Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 291
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chem Soc Rev ; 53(13): 6830-6859, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38829187

RESUMEN

Nucleic acid aptamers are oligonucleotide chains with molecular recognition properties. Compared with antibodies, aptamers show advantages given that they are readily produced via chemical synthesis and elicit minimal immunogenicity in biomedicine applications. Notably, aptamer-encoded nucleic acid assemblies further improve the binding affinity of aptamers with the targets due to their multivalent synergistic interactions. Specially, aptamers can be engineered with special topological arrangements in nucleic acid assemblies, which demonstrate spatial and valence matching towards antigens on viruses, thus showing potential in the detection and therapeutic applications of viruses. This review presents the recent progress on the aptamers explored for SARS-CoV-2 detection and infection treatment, wherein applications of aptamer-based assembly systems are introduced in detail. Screening methods and chemical modification strategies for aptamers are comprehensively summarized, and the types of aptamers employed against different target domains of SARS-CoV-2 are illustrated. The evolution of aptamer-based assembly systems for the detection and neutralization of SARS-CoV-2, as well as the construction principle and characteristics of aptamer-based DNA assemblies are demonstrated. The typically representative works are presented to demonstrate how to assemble aptamers rationally and elaborately for specific applications in SARS-CoV-2 diagnosis and neutralization. Finally, we provide deep insights into the current challenges and future perspectives towards aptamer-based nucleic acid assemblies for virus detection and neutralization in nanomedicine.


Asunto(s)
Aptámeros de Nucleótidos , COVID-19 , SARS-CoV-2 , Aptámeros de Nucleótidos/química , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , Humanos , COVID-19/diagnóstico , COVID-19/virología , COVID-19/terapia , Tratamiento Farmacológico de COVID-19 , Antivirales/química , Antivirales/farmacología , Antivirales/uso terapéutico
2.
J Am Chem Soc ; 146(33): 22959-22969, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39106438

RESUMEN

The vinylene-linked covalent organic frameworks (viCOFs) have been generally synthesized in the presence of homogeneous catalysts such as KOH or trifluoroacetic acid. However, highly ordered viCOFs cannot always be obtained due to the uncommitted growth of viCOF layers in the homogeneous system with ubiquitous catalysts. Here, we propose a scalable protocol to restrict the growth of viCOFs along the two-dimensional (2D) plane by introducing a heterogeneous catalyst, polyoxometalates (POMs). With the unique Brønsted alkalinity and catalytic surface, POMs induce the growth of 2D viCOF layers along the surface of the catalytic substrate and restrain the generation of out-of-plane branches. Based on this protocol, six typical 2D viCOFs with high crystallinity and porosity were synthesized within a shorter reaction time as compared with the reported works using the common homogeneous catalysts for viCOF synthesis. On the basis of the density functional theory calculations and experimental results, a bottom intercalation growth pattern of viCOFs was revealed during the heterogeneous reaction. The unique growth pattern greatly promotes the orderly assembly of monomers, thus shortening the reaction time and improving the crystallinity of viCOFs. Furthermore, this heterogeneous catalysis strategy is suitable for the gram-scale preparation of 2D viCOFs. These results provide a novel avenue for the synthesis of high-quality viCOFs and may bring new insights into the synthetic methodology of COFs.

3.
Small ; 20(34): e2400760, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38566543

RESUMEN

Industrial-level hydrogen production from the water electrolysis requires reducing the overpotential (η) as much as possible at high current density, which is closely related to intrinsic activity of the electrocatalysts. Herein, A-site cation deficiency engineering is proposed to screen high-performance catalysts, demonstrating effective Pr0.5- xLa0.5BaCo2O5+ δ (P0.5- xLBC) perovskites toward alkaline hydrogen evolution reaction (HER). Among all perovskite compositions, Pr0.4La0.5BaCo2O5+ δ (P0.4LBC) exhibits superior HER performance along with unique operating stability at large current densities (J = 500-2000 mA cm-2 geo). The overpotential of ≈636 mV is achieved in P0.4LBC at 2000 mA cm-2 geo, which outperforms commercial Pt/C benchmark (≈974 mV). Furthermore, the Tafel slope of P0.4LBC (34.1 mV dec-1) is close to that of Pt/C (35.6 mV dec-1), reflecting fast HER kinetics on the P0.4LBC catalyst. Combined with experimental and theoretical results, such catalytic activity may benefit from enhanced electrical conductivity, enlarged Co-O covalency, and decreased desorption energy of H* species. This results highlight effective A-site cation-deficient strategy for promoting electrochemical properties of perovskites, highlighting potential water electrolysis at ampere-level current density.

4.
Chemistry ; 30(10): e202303401, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38057690

RESUMEN

The synthesis of highly efficient visible-light-responsive photocatalysts is fundamental to solving the problems of low efficiency and poor selectivity in photocatalytic organic synthesis reactions. We synthesized a crystalline polyoxometalate @metal-organic framework material {Zn4 (H2 O)8 [Ir(ppy)2 (dcbpy)]4 [SiW12 O40 ]} ⋅ 4H2 O (Ir-SiW) by self-assembly of Ir metalloligands with POMs. The introduction of Ir metalloligands extends the light absorbing range to visible light, improving the efficient utilization of solar energy. The transfer of photogenerated electrons from Ir metalloligands to SiW12 was observed under visible light irradiation, which boosted the carrier separation efficiency. The synergistic effect of the two components increased the photocatalytic thioether oxidation activity, and the product methyl phenyl sulfoxide for 2.5 h under visible light irradiation (λ >400 nm) reached 99.5 %, which was higher than those of other POM-based photocatalysts. Meanwhile, the yield of methyl phenyl sulfoxide was still higher than 97 % after three cycles, demonstrating the high stability and reusability of Ir-SiW.

5.
Chemistry ; 30(14): e202302921, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38183325

RESUMEN

An unclassical structure of {Ru(C6 H6 )}-based polyoxometalate, Cs6 H4 [Te2 Mo12 O46 {Ru(C6 H6 )}] ⋅ 16.5H2 O (1), has been successfully constructed from {Te2 Mo12 O46 }-type heteropolymolybdate and {Ru(C6 H6 )} group, which structure type was discovered for the first time. Compound 1 not only possesses strong light-harvesting ability, but also exhibits high carrier separation efficiency and lower charge transfer resistance. Under visible light irradiation, compound 1 displayed excellent catalytic activity and circularity in the conversion of benzyl alcohol to benzaldehyde (yield=94 %; turnover number=500; turnover frequency=20.8 h-1 ). Finally, the electron paramagnetic resonance measurement and energy level matching analysis provide theoretical basis for the derivation of the reaction mechanism.

6.
FASEB J ; 37(5): e22935, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37086094

RESUMEN

Adipose-derived stem cells (ADSCs) enhance fat graft survival by promoting neovascularization. The mechanism that promotes ADSCs differentiation toward pericytes was not known. We treated ADSCs with conditional medium (CM) from endothelial cells (ECs) or human recombinant transforming growth factor ß (TGF-ß) to induce differentiation into pericytes. Pericytes markers, including platelet-derived growth factor receptor ß (PDGFRß), alpha-smooth muscle actin (α-SMA), and desmin, were examined. Pericytes differentiation markers, migration, and their association with ECs were examined in ADSCs transfected with miR-24-3p mimics and inhibitors. Bioinformatics target prediction platforms and luciferase assays were used to investigate whether PDGFRß was directly targeted by miR-24-3p. In vivo, fat mixed with ADSCs transfected with miR-24-3p mimics or inhibitors was implanted subcutaneously on the lower back region of nude mice. Fat grafts were harvested and analyzed at 2, 4, 6, and 8 weeks. Results showed that endogenous TGF-ß derived from CM from EC or human recombinant TGF-ß promoted migration, association with ECs, and induced expression of pericyte markers (PDGFRß, α-SMA, Desmin) in ADSCs. MiR-24-3p directly targeted PDGFRß in ADSCs by lucifer reporter assays. Inhibition of miR-24-3p promoted pericytes differentiation, migration, and association with ECs in ADSCs. Inhibition of miR-24-3p in ADSCs promoted survival, integrity, adipocyte viability, vascularization, pericytes association with ECs, and reduced fibrosis, whereas overexpression of miR-24-3p in ADSCs yielded the opposite results. Collectively, TGF-ß released by ECs induced ADSCs differentiation toward pericytes through miR-24-3p. Downregulation of miR-24-3p in ADSCs induced survival, integrity, adipocyte viability, vascularization, pericytes association with ECs, and reduced fibrosis after fat grafting.


Asunto(s)
MicroARNs , Pericitos , Ratones , Animales , Humanos , Pericitos/metabolismo , Células Endoteliales/metabolismo , Ratones Desnudos , Desmina , Adipocitos/metabolismo , Diferenciación Celular/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Tejido Adiposo/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Células Madre/metabolismo
7.
Inorg Chem ; 63(5): 2363-2369, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38266165

RESUMEN

With the excellent properties of POM in the field of proton conductivity, the preparation of POM-based proton-conductive materials has burst into life. Herein, an unprecedented Sb-templated all-inorganic trimer Na8H18.64[(SbW14O52)3(Sb2W6.12Ru5.88O18)]·85H2O (1), which is based on tetravacant Dawson-like [SbW14O52]17- blocks and exhibits a trefoil type with D3 symmetry, has been successfully designed and synthesized by the assembly of simple materials with a one-pot hydrothermal method under acidic conditions. Also, compound 1 is systematically characterized by single-crystal X-ray diffraction, PXRD, ESI-MS, IR spectroscopy, UV-vis, elemental analysis, and TGA. Crystal structure data analysis demonstrates that compound 1 is constructed by a hexagonal prismatic heterometallic {Sb2W6.12Ru5.88O18} core and three equivalent {SbW14} units bridged through µ2-O atoms in periphery. Subsequently, further property experiments show that compound 1 exhibits high proton conductivity with a conductivity value (σ) of 3.07 × 10-2 S cm-1 at 75 °C and 80% relative humidity (RH). The activation energy of compound 1 evaluated by the Arrhenius plots is 0.22 eV, which indicates that the Grotthuss mechanism is dominant during the process of proton transfer.

8.
Inorg Chem ; 63(23): 10603-10610, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38804710

RESUMEN

Exploring a novel photocatalyst for catalytic oxidation of toluene is a sustainable strategy for energy conversion in times of an energy crisis. However, designing an effective photocatalyst for the conversion of toluene remains challenging. Herein, a novel organic monophosphonate-modified high nucleus Cu-incorporated polyoxotungstate, K8H33[{Cu0.5(H2O)4}{Cu2(O3PCH2COO)(1,4,9-α-P2W15O56)}]4·Cl·60H2O (1), has been intentionally synthesized by a self-assembly process utilizing conventional aqueous method. It reveals that 1 contains a polyanion of [{Cu0.5(H2O)}4{Cu2(O3PCH2COO)(1,4,9-α-P2W15O56)}]440- composed of four Dawson-type {1,4,9-α-P2W15} subunits, forming an oval-shaped structure and further connecting into a three-dimensional (3D) framework by lateral {Cu(H2O)4}2+. Interestingly, the trivacant {1,4,9-α-P2W15} subunits were observed in the organophosphonate acid-functionalized polyoxometalates for the first time. Notably, 1 exhibits a wonderful performance in catalytic oxidation of the recalcitrant C(sp3)-H bond of toluene to benzoic acid with a conversion as high as 97% under visible light utilizing O2 as an oxidant.

9.
Inorg Chem ; 63(19): 8791-8798, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38687152

RESUMEN

Three unique dl-malic acid covalently modified tetra-Ln3+-implanted tellurotungstates [H2(CH3)2]9NaH9[Ln4(H2O)14W6O13(OH)5(Mal)2(B-α-TeW9O33)4]·48H2O [Ln = La3+ (1), Ce3+ (2), Pr3+ (3); H3Mal = dl-malic acid] were fabricated by reacting Na2TeO3, Na2WO4·2H2O, Mal, and LnCl3·6H2O with dimethylamine hydrochloride in an aqueous solution. The most prominent architectural feature of these compounds is the covalent connection mode of an organic ligand and a polyoxometallate backbone, which is relatively rare in the realm of polyoxotungstates. The tetrameric polyanion can be deemed as four [TeW9O33]8- fragments fused together via an intriguing hexanuclearity [W6O13(OH)5(Mal)2Ln4(H2O)14]13+ cluster. Impedance measurements manifest that all three complexes display splendid proton conduction properties, with an exceptional conductivity for 2 up to 2.48 × 10-2 S·cm-1 under 85 °C and 95% relative humidity. Moreover, compounds 1 and 3 exhibited fast reversible photochromic properties with allochroic half-life periods t1/2 of 1.046 and 0.544 min, respectively.

10.
Inorg Chem ; 63(43): 20625-20632, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-39418323

RESUMEN

An S-shaped 8-Ti-containing polyoxomolybdate (NH4)Cs2Na6H3[Ti8(GeMo9O34)2(GeMo5O23)2]·44H2O (1) has been prepared under the one-pot hydrothermal method and further characterized. According to single-crystal X-ray, compound 1 consists of two {GeMo9O34} and two {GeMo5O23} segments, which are linked with a {Ti8O34} cluster. Moreover, the {GeMo5O23} fragment is rare and the first discovery, which enriches the lacunary Keggin-type family and offers the possibility of obtaining new structures. Among all of the reported polyoxomolybdates, compound 1 has the highest nuclearity of Ti centers. From the photocatalytic hydrogen evolution studies, compound 1 can be used as the heterogeneous catalyst with an H2 evolution rate of 2392.6 µmol g-1 h-1 under minimally optimized conditions.

11.
Inorg Chem ; 63(14): 6260-6267, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38517738

RESUMEN

In this paper, we have successfully synthesized a structurally novel heteropolytungstate via coordination of four {Ru(C6H6)} and trivacant {TeW9O33} clusters, formulated as Cs4Na2H2[Te2W20O72(H2O){(C6H6)Ru}4]·12H2O (1). Compound 1 inherited the strong absorption of [Ru(C6H6)Cl2]2 in the visible region and {TeW9O33} in the UV region, providing a good basis for photocatalysis. As expected, compound 1 showed good photocatalytic activity in the visible-light-driven reduction of nitrobenzene using N2H4·H2O as a reductant with a yield of 99.8%, a high turnover number (TON = 330), and a high turnover frequency (TOF = 24 h-1). The cyclic experiment of nitrobenzene reduction indicated that compound 1 was an effective and stable heterogeneous catalyst. Finally, the nitrobenzene reduction pathway was affirmed using condensation with azobenzene as a reaction intermediate based on control experiments.

12.
Inorg Chem ; 63(14): 6268-6275, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38545916

RESUMEN

A 6-Ti-substituted polyoxometalate, (NH4)5Cs7Na3H2[Cs@(Ti2GeMo10O39)3]·34H2O (1), was synthesized by reacting (NH4)6Mo7O24·4H2O, GeO2, and TiOSO4 through the conventional aqueous method. Polyanion 1a is composed of three {Ti2GeMo10} segments linked by Ti-O-Ti linkages and shows a trefoil-shaped structure. Furthermore, one Cs+ cation is encapsulated in the cavity of 1a. Notably, it possesses the highest number of Ti centers among the reported polyoxomolybdates. In addition, serving as a high-efficiency heterogeneous catalyst, 1 enables the conversion of methyl phenyl sulfide within 20 min, yielding 96.4% of the corresponding sulfoxide with good recyclability.

13.
Inorg Chem ; 63(16): 7325-7333, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38602808

RESUMEN

The synthesis of visible light-responsive and efficient photocatalysts toward green Baeyer-Villiger oxidation organic synthesis is of extraordinary significance. In this work, we have synthesized two examples of visible light responsive crystalline polyoxometalate@metal-organic framework materials Ru-NiMo and Ru-CoMo by introducing Ru metalloligands and {CdM3O12} bimetallic units (M = Ni or Co). This is the first report of metalloligand-modified polyoxometalate@metal-organic framework materials with bimetallic nodes, and the materials form a three-dimensional framework directly through coordination bonds between {CdM3O12} bimetallic units and metalloligands. In particular, Ru-NiMo can achieve efficient photocatalytic conversion of cyclohexanone to ε-caprolactone in yields as high as 95.5% under visible light excitation in the range of λ > 400 nm, achieving a turnover number and turnover frequency of 955 and 440 h-1, respectively, which are the best known photocatalysts for Baeyer-Villiger oxidation, while apparent quantum yield measured at 485 nm is 4.4%. Moreover, Ru-NiMo exhibited excellent structural stability and recyclability, producing a 90.8% yield after five cycles of recycling.

14.
Inorg Chem ; 63(43): 20492-20500, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-39413764

RESUMEN

The functionalization of polyoxometalates with organic ligands provides a new-style strategy to accurately incorporate polyoxometalates with advanced functional organic moieties on their surfaces, the development of which has attracted increasing research interest due to the potential applications. A germanium tungstate Na2(H3O)6[{RuIV(bpy)}2{WO2(C2O4)}2(GeW11O39)2]·27H2O (bpy = 2,2'-bipyridine) with two ligands covalently modified was triumphantly synthesized, using the conventional one-pot hydrothermal method. It was systematically characterized by thermogravimetric analysis (TGA), elemental analysis, infrared (IR) spectroscopy, single-crystal X-ray diffraction, X-ray photoelectron spectroscopy (XPS), powder diffraction (PXRD), scanning electronic microscopy (SEM), and ultraviolet-visible (UV-vis) spectroscopy. The two-dimensional (2D) layered structure was established through hydrogen bonding and Na+ bridges. Impedance measurements indicate that it displays outstanding proton conduction properties, with a splendid conductivity up to 1.24 × 10-2 S·cm-1 under 353 K and 90% relative humidity (RH), owing to the rich interlayer hydrogen-bond network formed by the organic ligands ({RuC10H8N2}4+ and {WC2O4}4+), hydrated protons (H3O+), and crystal waters.

15.
BMC Infect Dis ; 24(1): 7, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166793

RESUMEN

BACKGROUND: About 8% of TB cases worldwide are estimated to have rifampicin-susceptible, isoniazid-resistant tuberculosis (Hr-TB), ranging from 5 to 11% regions. However, Hr-TB has not received much attention while comparing to be given high priority to the management of rifampicin-resistant tuberculosis (RR-TB). This study aimed to compare the differences of treatment effects for Hr-TB and RR-TB, so as to intensify the treatment and management of Hr-TB. METHODS: A retrospective study was used to collect bacteriologically positive retreated patients with isoniazid/rifampicin resistant pulmonary tuberculosis, who were conducted at 29 tuberculosis control institutions in China from July 2009 to June 2021. We assessed effectiveness and safety of retreated patients with isoniazid/ rifampicin resistant pulmonary tuberculosis. RESULTS: A total of 147 with either positive smear or cultures were enrolled, and 80 cases were in Hr-TB group and 67 cases were in RR-TB group. There was no significant difference in terms of age, sex, body mass, type of retreatment and comorbid diabetes between the two groups (P > 0.05). The rate of number of lesions involving lung fields ≥ 3 in Hr-TB group 75.9% (60/79) was significantly higher than RR-TB group 56.7% (38/67) (χ2 = 6.077, P = 0.014). There was no statistically significant difference (P = 0.166) with regard to the treatment outcomes of the two groups, the cure rates were 54.7% (41/75) and 53.6% (30/56), respectively, and the failure rate in Hr-TB group 22.7% (17/75) was 10% higher than RR-TB group 10.7% (6/56). The rate of negative sputum smear at the end of the second month (65.7%) in the Hr-TB group was significantly lower than that in the RR-TB group (85.7%) (P = 0.025). There were no significant differences in the incidences of serious adverse reactions and chest X-ray changes between the two groups (P > 0.05). During the 5-year follow-up, recurrence in the Hr-TB group (7 cases, 14.9%) was no significantly lower than that in the RR-TB group (4 cases, 11.8%) (P = 0.754). CONCLUSION: The treatment of retreated Hr-TB patients was difficult and could be statistically similar or considerably worse than RR-TB. It's urgent to conduct further evaluation of the treatment status quo to guide the guideline development and clinical practice of Hr-TB patients.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis Pulmonar , Humanos , Rifampin/uso terapéutico , Isoniazida/uso terapéutico , Antituberculosos/uso terapéutico , Estudios Retrospectivos , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Tuberculosis Pulmonar/tratamiento farmacológico , Resultado del Tratamiento
16.
Anesth Analg ; 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38507520

RESUMEN

James Watt (1736-1819) is remembered as a steam engine innovator and industrial magnate. A polymath, he was also a hands-on contributor to the Medical Pneumatic Institution of Thomas Beddoes. Watt recruited Humphry Davy, who there discovered analgesic action of inhaled nitrous oxide in 1799. Watt also built pneumatic equipment, and he introduced a gas mixture, dubbed hydro-carbonate, as a medical tonic. The bioactive component was carbon monoxide, a readily-lethal inhibitor of the transport and utilization of respiratory oxygen. Despite appreciable toxicity, carbon monoxide is an endogenous product of heme catabolism, and low doses of the gas are under laboratory investigation for therapeutic purposes. However, Watt's hydro-carbonate constituted a setback in the development of pharmacologically useful gases.

17.
J Ultrasound Med ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39031455

RESUMEN

BACKGROUND: Four-dimensional hysterosalpingo-contrast sonography (4D-HyCoSy) can non-invasively evaluate the patency of the fallopian tubes and is increasingly used in clinical practice. However, some factors may lead to false-positive diagnoses. This study aims to analyze the factors affecting clear imaging of the fallopian tubes in 4D-HyCoSy and explore methods to improve the quality of fallopian tube imaging. METHODS: A total of 118 patients were enrolled in this retrospective study. After injecting the SonoVue into the uterine cavity, three modes of HyCoSy were completed in sequence: 4D-HyCoSy, 2D-HyCoSy, and second harmonic imaging (SHI). Participants were divided into two groups: the easy visualization group (fallopian tubes could be visualized using only 4D-HyCoSy) and the difficult visualization group (a multimodal combination was required for visualization). The position of the uterus, the relationship between the ovaries and the uterus, endometrial thickness, time of catheterization in the uterine cavity, presence or absence of lesions in the uterine cavity, whether intestinal gas covers the fallopian tubes and the imaging effect of different modes on the fallopian tubes was analyzed, to determine the key factors affecting the clear imaging of the fallopian tubes. RESULTS: The positional relationship between the ovary and the uterus (OR = 4.711, 95% CI: 1.322-19.77, P = 0.023), the positioning of the uterus (OR = 3.843, 95% CI: 1.129-15.26, P = 0.04), endometrial thickness (OR = 3.985, 95% CI: 1.168-15.99, P = 0.036), and the duration of intrauterine catheter placement (OR = 3.547, 95% CI: 1.042-13.52, P = 0.05) were independent factors that affecting difficulty in visualizing the fallopian tubes. CONCLUSION: Uterine position, the positional relationship between the ovary and the uterus, endometrial thickness, and the time of catheter insertion are factors that affect visualizing the fallopian tubes during 4D-HyCoSy. The combination of multimodal imaging, especially the combination of 4D-HyCoSy with SHI mode, can help improve the quality of fallopian tube visualization.

18.
Mol Pain ; 19: 17448069231182235, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37259479

RESUMEN

Given that the incidence of cancer is dramatically increasing nowadays, cancer-related neuropathic pain including tumor-related and therapy-related pain gradually attracts more attention from researchers, which basically behaves as a metabolic-neuro-immune disorder with worse clinical outcomes and prognosis. Among various mechanisms of neuropathic pain, the common underlying one is the activation of inflammatory responses around the injured or affected nerve(s). Innate and adaptive immune reactions following nerve injury together contribute to the regulation of pain. On the other hand, the tumor immune microenvironment involving immune cells, as exemplified by lymphocytes, macrophages, neutrophils and dendritic cells, inflammatory mediators as well as tumor metastasis have added additional characteristics for studying the initiation and maintenance of cancer-related neuropathic pain. Of interest, these immune cells in tumor microenvironment exert potent functions in promoting neuropathic pain through different signaling pathways. To this end, this review mainly focuses on the contribution of different types of immune cells to cancer-related neuropathic pain, aims to provide a comprehensive summary of how these immune cells derived from the certain tumor microenvironment participate in the pathogenesis of neuropathic pain. Furthermore, the clarification of roles of various immune cells in different tumor immune microenvironments associated with certain cancers under neuropathic pain states constitutes innovative biology that takes the pain field in a different direction, and thereby provides more opportunities for novel approaches for the prevention and treatment of cancer-related neuropathic pain.


Asunto(s)
Dolor en Cáncer , Neoplasias , Neuralgia , Humanos , Neuralgia/etiología , Neuralgia/metabolismo , Macrófagos/metabolismo , Microglía/metabolismo , Neutrófilos/metabolismo , Mediadores de Inflamación/metabolismo , Dolor en Cáncer/metabolismo
19.
Mol Carcinog ; 62(5): 613-627, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36727626

RESUMEN

Cutaneous squamous cell carcinoma (cSCC) is one of the most common skin malignancies, and its incidence rate is increasing worldwide. Proline-rich 11 (PRR11) has been reported to be involved in the occurrence and development of various tumors. However, the role of PRR11 in cSCC remains unknown. In the present study, we observed upregulated expression of PRR11 in cSCC tissues and cell lines. Knockdown of PRR11 in the cSCC cell lines A431 and SCL-1 inhibited cell proliferation by inducing cell cycle arrest during the G1/S phase transition, promoted cell apoptosis, and reduced cell migration and invasion in vitro. Conversely, overexpression of PRR11 promoted cell proliferation, decreased cell apoptosis, and enhanced cell migration and invasion. PRR11 knockdown also inhibited cSCC tumor growth in a mouse xenograft model. Mechanistic investigations by RNA sequencing revealed that 891 genes were differentially expressed genes between cells with PRR11 knockdown and control cells. Enrichment analysis of different genes showed that the epidermal growth factor receptor (EGFR) signaling pathway was the top enriched pathway. We further validated that PRR11 induced EGFR pathway activity, which contributed to cSCC progression. These data suggest that PRR11 may serve as a novel therapeutic target in cSCC.


Asunto(s)
Carcinoma de Células Escamosas , Proteínas , Neoplasias Cutáneas , Animales , Humanos , Ratones , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Proliferación Celular/genética , Receptores ErbB/genética , Transducción de Señal , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Proteínas/metabolismo
20.
Inorg Chem ; 62(35): 14142-14146, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37603397

RESUMEN

A novel Ru(III)-containing tungstoantimonate Na16H22[(B-ß-SbW9O33)6(W3RuO7)2(W4O11)]·118H2O (1) hexamer was successfully synthesized using the hydrothermal synthesis method. Analysis by single-crystal X-ray diffraction revealed that the polyanion comprises six trivacant Keggin-type [B-ß-SbW9O33]9- units interconnected by six {WO6} and six Ru/W disorder octahedra, resulting in an intriguing cyclohexane boat-like conformation. Compound 1 exhibits favorable proton conductivity, with a measured conductivity (σ) of 5.41 × 10-3 S cm-1 at 333 K and 55% relative humidity (RH). The activation energy (Ea) of compound 1 was determined to be 0.40 eV, providing evidence that its proton conductivity conforms to the Grotthus mechanism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA