Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Nature ; 602(7898): 632-638, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35140404

RESUMEN

Animals must set behavioural priority in a context-dependent manner and switch from one behaviour to another at the appropriate moment1-3. Here we probe the molecular and neuronal mechanisms that orchestrate the transition from feeding to courtship in Drosophila melanogaster. We find that feeding is prioritized over courtship in starved males, and the consumption of protein-rich food rapidly reverses this order within a few minutes. At the molecular level, a gut-derived, nutrient-specific neuropeptide hormone-Diuretic hormone 31 (Dh31)-propels a switch from feeding to courtship. We further address the underlying kinetics with calcium imaging experiments. Amino acids from food acutely activate Dh31+ enteroendocrine cells in the gut, increasing Dh31 levels in the circulation. In addition, three-photon functional imaging of intact flies shows that optogenetic stimulation of Dh31+ enteroendocrine cells rapidly excites a subset of brain neurons that express Dh31 receptor (Dh31R). Gut-derived Dh31 excites the brain neurons through the circulatory system within a few minutes, in line with the speed of the feeding-courtship behavioural switch. At the circuit level, there are two distinct populations of Dh31R+ neurons in the brain, with one population inhibiting feeding through allatostatin-C and the other promoting courtship through corazonin. Together, our findings illustrate a mechanism by which the consumption of protein-rich food triggers the release of a gut hormone, which in turn prioritizes courtship over feeding through two parallel pathways.


Asunto(s)
Proteínas de Drosophila , Hormonas de Insectos , Animales , Cortejo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Hormonas de Insectos/metabolismo , Masculino , Nutrientes , Conducta Sexual Animal/fisiología
2.
Cell ; 144(4): 614-24, 2011 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-21335241

RESUMEN

Thermosensation is an indispensable sensory modality. Here, we study temperature coding in Drosophila, and show that temperature is represented by a spatial map of activity in the brain. First, we identify TRP channels that function in the fly antenna to mediate the detection of cold stimuli. Next, we identify the hot-sensing neurons and show that hot and cold antennal receptors project onto distinct, but adjacent glomeruli in the Proximal-Antennal-Protocerebrum (PAP) forming a thermotopic map in the brain. We use two-photon imaging to reveal the functional segregation of hot and cold responses in the PAP, and show that silencing the hot- or cold-sensing neurons produces animals with distinct and discrete deficits in their behavioral responses to thermal stimuli. Together, these results demonstrate that dedicated populations of cells orchestrate behavioral responses to different temperature stimuli, and reveal a labeled-line logic for the coding of temperature information in the brain.


Asunto(s)
Drosophila/fisiología , Animales , Encéfalo/fisiología , Frío , Proteínas de Drosophila/metabolismo , Calor , Células Receptoras Sensoriales/fisiología , Canales Catiónicos TRPP/metabolismo , Sensación Térmica
3.
Cell ; 145(1): 133-44, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21458672

RESUMEN

Internal physiological states influence behavioral decisions. We have investigated the underlying cellular and molecular mechanisms at the first olfactory synapse for starvation modulation of food-search behavior in Drosophila. We found that a local signal by short neuropeptide F (sNPF) and a global metabolic cue by insulin are integrated at specific odorant receptor neurons (ORNs) to modulate olfactory sensitivity. Results from two-photon calcium imaging show that starvation increases presynaptic activity via intraglomerular sNPF signaling. Expression of sNPF and its receptor (sNPFR1) in Or42b neurons is necessary for starvation-induced food-search behavior. Presynaptic facilitation in Or42b neurons is sufficient to mimic starvation-like behavior in fed flies. Furthermore, starvation elevates the transcription level of sNPFR1 but not that of sNPF, and insulin signaling suppresses sNPFR1 expression. Thus, starvation increases expression of sNPFR1 to change the odor map, resulting in more robust food-search behavior.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Neuropéptidos/metabolismo , Receptores de Neuropéptido/metabolismo , Receptores Odorantes/metabolismo , Transducción de Señal , Animales , Antenas de Artrópodos/metabolismo , Femenino , Odorantes , Células Receptoras Sensoriales/metabolismo , Inanición/metabolismo , Sinapsis/metabolismo
4.
Annu Rev Neurosci ; 40: 327-348, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28441115

RESUMEN

Animals are born with a rich repertoire of robust behaviors that are critical for their survival. However, innate behaviors are also highly adaptable to an animal's internal state and external environment. Neuromodulators, including biogenic amines, neuropeptides, and hormones, are released to signal changes in animals' circumstances and serve to reconfigure neural circuits. This circuit flexibility allows animals to modify their behavioral responses according to environmental cues, metabolic demands, and physiological states. Aided by powerful genetic tools, researchers have made remarkable progress in Drosophila melanogaster to address how a myriad of contextual information influences the input-output relationship of hardwired circuits that support a complex behavioral repertoire. Here we highlight recent advances in understanding neuromodulation of Drosophila innate behaviors, with a special focus on feeding, courtship, aggression, and postmating behaviors.


Asunto(s)
Conducta Animal/fisiología , Encéfalo/fisiología , Neuropéptidos/fisiología , Neurotransmisores/fisiología , Agresión/fisiología , Animales , Drosophila , Conducta Alimentaria/fisiología , Conducta Sexual Animal/fisiología
5.
J Exp Biol ; 224(20)2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34585241

RESUMEN

Hemolymph is driven through the antennae of Drosophila melanogaster by the rhythmic contraction of muscle 16 (m16), which runs through the brain. Contraction of m16 results in the expansion of an elastic ampulla, opening ostia and filling the ampulla. Relaxation of the ampullary membrane forces hemolymph through vessels into the antennae. We show that m16 is an auto-active rhythmic somatic muscle. The activity of m16 leads to the rapid perfusion of the antenna by hemolymph. In addition, it leads to the rhythmic agitation of the brain, which could be important for clearing the interstitial space.


Asunto(s)
Drosophila , Hemolinfa , Animales , Encéfalo , Drosophila melanogaster , Corazón , Contracción Muscular , Músculos
6.
J Neurogenet ; 37(1-2): 1-2, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37306228
7.
PLoS Genet ; 10(6): e1004437, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24967585

RESUMEN

Sensory and cognitive performance decline with age. Neural dysfunction caused by nerve death in senile dementia and neurodegenerative disease has been intensively studied; however, functional changes in neural circuits during the normal aging process are not well understood. Caspases are key regulators of cell death, a hallmark of age-related neurodegeneration. Using a genetic probe for caspase-3-like activity (DEVDase activity), we have mapped age-dependent neuronal changes in the adult brain throughout the lifespan of Drosophila. Spatio-temporally restricted caspase activation was observed in the antennal lobe and ellipsoid body, brain structures required for olfaction and visual place memory, respectively. We also found that caspase was activated in an age-dependent manner in specific subsets of Drosophila olfactory receptor neurons (ORNs), Or42b and Or92a neurons. These neurons are essential for mediating innate attraction to food-related odors. Furthermore, age-induced impairments of neural transmission and attraction behavior could be reversed by specific inhibition of caspase in these ORNs, indicating that caspase activation in Or42b and Or92a neurons is responsible for altering animal behavior during normal aging.


Asunto(s)
Caspasa 3/genética , Quimiotaxis/genética , Neuronas Receptoras Olfatorias , Olfato/genética , Transmisión Sináptica/genética , Envejecimiento/genética , Envejecimiento/fisiología , Animales , Animales Modificados Genéticamente , Apoptosis/efectos de los fármacos , Conducta Animal/fisiología , Mapeo Encefálico , Caspasa 3/biosíntesis , Dendritas/efectos de los fármacos , Dendritas/genética , Proteínas de Drosophila , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Malus , Receptores Odorantes
8.
Nature ; 459(7244): 218-23, 2009 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-19396157

RESUMEN

Fruitflies show robust attraction to food odours, which usually excite several glomeruli. To understand how the representation of such odours leads to behaviour, we used genetic tools to dissect the contribution of each activated glomerulus. Apple cider vinegar triggers robust innate attraction at a relatively low concentration, which activates six glomeruli. By silencing individual glomeruli, here we show that the absence of activity in two glomeruli, DM1 and VA2, markedly reduces attraction. Conversely, when each of these two glomeruli was selectively activated, flies showed as robust an attraction to vinegar as wild-type flies. Notably, a higher concentration of vinegar excites an additional glomerulus and is less attractive to flies. We show that activation of the extra glomerulus is necessary and sufficient to mediate the behavioural switch. Together, these results indicate that individual glomeruli, rather than the entire pattern of active glomeruli, mediate innate behavioural output.


Asunto(s)
Ácido Acético/análisis , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/fisiología , Conducta Alimentaria/fisiología , Locomoción/fisiología , Odorantes/análisis , Olfato/fisiología , Ácido Acético/farmacología , Animales , Animales Modificados Genéticamente , Butiratos/farmacología , Calcio/análisis , Calcio/metabolismo , Drosophila melanogaster/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Femenino , Frutas/química , Locomoción/efectos de los fármacos , Malus/química , Olfato/efectos de los fármacos
9.
Proc Natl Acad Sci U S A ; 108(36): E646-54, 2011 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-21795607

RESUMEN

Despite its ubiquity and significance, behavioral habituation is poorly understood in terms of the underlying neural circuit mechanisms. Here, we present evidence that habituation arises from potentiation of inhibitory transmission within a circuit motif commonly repeated in the nervous system. In Drosophila, prior odorant exposure results in a selective reduction of response to this odorant. Both short-term (STH) and long-term (LTH) forms of olfactory habituation require function of the rutabaga-encoded adenylate cyclase in multiglomerular local interneurons (LNs) that mediate GABAergic inhibition in the antennal lobe; LTH additionally requires function of the cAMP response element-binding protein (CREB2) transcription factor in LNs. The odorant selectivity of STH and LTH is mirrored by requirement for NMDA receptors and GABA(A) receptors in odorant-selective, glomerulus-specific projection neurons(PNs). The need for the vesicular glutamate transporter in LNs indicates that a subset of these GABAergic neurons also releases glutamate. LTH is associated with a reduction of odorant-evoked calcium fluxes in PNs as well as growth of the respective odorant-responsive glomeruli. These cellular changes use similar mechanisms to those required for behavioral habituation. Taken together with the observation that enhancement of GABAergic transmission is sufficient to attenuate olfactory behavior, these data indicate that habituation arises from glomerulus-selective potentiation of inhibitory synapses in the antennal lobe. We suggest that similar circuit mechanisms may operate in other species and sensory systems.


Asunto(s)
Habituación Psicofisiológica/fisiología , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Olfato/fisiología , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , Animales , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
10.
Nat Metab ; 6(5): 837-846, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38570627

RESUMEN

Sodium is essential for all living organisms1. Animals including insects and mammals detect sodium primarily through peripheral taste cells2-7. It is not known, however, whether animals can detect this essential micronutrient independently of the taste system. Here, we report that Drosophila Ir76b mutants that were unable to detect sodium2 became capable of responding to sodium following a period of salt deprivation. From a screen for cells required for the deprivation-induced sodium preference, we identified a population of anterior enteric neurons, which we named internal sodium-sensing (INSO) neurons, that are essential for directing a behavioural preference for sodium. Enteric INSO neurons innervate the gut epithelia mainly through their dendritic processes and send their axonal projections along the oesophagus to the brain and to the crop duct. Through calcium imaging and CaLexA experiments, we found that INSO neurons respond immediately and specifically to sodium ions. Notably, the sodium-evoked responses were observed only after a period of sodium deprivation. Taken together, we have identified a taste-independent sodium sensor that is essential for the maintenance of sodium homeostasis.


Asunto(s)
Proteínas de Drosophila , Neuronas , Sodio , Animales , Sodio/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Neuronas/metabolismo , Periodo Posprandial , Drosophila melanogaster , Sistema Nervioso Entérico/metabolismo , Gusto/fisiología , Mutación , Drosophila , Canales de Sodio , Receptores Ionotrópicos de Glutamato
11.
J Neurosci ; 32(41): 14281-7, 2012 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-23055498

RESUMEN

After Drosophila males are rejected by mated females, their subsequent courtship is inhibited even when encountering virgin females. Molecular mechanisms underlying courtship conditioning in the CNS are unclear. In this study, we find that tyramine ß hydroxylase (TßH) mutant males unable to synthesize octopamine (OA) showed impaired courtship conditioning, which could be rescued by transgenic TßH expression in the CNS. Inactivation of octopaminergic neurons mimicked the TßH mutant phenotype. Transient activation of octopaminergic neurons in males not only decreased their courtship of virgin females, but also produced courtship conditioning. Single cell analysis revealed projection of octopaminergic neurons to the mushroom bodies. Deletion of the OAMB gene encoding an OA receptor expressed in the mushroom bodies disrupted courtship conditioning. Inactivation of neurons expressing OAMB also eliminated courtship conditioning. OAMB neurons responded robustly to male-specific pheromone cis-vaccenyl acetate in a dose-dependent manner. Our results indicate that OA plays an important role in courtship conditioning through its OAMB receptor expressed in a specific neuronal subset of the mushroom bodies.


Asunto(s)
Condicionamiento Psicológico , Cortejo , Proteínas de Drosophila/genética , Técnicas de Sustitución del Gen , Octopamina/genética , Receptores de Neurotransmisores/genética , Conducta Sexual Animal/fisiología , Animales , Condicionamiento Psicológico/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster , Femenino , Técnicas de Sustitución del Gen/métodos , Masculino , Octopamina/fisiología , Receptores de Neurotransmisores/fisiología
12.
J Neurogenet ; 26(1): 89-102, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22236090

RESUMEN

Abstract: Nuclear factor of activated T cells (NFAT) is a calcium-responsive transcription factor. We describe here an NFAT-based neural tracing method-CaLexA (calcium-dependent nuclear import of LexA)-for labeling active neurons in behaving animals. In this system, sustained neural activity induces nuclear import of the chimeric transcription factor LexA-VP16-NFAT, which in turn drives green fluorescent protein (GFP) reporter expression only in active neurons. We tested this system in Drosophila and found that volatile sex pheromones excite specific neurons in the olfactory circuit. Furthermore, complex courtship behavior associated with multi-modal sensory inputs activated neurons in the ventral nerve cord. This method harnessing the mechanism of activity-dependent nuclear import of a transcription factor can be used to identify active neurons in specific neuronal population in behaving animals.


Asunto(s)
Núcleo Celular/metabolismo , Factores de Transcripción NFATC/metabolismo , Red Nerviosa/metabolismo , Neuronas/metabolismo , Vías Olfatorias/metabolismo , Transporte Activo de Núcleo Celular/genética , Animales , Núcleo Celular/genética , Drosophila , Factores de Transcripción NFATC/genética , Transducción de Señal/genética
13.
Proc Natl Acad Sci U S A ; 106(31): 13070-5, 2009 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-19625621

RESUMEN

The role of classical neurotransmitters in the transfer and processing of olfactory information is well established in many organisms. Neuropeptide action, however, is largely unexplored in any peripheral olfactory system. A subpopulation of local interneurons (LNs) in the Drosophila antannal lobe is peptidergic, expressing Drosophila tachykinins (DTKs). We show here that olfactory receptor neurons (ORNs) express the DTK receptor (DTKR). Using two-photon microscopy, we found that DTK applied to the antennal lobe suppresses presynaptic calcium and synaptic transmission in the ORNs. Furthermore, reduction of DTKR expression in ORNs by targeted RNA interference eliminates presynaptic suppression and alters olfactory behaviors. We detect opposite behavioral phenotypes after reduction and over expression of DTKR in ORNs. Our findings suggest a presynaptic inhibitory feedback to ORNs from peptidergic LNs in the antennal lobe.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila/fisiología , Neuronas Receptoras Olfatorias/fisiología , Precursores de Proteínas/fisiología , Taquicininas/fisiología , Animales , Proteínas de Drosophila/análisis , Inhibición Neural , Odorantes , Precursores de Proteínas/análisis , Receptores de Neurotransmisores/análisis , Receptores de Neurotransmisores/fisiología , Transducción de Señal , Taquicininas/análisis
14.
Curr Biol ; 31(18): 4111-4119.e4, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34302743

RESUMEN

In their pioneering study on dopamine release, Romo and Schultz speculated "...that the amount of dopamine released by unmodulated spontaneous impulse activity exerts a tonic, permissive influence on neuronal processes more actively engaged in preparation of self-initiated movements...."1 Motivated by the suggestion of "spontaneous impulses," as well as by the "ramp up" of dopaminergic neuronal activity that occurs when rodents navigate to a reward,2-5 we asked two questions. First, are there spontaneous impulses of dopamine that are released in cortex? Using cell-based optical sensors of extrasynaptic dopamine, [DA]ex,6 we found that spontaneous dopamine impulses in cortex of naive mice occur at a rate of ∼0.01 per second. Next, can mice be trained to change the amplitude and/or timing of dopamine events triggered by internal brain dynamics, much as they can change the amplitude and timing of dopamine impulses based on an external cue?7-9 Using a reinforcement learning paradigm based solely on rewards that were gated by feedback from real-time measurements of [DA]ex, we found that mice can volitionally modulate their spontaneous [DA]ex. In particular, by only the second session of daily, hour-long training, mice increased the rate of impulses of [DA]ex, increased the amplitude of the impulses, and increased their tonic level of [DA]ex for a reward. Critically, mice learned to reliably elicit [DA]ex impulses prior to receiving a reward. These effects reversed when the reward was removed. We posit that spontaneous dopamine impulses may serve as a salient cognitive event in behavioral planning.


Asunto(s)
Dopamina , Recompensa , Animales , Dopamina/fisiología , Neuronas Dopaminérgicas/fisiología , Aprendizaje/fisiología , Ratones , Refuerzo en Psicología
15.
J Neurogenet ; 24(2): 67-74, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20429677

RESUMEN

Recent studies have indicated that the Shaker potassium channel regulates sleep in Drosophila. The Drosophila quiver (qvr) gene encodes a novel potassium channel subunit that modulates the Shaker potassium channel. The Qvr peptide contains a signal sequence for extracellular localization and may regulate a unique feature of the Shaker I(A) current that confers special neuronal excitability patterns. Thus, studies of the Shaker channel properties in the qvr mutant background should provide an opportunity to uncover a new form of physiologic modulation of potassium channels. We have begun to investigate the impact of qvr protein on the Shaker channel properties and its implications in synaptic function in vivo. We studied synaptic transmission at the larval neuromuscular junction and characterized the transient potassium current I(A) in larval muscles. We identified two different functional states of I(A) in qvr larval muscles, as reflected by two distinct components, I(AF) and I(AS), differing in their kinetics of recovery from inactivation and sensitivity to a K(+) channel blocker. Correspondingly, qvr mutant larvae exhibit multiple synaptic discharges following individual nerve stimuli during repetitive activity.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Unión Neuromuscular/metabolismo , Neuropéptidos/fisiología , Canales de Potasio/fisiología , Subunidades de Proteína/fisiología , Canales de Potasio de la Superfamilia Shaker/metabolismo , 4-Aminopiridina/farmacología , Animales , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/genética , Drosophila melanogaster , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Espacio Extracelular/genética , Espacio Extracelular/metabolismo , Espacio Extracelular/fisiología , Cinética , Larva/genética , Larva/metabolismo , Proteínas de la Membrana , Mutación/genética , Unión Neuromuscular/genética , Neuropéptidos/genética , Técnicas de Cultivo de Órganos , Bloqueadores de los Canales de Potasio/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/genética , Canales de Potasio/metabolismo , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Recuperación de la Función/efectos de los fármacos , Recuperación de la Función/genética , Canales de Potasio de la Superfamilia Shaker/antagonistas & inhibidores , Canales de Potasio de la Superfamilia Shaker/genética , Transmisión Sináptica/genética , Transmisión Sináptica/fisiología
16.
Nature ; 431(7010): 854-9, 2004 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-15372051

RESUMEN

All animals exhibit innate behaviours in response to specific sensory stimuli that are likely to result from the activation of developmentally programmed neural circuits. Here we observe that Drosophila exhibit robust avoidance to odours released by stressed flies. Gas chromatography and mass spectrometry identifies one component of this 'Drosophila stress odorant (dSO)' as CO2. CO2 elicits avoidance behaviour, at levels as low as 0.1%. We used two-photon imaging with the Ca2+-sensitive fluorescent protein G-CaMP to map the primary sensory neurons governing avoidance to CO2. CO2 activates only a single glomerulus in the antennal lobe, the V glomerulus; moreover, this glomerulus is not activated by any of 26 other odorants tested. Inhibition of synaptic transmission in sensory neurons that innervate the V glomerulus, using a temperature-sensitive Shibire gene (Shi(ts)), blocks the avoidance response to CO2. Inhibition of synaptic release in the vast majority of other olfactory receptor neurons has no effect on this behaviour. These data demonstrate that the activation of a single population of sensory neurons innervating one glomerulus is responsible for an innate avoidance behaviour in Drosophila.


Asunto(s)
Reacción de Prevención/fisiología , Drosophila melanogaster/fisiología , Instinto , Neuronas Receptoras Olfatorias/citología , Neuronas Receptoras Olfatorias/fisiología , Aire/análisis , Animales , Reacción de Prevención/efectos de los fármacos , Encéfalo/citología , Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Calcio/metabolismo , Dióxido de Carbono/análisis , Dióxido de Carbono/farmacología , Drosophila melanogaster/citología , Drosophila melanogaster/efectos de los fármacos , Hidroxiurea/farmacología , Ratones , Odorantes/análisis , Neuronas Receptoras Olfatorias/efectos de los fármacos , Estrés Fisiológico/fisiopatología
17.
J Neurogenet ; 23(4): 366-77, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19863268

RESUMEN

Sensory systems must be able to extract features of environmental cues within the context of the different physiological states of the organism and often temper their activity in a state-dependent manner via the process of neuromodulation. We examined the effects of the neuromodulator serotonin on a well-characterized sensory circuit, the antennal lobe of Drosophila melanogaster, using two-photon microscopy and the genetically expressed calcium indicator, G-CaMP. Serotonin enhances sensitivity of the antennal lobe output projection neurons in an odor-specific manner. For odorants that sparsely activate the antennal lobe, serotonin enhances projection neuron responses and causes an offset of the projection neuron tuning curve, most likely by increasing projection neuron sensitivity. However, for an odorant that evokes a broad activation pattern, serotonin enhances projection neuron responses in some, but not all, glomeruli. Further, serotonin enhances the responses of inhibitory local interneurons, resulting in a reduction of neurotransmitter release from the olfactory sensory neurons via GABA(B) receptor-dependent presynaptic inhibition, which may be a mechanism underlying the odorant-specific modulation of projection neuron responses. Our data suggest that the complexity of serotonin modulation in the antennal lobe accommodates coding stability in a glomerular pattern and flexible projection neuron sensitivity under different physiological conditions.


Asunto(s)
Antenas de Artrópodos/fisiología , Vías Olfatorias/citología , Neuronas Receptoras Olfatorias/efectos de los fármacos , Serotonina/farmacología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/genética , Drosophila melanogaster , Estimulación Eléctrica/métodos , Antagonistas del GABA/farmacología , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Lectinas/metabolismo , Luz , Metisergida/farmacología , Odorantes , Compuestos Organofosforados/farmacología , Antagonistas de la Serotonina , Factores de Tiempo
18.
Curr Biol ; 29(22): 3887-3898.e4, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31679932

RESUMEN

Critical to evolutionary fitness, animals regulate social behaviors by integrating signals from both their external environments and internal states. Here, we find that population density modulates the courtship behavior of male Drosophila melanogaster in an age-dependent manner. In a competitive mating assay, males reared in a social environment have a marked advantage in courting females when pitted against males reared in isolation. Group housing promotes courtship in mature (7-day) but not immature (2-day) males; this behavioral plasticity requires the Or47b pheromone receptor. Using single-sensillum recordings, we find that group housing increases the response of Or47b olfactory receptor neurons (ORNs) only in mature males. The effect of group housing on olfactory response and behavior can be mimicked by chronically exposing single-housed males to an Or47b ligand. At the molecular level, group housing elevates Ca2+ levels in Or47b ORNs, likely leading to CaMKI-mediated activation of the histone-acetyl transferase CBP. This signaling event in turn enhances the efficacy of juvenile hormone, an age-related regulator of reproductive maturation in flies. Furthermore, the male-specific Fruitless isoform (FruM) is required for the sensory plasticity, suggesting that FruM functions as a downstream genomic coincidence detector in Or47b ORNs-integrating reproductive maturity, signaled by juvenile hormone, and population density, signaled by CBP. In all, we identify a neural substrate and activity-dependent mechanism by which social context can directly influence pheromone sensitivity, thereby modulating social behavior according to animals' life-history stage.


Asunto(s)
Feromonas/metabolismo , Conducta Sexual Animal/fisiología , Factores de Edad , Animales , Conducta Animal/fisiología , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/metabolismo , Copulación/fisiología , Cortejo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Femenino , Histona Acetiltransferasas/metabolismo , Masculino , Proteínas del Tejido Nervioso/genética , Neuronas Receptoras Olfatorias/fisiología , Feromonas/fisiología , Densidad de Población , Isoformas de Proteínas , Olfato/fisiología , Conducta Social , Medio Social , Factores de Transcripción/genética
19.
Neuron ; 104(5): 947-959.e5, 2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31629603

RESUMEN

Insect olfactory receptors operate as ligand-gated ion channels that directly transduce odor stimuli into electrical signals. However, in the absence of any known intermediate transduction steps, it remains unclear whether and how these ionotropic inputs are amplified in olfactory receptor neurons (ORNs). Here, we find that amplification occurs in the Drosophila courtship-promoting ORNs through Pickpocket 25 (PPK25), a member of the degenerin/epithelial sodium channel family (DEG/ENaC). Pharmacological and genetic manipulations indicate that, in Or47b and Ir84a ORNs, PPK25 mediates Ca2+-dependent signal amplification via an intracellular calmodulin-binding motif. Additionally, hormonal signaling upregulates PPK25 expression to determine the degree of amplification, with striking effects on male courtship. Together, these findings advance our understanding of sensory neurobiology by identifying an amplification mechanism compatible with ionotropic signaling. Moreover, this study offers new insights into DEG/ENaC activation by highlighting a novel means of regulation that is likely conserved across species.


Asunto(s)
Proteínas de Drosophila/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Conducta Sexual Animal/fisiología , Olfato/fisiología , Canales de Sodio/metabolismo , Animales , Cortejo , Drosophila melanogaster , Masculino
20.
Brain Res ; 1712: 158-166, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30711401

RESUMEN

The Drosophila olfactory system provides an excellent model to elucidate the neural circuits that control behaviors elicited by environmental stimuli. Despite significant progress in defining olfactory circuit components and their connectivity, little is known about the mechanisms that transfer the information from the primary antennal olfactory receptor neurons to the higher order brain centers. Here, we show that the Dystrophin Dp186 isoform is required in the olfactory system circuit for olfactory functions. Using two-photon calcium imaging, we found the reduction of calcium influx in olfactory receptor neurons (ORNs) and also the defect of GABAA mediated inhibitory input in the projection neurons (PNs) in Dp186 mutation. Moreover, the Dp186 mutant flies which display a decreased odor avoidance behavior were rescued by Dp186 restoration in the Drosophila olfactory neurons in either the presynaptic ORNs or the postsynaptic PNs. Therefore, these results revealed a role for Dystrophin, Dp 186 isoform in gain control of the olfactory synapse via the modulation of excitatory and inhibitory synaptic inputs to olfactory projection neurons.


Asunto(s)
Distrofina/metabolismo , Vías Olfatorias/fisiología , Olfato/fisiología , Animales , Calcio/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Distrofina/fisiología , Femenino , Interneuronas/metabolismo , Masculino , Odorantes , Percepción Olfatoria/fisiología , Neuronas Receptoras Olfatorias/fisiología , Sinapsis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA