Phenuiviridae), and found that it is widely distributed in field populations of E. pseudoconspersa. The replication of virus in E. pseudoconspersa was indicated by Tag-PCR. These results contribute to the classification of bunyaviruses and provide insight into the diversity of commensal E. pseudoconspersa bunyavirus and the host.


Asunto(s)
Mariposas Nocturnas/virología , Orthobunyavirus/genética , Animales , Productos Agrícolas , Interacciones Microbiota-Huesped , Control Biológico de Vectores , Filogenia , Prevalencia , ARN Viral ,
19.
Int J Mol Sci ; 22(14)2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34298876

RESUMEN

The neurohormone octopamine regulates many crucial physiological processes in insects and exerts its activity via typical G-protein coupled receptors. The roles of octopamine receptors in regulating behavior and physiology in Coleoptera (beetles) need better understanding. We used the red flour beetle, Tribolium castaneum, as a model species to study the contribution of the octopamine receptor to behavior and physiology. We cloned the cDNA of a ß-adrenergic-like octopamine receptor (TcOctß2R). This was heterologously expressed in human embryonic kidney (HEK) 293 cells and was demonstrated to be functional using an in vitro cyclic AMP assay. In an RNAi assay, injection of dsRNA demonstrated that TcOctß2R modulates beetle locomotion, mating duration, and fertility. These data present some roles of the octopaminergic signaling system in T. castaneum. Our findings will also help to elucidate the potential functions of individual octopamine receptors in other insects.


Asunto(s)
Locomoción/genética , Octopamina/genética , Receptores de Amina Biogénica/genética , Reproducción/genética , Tribolium/genética , Adrenérgicos/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Escarabajos/genética , AMP Cíclico/genética , Femenino , Células HEK293 , Humanos , Proteínas de Insectos/genética , Masculino , Interferencia de ARN/fisiología , ARN Bicatenario/genética , Receptores Acoplados a Proteínas G/genética , Alineación de Secuencia
20.
BMC Genomics ; 21(1): 600, 2020 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-32867696

RESUMEN

BACKGROUND: Long non-coding RNAs (lncRNAs) are involved in many fundamental biological processes, such as transcription regulation, protein degradation, and cell differentiation. Information on lncRNA in the melon fly, Zeugodacus cucurbitae (Coquillett) is currently limited. RESULTS: We constructed 24 RNA-seq libraries from eight tissues (midgut, Malpighian tubules, fat body, ovary, and testis) of Z. cucurbitae adults. A total of 3124 lncRNA transcripts were identified. Among those, 1464 were lincRNAs, 1037 were intronic lncRNAs, 301 were anti-sense lncRNAs, and 322 were sense lncRNAs. The majority of lncRNAs contained two exons and one isoform. Differentially expressed lncRNAs were analyzed between tissues, and Malpighian tubules versus testis had the largest number. Some lncRNAs exhibited strong tissue specificity. Specifically expressed lncRNAs were identified and filtered in tissues of female and male Z. cucurbitae based on their expression levels. Four midgut-specific lncRNAs were validated by quantitative real-time polymerase chain reaction (RT-qPCR), and the data were consistent with RNA-seq data. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of targets of midgut-specific lncRNAs indicated an enrichment of the metabolic process. CONCLUSIONS: This was the first systematic identification of lncRNA in the melon fly. Expressions of lncRNAs in multiple adult tissues were evaluated by quantitative transcriptomic analysis. These qualitative and quantitative analyses of lncRNAs, especially the tissue-specific lncRNAs in Z. cucurbitae, provide useful data for further functional studies.


Asunto(s)
ARN Largo no Codificante/genética , Tephritidae/genética , Transcriptoma , Animales , Femenino , Masculino , Túbulos de Malpighi/metabolismo , Especificidad de Órganos , ARN Largo no Codificante/metabolismo , Tephritidae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA