Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 397
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 97(2): e0161122, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36779763

RESUMEN

Identification of bona fide functional receptors and elucidation of the mechanism of receptor-mediated virus entry are important to reveal targets for developing therapeutics against rabies virus (RABV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our previous studies suggest that metabotropic glutamate receptor subtype 2 (mGluR2) functions as an entry receptor for RABV in vitro, and is an important internalization factor for SARS-CoV-2 in vitro and in vivo. Here, we demonstrate that mGluR2 facilitates RABV internalization in vitro and infection in vivo. We found that transferrin receptor 1 (TfR1) interacts with mGluR2 and internalizes with mGluR2 and RABV in the same clathrin-coated pit. Knockdown of TfR1 blocks agonist-triggered internalization of mGluR2. Importantly, TfR1 also interacts with the SARS-CoV-2 spike protein and is important for SARS-CoV-2 internalization. Our findings identify a novel axis (mGluR2-TfR1 axis) used by RABV and SARS-CoV-2 for entry, and reveal TfR1 as a potential target for therapeutics against RABV and SARS-CoV-2. IMPORTANCE We previously found that metabotropic glutamate receptor subtype 2 (mGluR2) is an entry receptor for RABV in vitro, and an important internalization factor for SARS-CoV-2 in vitro and in vivo. However, whether mGluR2 is required for RABV infection in vivo was unknown. In addition, how mGluR2 mediates the internalization of RABV and SARS-CoV-2 needed to be resolved. Here, we found that mGluR2 gene knockout mice survived a lethal challenge with RABV. To our knowledge, mGluR2 is the first host factor to be definitively shown to play an important role in RABV street virus infection in vivo. We further found that transferrin receptor protein 1 (TfR1) directly interacts and cooperates with mGluR2 to regulate the endocytosis of RABV and SARS-CoV-2. Our study identifies a novel axis (mGluR2-TfR1 axis) used by RABV and SARS-CoV-2 for entry and opens a new door for the development of therapeutics against RABV and SARS-CoV-2.


Asunto(s)
COVID-19 , Virus de la Rabia , Receptores de Glutamato Metabotrópico , Receptores de Transferrina , SARS-CoV-2 , Internalización del Virus , Animales , Humanos , Ratones , Rabia/metabolismo , Virus de la Rabia/fisiología , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Transferrina/metabolismo , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo
2.
J Virol ; 97(2): e0161222, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36779762

RESUMEN

Rabies virus (RABV) is a prototypical neurotropic virus that causes rabies in human and animals with an almost 100% mortality rate. Once RABV enters the central nervous system, no treatment is proven to prevent death. RABV glycoprotein (G) interacts with cell surface receptors and then enters cells via clathrin-mediated endocytosis (CME); however, the key host factors involved remain largely unknown. Here, we identified transferrin receptor 1 (TfR1), a classic receptor that undergoes CME, as an entry factor for RABV. TfR1 interacts with RABV G and is involved in the endocytosis of RABV. An antibody against TfR1 or the TfR1 ectodomain soluble protein significantly blocked RABV infection in HEK293 cells, N2a cells, and mouse primary neuronal cells. We further found that the endocytosis of TfR1 is coupled with the endocytosis of RABV and that TfR1 and RABV are transported to early and late endosomes. Our results suggest that RABV hijacks the transport pathway of TfR1 for entry, thereby deepening our understanding of the entry mechanism of RABV. IMPORTANCE For most viruses, cell entry involves engagement with many distinct plasma membrane components, each of which is essential. After binding to its specific receptor(s), rabies virus (RABV) enters host cells through the process of clathrin-mediated endocytosis. However, whether the receptor-dependent clathrin-mediated endocytosis of RABV requires other plasma membrane components remain largely unknown. Here, we demonstrate that transferrin receptor 1 (TfR1) is a functional entry factor for RABV infection. The endocytosis of RABV is coupled with the endocytosis of TfR1. Our results indicate that RABV hijacks the transport pathway of TfR1 for entry, which deepens our understanding of the entry mechanism of RABV.


Asunto(s)
Virus de la Rabia , Rabia , Receptores de Transferrina , Internalización del Virus , Animales , Humanos , Ratones , Clatrina/metabolismo , Células HEK293 , Rabia/metabolismo , Virus de la Rabia/metabolismo , Receptores de Transferrina/metabolismo , Línea Celular , Endocitosis
3.
PLoS Pathog ; 18(2): e1010343, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35176124

RESUMEN

The continuous emergence of severe acute respiratory coronavirus 2 (SARS-CoV-2) variants and the increasing number of breakthrough infection cases among vaccinated people support the urgent need for research and development of antiviral drugs. Viral entry is an intriguing target for antiviral drug development. We found that diltiazem, a blocker of the L-type calcium channel Cav1.2 pore-forming subunit (Cav1.2 α1c) and an FDA-approved drug, inhibits the binding and internalization of SARS-CoV-2, and decreases SARS-CoV-2 infection in cells and mouse lung. Cav1.2 α1c interacts with SARS-CoV-2 spike protein and ACE2, and affects the attachment and internalization of SARS-CoV-2. Our finding suggests that diltiazem has potential as a drug against SARS-CoV-2 infection and that Cav1.2 α1c is a promising target for antiviral drug development for COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , Diltiazem/farmacología , Pulmón/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Células A549 , Animales , COVID-19/patología , COVID-19/virología , Células Cultivadas , Chlorocebus aethiops , Diltiazem/uso terapéutico , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Células HeLa , Humanos , Pulmón/patología , Pulmón/virología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , SARS-CoV-2/fisiología , Células Vero , Acoplamiento Viral/efectos de los fármacos , Internalización del Virus/efectos de los fármacos
4.
Macromol Rapid Commun ; : e2400275, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830087

RESUMEN

The advent of nonfullerene acceptors (NFAs) has greatly improved the photovoltaic performance of organic solar cells (OSCs). However, to compete with other solar cell technologies, there is a pressing need for accelerated research and development of improved NFAs as well as their compatible wide bandgap polymer donors. In this study, a novel electron-withdrawing building block, succinimide-substituted thiophene (TS), is utilized for the first time to synthesize three wide bandgap polymer donors: PBDT-TS-C5, PBDT-TSBT-C12, and PBDTF-TSBT-C16. These polymers exhibit complementary bandgaps for efficient sunlight harvesting and suitable frontier energy levels for exciton dissociation when paired with the extensively studied NFA, Y6. Among these donors, PBDTF-TSBT-C16 demonstrates the highest hole mobility and a relatively low highest occupied molecular orbital (HOMO) energy level, attributed to the incorporation of thiophene spacers and electron-withdrawing fluorine substituents. OSC devices based on the blend of PBDTF-TSBT-C16:Y6 achieve the highest power conversion efficiency of 13.21%, with a short circuit current density (Jsc) of 26.83 mA cm-2, an open circuit voltage (Voc) of 0.80 V, and a fill factor of 0.62. Notably, the Voc × Jsc product reaches 21.46 mW cm-2, demonstrating the potential of TS as an electron acceptor building block for the development of high-performance wide bandgap polymer donors in OSCs.

5.
Nano Lett ; 23(12): 5475-5481, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37283536

RESUMEN

Twisted bilayer graphene (tBLG) has gained significant attention due to its unique physical and electronic properties. However, efficient fabrication of high-quality tBLG with diverse twist angles is crucial to expedite research on angle-dependent physics and potential applications. In this study, an intercalation strategy utilizing organic molecules, such as 1,2-dichloroethane, is developed to weaken the interlayer interaction and induce slide or rotation of the topmost graphene layer for tBLG fabrication. The proportion of tBLGs in the resulting 1,2-dichloroethane-treated BLG (dtBLG) reaches up to 84.4% for twist angles ranging from 0° to 30°, surpassing previously reported methods using chemical vapor deposition (CVD). Moreover, the twist angle distribution is not uniform and tends to concentrate in the ranges of 0-10° and 20-30°. This facile and rapid intercalation-based methodology provides a practical solution for studying angle-dependent physics and advancing the utilization of twisted two-dimensional materials.

6.
Insect Mol Biol ; 32(6): 634-647, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37599385

RESUMEN

Monitoring insect genetic diversity and population structure has never been more important to manage the biodiversity crisis. Citizen science has become an increasingly popular tool to gather ecological data affordably across a wide range of spatial and temporal scales. To date, most insect-related citizen science initiatives have focused on occurrence and abundance data. Here, we show that poorly preserved insect samples collected by citizen scientists can yield population genetic information, providing new insights into population connectivity, genetic diversity and dispersal behaviour of little-studied insects. We analysed social wasps collected by participants of the Big Wasp Survey, a citizen science project that aims to map the diversity and distributions of vespine wasps in the UK. Although Vespula vulgaris is a notorious invasive species around the world, it remains poorly studied in its native range. We used these data to assess the population genetic structure of the common yellowjacket V. vulgaris at different spatial scales. We found a single, panmictic population across the UK with little evidence of population genetic structuring; the only possible limit to gene flow is the Irish sea, resulting in significant differentiation between the Northern Ireland and mainland UK populations. Our results suggest that queens disperse considerable distances from their natal nests to found new nests, resulting in high rates of gene flow and thus little differentiation across the landscape. Citizen science data has made it feasible to perform this study, and we hope that it will encourage future projects to adopt similar practices in insect population monitoring.


Asunto(s)
Ciencia Ciudadana , Avispas , Animales , Avispas/genética , Insectos , Especies Introducidas , Genética de Población
7.
J Neurol Neurosurg Psychiatry ; 94(8): 605-613, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37225405

RESUMEN

To explore the autoimmune response and outcome in the central nervous system (CNS) at the onset of viral infection and correlation between autoantibodies and viruses. METHODS: A retrospective observational study was conducted in 121 patients (2016-2021) with a CNS viral infection confirmed via cerebrospinal fluid (CSF) next-generation sequencing (cohort A). Their clinical information was analysed and CSF samples were screened for autoantibodies against monkey cerebellum by tissue-based assay. In situ hybridisation was used to detect Epstein-Barr virus (EBV) in brain tissue of 8 patients with glial fibrillar acidic protein (GFAP)-IgG and nasopharyngeal carcinoma tissue of 2 patients with GFAP-IgG as control (cohort B). RESULTS: Among cohort A (male:female=79:42; median age: 42 (14-78) years old), 61 (50.4%) participants had detectable autoantibodies in CSF. Compared with other viruses, EBV increased the odds of having GFAP-IgG (OR 18.22, 95% CI 6.54 to 50.77, p<0.001). In cohort B, EBV was found in the brain tissue from two of eight (25.0%) patients with GFAP-IgG. Autoantibody-positive patients had a higher CSF protein level (median: 1126.00 (281.00-5352.00) vs 700.00 (76.70-2899.00), p<0.001), lower CSF chloride level (mean: 119.80±6.24 vs 122.84±5.26, p=0.005), lower ratios of CSF-glucose/serum-glucose (median: 0.50[0.13-0.94] vs 0.60[0.26-1.23], p=0.003), more meningitis (26/61 (42.6%) vs 12/60 (20.0%), p=0.007) and higher follow-up modified Rankin Scale scores (1 (0-6) vs 0 (0-3), p=0.037) compared with antibody-negative patients. A Kaplan-Meier analysis revealed that autoantibody-positive patients experienced significantly worse outcomes (p=0.031). CONCLUSIONS: Autoimmune responses are found at the onset of viral encephalitis. EBV in the CNS increases the risk for autoimmunity to GFAP.


Asunto(s)
Encefalitis , Infecciones por Virus de Epstein-Barr , Masculino , Humanos , Femenino , Autoinmunidad , Estudios Retrospectivos , Herpesvirus Humano 4 , Autoanticuerpos , Inmunoglobulina G
8.
Theor Popul Biol ; 154: 40-50, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37640113

RESUMEN

Parentage exclusion probability is usually calculated to evaluate the informativeness of a set of markers for, and the statistical power of, a parentage analysis. Equations for parentage exclusion probability have been derived in various scenarios such as paternity exclusion when maternity is known or unknown or when candidate males are unrelated or loosely related (being from the same subpopulation) to the father. All previous work assumes a diploid species. Although marker-based parentage analyses have been conducted in haploidiploid species (such as ants, bees and wasps) for diploid offspring at the individual level or haploid offspring at the class level, rigorously derived formulations of parentage exclusion probability for haploid offspring at the individual level are lacking, which prevents the precise evaluation of the informativeness for and the statistical power of a parentage analysis. In this study we derive equations for the exclusion probability of maternity of a haploid male when multiple mother candidates (workers or queens) are unrelated or fullsibs to the mother. The usefulness of the equations is exemplified by numerical examples, and the results are discussed in the context of the study of worker reproductivity in eusocial haplodiploid species. The results are especially valuable for an optimal experimental design in determining sampling intensities (e.g. number of markers and number of individuals) to achieve satisfactory statistical power of a parentage analysis in investigating workers' reproductivity in eusocial haplodiploid species.


Asunto(s)
Hormigas , Madres , Humanos , Embarazo , Masculino , Femenino , Animales , Probabilidad
9.
EMBO Rep ; 22(12): e52124, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34647680

RESUMEN

This study explores the role of the long noncoding RNA (LncRNA) CRNDE in cisplatin (CDDP) resistance of gastric cancer (GC) cells. Here, we show that LncRNA CRNDE is upregulated in carcinoma tissues and tumor-associated macrophages (TAMs) of GC patients. In vitro experiments show that CRNDE is enriched in M2-polarized macrophage-derived exosomes (M2-exo) and is transferred from M2 macrophages to GC cells via exosomes. Silencing CRNDE in M2-exo reverses the promotional effect of M2-exo on cell proliferation in CDDP-treated GC cells and homograft tumor growth in CDDP-treated nude mice. Mechanistically, CRNDE facilitates neural precursor cell expressed developmentally downregulated protein 4-1 (NEDD4-1)-mediated phosphatase and tensin homolog (PTEN) ubiquitination. Silencing CRNDE in M2-exo enhances the CDDP sensitivity of GC cells treated with M2-exo, which is reduced by PTEN knockdown. Collectively, these data reveal a vital role for CRNDE in CDDP resistance of GC cells and suggest that the upregulation of CRNDE in GC cells may be attributed to the transfer of TAM-derived exosomes.


Asunto(s)
Exosomas , MicroARNs , ARN Largo no Codificante , Neoplasias Gástricas , Animales , Línea Celular Tumoral , Proliferación Celular/genética , Cisplatino/metabolismo , Cisplatino/farmacología , Cisplatino/uso terapéutico , Exosomas/genética , Exosomas/metabolismo , Exosomas/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones Desnudos , MicroARNs/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo
10.
Phys Chem Chem Phys ; 25(15): 10417-10426, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36987914

RESUMEN

Solubility plays a critical role in many aspects of research (drugs to materials). Solubility parameters are very useful for selecting appropriate solvents/non-solvents for various applications. In the present study, Hansen solubility parameters are predicted using machine learning. More than 40 machine models are tried in the search for the best model. Molecular descriptors and fingerprints are used as inputs to get a comparative view. Machine learning models trained using molecular descriptors have shown higher prediction ability than the model trained using molecular fingerprints. Machine learning models trained using molecular descriptors have shown their potential to be easy and fast models compared to the density functional theory (DFT)/thermodynamic approach. Machine learning creates a "black box" connection to the properties. Therefore, minimal computational cost is required. With the help of the best-trained machine learning model, green solvents are selected for small molecule donors that are used in organic solar cells. Our introduced framework can help to select solvents for organic solar cells in an easy and fast way.

11.
Nature ; 543(7646): 547-549, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28297711

RESUMEN

Insect pollinators such as bumblebees (Bombus spp.) are in global decline. A major cause of this decline is habitat loss due to agricultural intensification. A range of global and national initiatives aimed at restoring pollinator habitats and populations have been developed. However, the success of these initiatives depends critically upon understanding how landscape change affects key population-level parameters, such as survival between lifecycle stages, in target species. This knowledge is lacking for bumblebees, because of the difficulty of systematically finding and monitoring colonies in the wild. We used a combination of habitat manipulation, land-use and habitat surveys, molecular genetics and demographic and spatial modelling to analyse between-year survival of family lineages in field populations of three bumblebee species. Here we show that the survival of family lineages from the summer worker to the spring queen stage in the following year increases significantly with the proportion of high-value foraging habitat, including spring floral resources, within 250-1,000 m of the natal colony. This provides evidence for a positive impact of habitat quality on survival and persistence between successive colony cycle stages in bumblebee populations. These findings also support the idea that conservation interventions that increase floral resources at a landscape scale and throughout the season have positive effects on wild pollinators in agricultural landscapes.


Asunto(s)
Abejas/fisiología , Conservación de los Recursos Naturales/métodos , Ecosistema , Agricultura , Animales , Abejas/clasificación , Conducta Alimentaria , Femenino , Hibernación , Masculino , Polinización , Estaciones del Año , Análisis de Supervivencia
12.
Support Care Cancer ; 31(12): 671, 2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37924363

RESUMEN

OBJECTIVE: Oncogenic alternation in RET is one of the important targets of non-small cell lung cancer (NSCLC). Pralsetinib has shown great efficacy in RET fusion-positive NSCLC, but a series of adverse reactions will inevitably occur in the meantime. We aimed to explore the clinical characteristics of patients with pneumonia and recognition it in early stage, so patients could longer benefit from pralsetinib. METHODS: This is a multicenter, retrospective study. RET fusion-positive advanced NSCLC patients who developed pneumonia during pralsetinib treatment from January 2020 to December 2022 were included. Clinical data, time to onset of pneumonia, methods of pneumonia diagnosis, treatment with pneumonia, prognosis of pneumonia, and the effect of pneumonia on the efficacy of pralsetinib. RESULTS: A total of 8 patients with pneumonia were included in the study, most of which were non-smoking female patients and the main fusion gene was KIF5B (87.5%), which was consistent with the general characteristics of RET fusion population. The median occurrence time of pralsetinib-associated pneumonia was 2.15 (range 1.1-6.63) months. All patients were infected by opportunistic pathogens, and the most common pathogen was human herpesviruses and pneumospora yerbii. Fever was always the first symptom, and timely anti-infective treatment including antibiotics, antiviral drugs, and antifungal drugs was effective. Until February 28, 2023, the median follow-up time was 18.7 months, the mean PFS of patients was 17.4 months, and the median PFS was not reached. Fortunately, patients who restarted pralsetinib after infection control continued to benefit. CONCLUSIONS: Opportunistic infection may be a unique adverse effect of pralsetinib. During the treatment of pralsetinib, we should be vigilant about the occurrence of pneumonia and achieve early recognition and timely treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Femenino , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Estudios Retrospectivos , Piridinas/uso terapéutico , Proteínas Proto-Oncogénicas c-ret/genética , Proteínas Proto-Oncogénicas c-ret/uso terapéutico
13.
Proc Natl Acad Sci U S A ; 117(19): 10329-10338, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32332171

RESUMEN

Genetic variants in PKD2 which encodes for the polycystin-2 ion channel are responsible for many clinical cases of autosomal dominant polycystic kidney disease (ADPKD). Despite our strong understanding of the genetic basis of ADPKD, we do not know how most variants impact channel function. Polycystin-2 is found in organelle membranes, including the primary cilium-an antennae-like structure on the luminal side of the collecting duct. In this study, we focus on the structural and mechanistic regulation of polycystin-2 by its TOP domain-a site with unknown function that is commonly altered by missense variants. We use direct cilia electrophysiology, cryogenic electron microscopy, and superresolution imaging to determine that variants of the TOP domain finger 1 motif destabilizes the channel structure and impairs channel opening without altering cilia localization and channel assembly. Our findings support the channelopathy classification of PKD2 variants associated with ADPKD, where polycystin-2 channel dysregulation in the primary cilia may contribute to cystogenesis.


Asunto(s)
Calcio/metabolismo , Cilios/patología , Activación del Canal Iónico , Mutación , Riñón Poliquístico Autosómico Dominante/patología , Canales Catiónicos TRPP/metabolismo , Cilios/metabolismo , Células HEK293 , Humanos , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/metabolismo , Dominios Proteicos , Canales Catiónicos TRPP/química , Canales Catiónicos TRPP/genética
14.
Commun Nonlinear Sci Numer Simul ; 125: 107318, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37304191

RESUMEN

Inapparent infection plays an important role in the disease spread, which is an infection by a pathogen that causes few or no signs or symptoms of infection in the host. Many pathogens, including HIV, typhoid fever, and coronaviruses such as COVID-19 spread in their host populations through inapparent infection. In this paper, we formulated a degenerated reaction-diffusion host-pathogen model with multiple infection period. We split the infectious individuals into two distinct classes: apparent infectious individuals and inapparent infectious individuals, coming from exposed individuals with a ratio of (1-p) and p, respectively. Some preliminary results and threshold-type results are achieved by detailed mathematical analysis. We also investigate the asymptotic profiles of the positive steady state (PSS) when the diffusion rate of susceptible individuals approaches zero or infinity. When all parameters are all constants, the global attractivity of the constant endemic equilibrium is established. It is verified by numerical simulations that spatial heterogeneity of the transmission rates can enhance the intensity of an epidemic. Especially, the transmission rate of inapparent infectious individuals significantly increases the risk of disease transmission, compared to that of apparent infectious individuals and pathogens in the environment, and we should pay special attentions to how to regulate the inapparent infectious individuals for disease control and prevention, which is consistent with the result on the sensitive analysis to the transmission rates through the normalized forward sensitivity index. We also find that disinfection of the infected environment is an important way to prevent and eliminate the risk of environmental transmission.

15.
Curr Psychol ; 42(1): 145-153, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-33531791

RESUMEN

Since the outbreak of 2019 coronavirus disease (COVID-19) in December 2019, the Chinese government has implemented effective epidemic prevention measures. To provide useful information for governments to manage this public health crisis, we conducted an online survey among Chinese general population from February 24 to 28, 2020. In this study, we examined the impact of epidemic information and rumors on public's worries and attitude toward prevention measures during the outbreak of COVID-19. A total of 853 valid questionnaires (641 women, 75.1%) were collected from 24 provincial regions in China. Most respondents' ages ranged from 18 to 60 (833 participants, 97.66%). A mediation model was built to analyze the influence of epidemic information and rumors on worries and attitude. The results showed that the amount of epidemic information positively predicted public's worries, which in turn predicted a supportive attitude toward the prevention measures. Worries partially mediated the relationship between the amount of epidemic information and the supportive attitude. The amount of rumors negatively predicted the supportive attitude. The results of this study implied the importance of timely and credible information providing to evoke a certain level of worry and promote public cooperation, and the necessary attention to refute and resist rumors for effective risk communication in a public health crisis.

16.
Angew Chem Int Ed Engl ; 62(10): e202216340, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36591914

RESUMEN

Side-chain tailoring is a promising method to optimize the performance of organic solar cells (OSCs). However, asymmetric alkyl chain-based small molecular acceptors (SMAs) are still difficult to afford. Herein, we adopted a novel asymmetric n-nonyl/undecyl substitution strategy and synthesized two A-D1 A'D2 -A double asymmetric isomeric SMAs with asymmetric selenophene-based central core for OSCs. Crystallographic analysis indicates that AYT9Se11-Cl forms a more compact and order intermolecular packing compared to AYT11Se9-Cl, which contributed to higher electron mobility in neat AYT9Se11-Cl film. Moreover, the PM6 : AYT9Se11-Cl blend film shows a better morphology with appropriate phase separation and distinct face-on orientation than PM6 : AYT11Se9-Cl. The OSCs with PM6 : AYT9Se11-Cl obtain a superior PCE of 18.12 % compared to PM6 : AYT11Se9-Cl (17.52 %), which is the best efficiency for the selenium-incorporated SMAs in binary BHJ OSCs. Our findings elucidate that the promising double asymmetric strategy with isomeric alkyl chains precisely modulates the crystal packing and enhances the photovoltaic efficiency of selenophene-incorporated SMAs.

17.
Angew Chem Int Ed Engl ; 62(49): e202313016, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37823882

RESUMEN

Both the regional isomerization and selenium-substitution of the small molecular acceptors (SMAs) play significant roles in developing efficient organic solar cells (OSCs), while their synergistic effects remain elusive. Herein, we developed three isomeric SMAs (S-CSeF, A-ISeF, and A-OSeF) via subtly manipulating the mono-selenium substituted position (central, inner, or outer) and type of heteroaromatic ring on the central core by synergistic strategies for efficient OSCs, respectively. Crystallography of asymmetric A-OSeF presents a closer intermolecular π-π stacking and more ordered 3-dimensional network packing and efficient charge-hopping pathways. With the successive out-shift of the mono-selenium substituted position, the neat films give a slightly wider band gap and gradually higher crystallinity and electron mobility. The PM1 : A-OSeF afford favourable fibrous phase separation morphology with more ordered molecular packing and efficient charge transportation compared to the other two counterparts. Consequently, the A-OSeF-based devices achieve a champion efficiency of 18.5 %, which represents the record value for the reported selenium-containing SMAs in binary OSCs. Our developed precise molecular engineering of the position and type of selenium-based heteroaromatic ring of SMAs provides a promising synergistic approach to optimizing crystal stacking and boosting top-ranked selenium-containing SMAs-based OSCs.

18.
J Biol Chem ; 296: 100096, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33208464

RESUMEN

Rabies virus (RABV) matrix protein (M) plays crucial roles in viral transcription, replication, assembly, and budding; however, its function during the early stage of virus replication remains unknown. Here, we mapped the protein interactome between RABV M and human host factors using a proteomic approach, finding a link to the V-type proton ATPase catalytic subunit A (ATP6V1A), which is located in the endosomes where RABV first enters. By downregulating or upregulating ATP6V1A expression in HEK293T cells, we found that ATP6V1A facilitated RABV replication. We further found that ATP6V1A was involved in the dissociation of incoming viral M proteins during viral uncoating. Coimmunoprecipitation demonstrated that M interacted with the full length or middle domain of ATP6V1A, which was dependent on the lysine residue at position 256 and the glutamic acid residue at position 279. RABV growth and uncoating in ATP6V1A-depleted cells was restored by trans-complementation with the full length or interaction domain of ATP6V1A. Moreover, stably overexpressed ATP6V1A enhanced RABV growth in Vero cells, which are used for the production of rabies vaccine. Our findings identify a new partner for RABV M proteins and establish a new role of ATP6V1A by promoting virion uncoating during RABV replication.


Asunto(s)
ATPasas de Translocación de Protón Vacuolares/metabolismo , Animales , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Chlorocebus aethiops , Células HEK293 , Humanos , Inmunoprecipitación , Espectrometría de Masas , Plásmidos/genética , Proteómica , Interferencia de ARN , Rabia/inmunología , Rabia/prevención & control , Vacunas Antirrábicas/inmunología , Vacunas Antirrábicas/uso terapéutico , Virus de la Rabia/inmunología , Virus de la Rabia/patogenicidad , ATPasas de Translocación de Protón Vacuolares/genética , Células Vero , Replicación Viral/genética , Replicación Viral/fisiología
19.
Biochem Biophys Res Commun ; 599: 120-126, 2022 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-35180471

RESUMEN

Paclitaxol is a first-line treatment for triple-negative breast cancer (TNBC). The molecular mechanisms underlying paclitaxol resistance in TNBC remain largely unclear. In this study, differential expressed genes (DEGs) between TNBC cells and paclitaxol-resistant (taxol-R) TNBC cells were screened by bioinformatics analysis. Among these DEGs, USP18 mRNA expression was significantly increased in taxol-R TNBC cells. USP18 overexpression reduced paclitaxol sensitivity by decreasing paclitaxol-induced apoptosis and cell cycle arrest in TNBC cells. In contrast, USP18 knockdown increased paclitaxol mediated anticancer activity in taxol-R TNBC cells in vitro and in vivo. Mechanistically, USP18 induced autophagy, an important pathway in chemotherapy resistance. The autophagy inhibitor leupeptin could effectively reverse the effect of USP18 on paclitaxol resistance phenotype. These findings suggested that USP18 may be a promising target for overcoming paclitaxol resistance in TNBC.


Asunto(s)
Autofagia/efectos de los fármacos , Paclitaxel/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Ubiquitina Tiolesterasa/genética , Animales , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones Endogámicos BALB C , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Ubiquitina Tiolesterasa/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Mamm Genome ; 33(4): 654-671, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36173464

RESUMEN

N6-methyladenosine (m6A) is the most abundant mRNA internal modification and has reportedly been linked to aerobic glycolysis, a hallmark event in tumor development. This work focuses on the role of the m6A methyltransferase WT1-associated protein (WTAP) in metabolic reprogramming and development of colon adenocarcinoma (COAD) and the molecules involved. The WTAP expression in COAD tissues and cells was detected. WTAP was knocked down in two COAD cell lines to figure out its role in the glycolytic activity and malignant phenotype of cancer cells. Cancer cells were further injected into nude mice subcutaneously or via tail vein to evaluate tumor growth and metastasis. The downstream molecules involved were explored using bioinformatics tools, and the molecular interactions were confirmed by immunoprecipitation, luciferase assays, and rescue experiments. WTAP was abundantly expressed in COAD samples. Knockdown of WTAP suppressed glucose consumption, lactate production, and glycolysis, which consequently suppressed cancer cell growth and dissemination in vitro and in vivo. WTAP promoted m6A methylation and stabilized forkhead box P3 (FOXP3) mRNA with the participation of the m6A "reader" YTHDF1. FOXP3 could further bind to SMARCE1 promoter for transcriptional activation. Rescue experiments showed that upregulation of FOXP3 or SMARCE1 restored the glycolytic activity in COAD cells and augmented the growth and mobility of cells both in vitro and in vivo. This study demonstrates that WTAP grants glycolytic activity to COAD and promotes tumor malignant development via the m6A modification of FOXP3 mRNA and the upregulation of SMARCE1.


Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Animales , Ratones , Adenocarcinoma/genética , Neoplasias del Colon/genética , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Glucólisis/genética , Ratones Desnudos , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA