Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 262
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 20(9): e1011393, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39264939

RESUMEN

Holometabolous insects undergo morphological remodeling from larvae to pupae and to adults with typical changes in the cuticle; however, the mechanism is unclear. Using the lepidopteran agricultural insect Helicoverpa armigera, cotton bollworm, as a model, we revealed that the transcription factor RUNT-like (encoded by Runt-like) regulates the development of the pupal cuticle via promoting a pupal cuticle protein gene (HaPcp) expression. The HaPcp was highly expressed in the epidermis and wing during metamorphosis and was found being involved in pupal cuticle development by RNA interference (RNAi) analysis in larvae. Runt-like was also strongly upregulated in the epidermis and wing during metamorphosis. Knockdown of Runt-like produced similar phenomena, a failure of abdomen yellow envelope and wing formation, to those following HaPcp knockdown. The insect molting hormone 20-hydroxyecdysonen (20E) upregulated HaPcp transcription via RUNT-like. 20E upregulated Runt-like transcription via nuclear receptor EcR and the transcription factor FOXO. Together, RUNT-like and HaPCP are involved in pupal cuticle development during metamorphosis under 20E regulation.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Insectos , Mariposas Nocturnas , Animales , Ecdisterona/metabolismo , Epidermis/metabolismo , Epidermis/crecimiento & desarrollo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Larva/crecimiento & desarrollo , Larva/genética , Larva/metabolismo , Metamorfosis Biológica , Muda/genética , Mariposas Nocturnas/crecimiento & desarrollo , Mariposas Nocturnas/genética , Mariposas Nocturnas/metabolismo , Pupa/crecimiento & desarrollo , Pupa/genética , Pupa/metabolismo , Interferencia de ARN , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(24): e2216574120, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37276415

RESUMEN

The immune deficiency (IMD) pathway is critical for elevating host immunity in both insects and crustaceans. The IMD pathway activation in insects is mediated by peptidoglycan recognition proteins, which do not exist in crustaceans, suggesting a previously unidentified mechanism involved in crustacean IMD pathway activation. In this study, we identified a Marsupenaeus japonicus B class type III scavenger receptor, SRB2, as a receptor for activation of the IMD pathway. SRB2 is up-regulated upon bacterial challenge, while its depletion exacerbates bacterial proliferation and shrimp mortality via abolishing the expression of antimicrobial peptides. The extracellular domain of SRB2 recognizes bacterial lipopolysaccharide (LPS), while its C-terminal intracellular region containing a cryptic RHIM-like motif interacts with IMD, and activates the pathway by promoting nuclear translocation of RELISH. Overexpressing shrimp SRB2 in Drosophila melanogaster S2 cells potentiates LPS-induced IMD pathway activation and diptericin expression. These results unveil a previously unrecognized SRB2-IMD axis responsible for antimicrobial peptide induction and restriction of bacterial infection in crustaceans and provide evidence of biological diversity of IMD signaling in animals. A better understanding of the innate immunity of crustaceans will permit the optimization of prevention and treatment strategies against the arising shrimp diseases.


Asunto(s)
Crustáceos , Animales , Crustáceos/genética , Crustáceos/inmunología , Crustáceos/metabolismo , Crustáceos/microbiología , Drosophila melanogaster , Lipopolisacáridos , Receptores de Reconocimiento de Patrones/genética , Receptores de Reconocimiento de Patrones/metabolismo , Regulación hacia Arriba , Vibrio , Transducción de Señal , Humanos
3.
J Biol Chem ; 300(3): 105704, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38309506

RESUMEN

Selective gene expression in cells in physiological or pathological conditions is important for the growth and development of organisms. Acetylation of histone H4 at K16 (H4K16ac) catalyzed by histone acetyltransferase 8 (KAT8) is known to promote gene transcription; however, the regulation of KAT8 transcription and the mechanism by which KAT8 acetylates H4K16ac to promote specific gene expression are unclear. Using the lepidopteran insect Helicoverpa armigera as a model, we reveal that the transcription factor FOXO promotes KAT8 expression and recruits KAT8 to the promoter region of autophagy-related gene 8 (Atg8) to increase H4 acetylation at that location, enabling Atg8 transcription under the steroid hormone 20-hydroxyecdysone (20E) regulation. H4K16ac levels are increased in the midgut during metamorphosis, which is consistent with the expression profiles of KAT8 and ATG8. Knockdown of Kat8 using RNA interference results in delayed pupation and repression of midgut autophagy and decreases H4K16ac levels. Overexpression of KAT8-GFP promotes autophagy and increases H4K16ac levels. FOXO, KAT8, and H4K16ac colocalized at the FOXO-binding region to promote Atg8 transcription under 20E regulation. Acetylated FOXO at K180 and K183 catalyzed by KAT8 promotes gene transcription for autophagy. 20E via FOXO promotes Kat8 transcription. Knockdown or overexpression of FOXO appeared to give similar results as knockdown or overexpression of KAT8. Therefore, FOXO upregulates KAT8 expression and recruits KAT8 to the promoter region of Atg8, where the KAT8 induces H4 acetylation to promote Atg8 transcription for autophagy under 20E regulation. This study reveals the mechanism that KAT8 promotes transcription of a specific gene.


Asunto(s)
Autofagia , Ecdisterona , Helicoverpa armigera , Histona Acetiltransferasas , Histonas , Procesamiento Proteico-Postraduccional , Acetilación , Autofagia/genética , Ecdisterona/metabolismo , Regiones Promotoras Genéticas , Helicoverpa armigera/genética , Helicoverpa armigera/metabolismo , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo
4.
J Virol ; 98(7): e0043324, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38888346

RESUMEN

The cellular endosomal sorting complex required for transport (ESCRT) system comprises five distinct components and is involved in many different physiological processes. Recent studies have shown that different viruses rely upon the host ESCRT system for viral infection. However, whether this system is involved in white spot syndrome virus (WSSV) infection remains unclear. Here, we identified 24 homologs of ESCRT subunits in kuruma shrimp, Marsupenaeus japonicus, and found that some key components were strongly upregulated in shrimp after WSSV infection. Knockdown of key components of the ESCRT system using RNA interference inhibited virus replication, suggesting that the ESCRT system is beneficial for WSSV infection. We further focused on TSG101, a crucial member of the ESCRT-I family that plays a central role in recognizing cargo and activating the ESCRT-II and ESCRT-III complexes. TSG101 colocalized with WSSV in hemocytes. The addition of N16 (a TSG101 inhibitor) markedly decreased WSSV replication. TSG101 and ALIX of the ESCRT system interact with WSSV envelope proteins. The host proteins TSG101, RAB5, and RAB7, the viral protein VP28, and DNA were detected in endosomes isolated from hemocytes of WSSV-infected shrimp. Knockdown of Rab5 and Rab7 expression reduced viral replication. Taken together, these results suggest that the ESCRT system is hijacked by WSSV for transport through the early to late endosome pathway. Our work identified a novel requirement for the intracellular trafficking and infection of WSSV, and provided novel therapeutic targets for the prevention and control of WSSV in shrimp aquaculture. IMPORTANCE: Viruses utilize the ESCRT machinery in a variety of strategies for their replication and infection. This study revealed that the interaction of ESCRT complexes with WSSV envelope proteins plays a crucial role in WSSV infection in shrimp. The ESCRT system is conserved in the shrimp Marsupenaeus japonicus, and 24 homologs of the ESCRT system were identified in the shrimp. WSSV exploits the ESCRT system for transport and propagation via the interaction of envelope proteins with host TSG101 and ALIX in an endosome pathway-dependent manner. Understanding the underlying mechanisms of WSSV infection is important for disease control and breeding in shrimp aquaculture.


Asunto(s)
Proteínas de Unión al ADN , Complejos de Clasificación Endosomal Requeridos para el Transporte , Penaeidae , Replicación Viral , Virus del Síndrome de la Mancha Blanca 1 , Animales , Virus del Síndrome de la Mancha Blanca 1/fisiología , Virus del Síndrome de la Mancha Blanca 1/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Penaeidae/virología , Penaeidae/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Endosomas/metabolismo , Endosomas/virología , Hemocitos/virología , Hemocitos/metabolismo , Interacciones Huésped-Patógeno , Proteínas del Envoltorio Viral/metabolismo , Proteínas del Envoltorio Viral/genética , Interferencia de ARN
5.
Brief Bioinform ; 24(2)2023 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-36719094

RESUMEN

With the emergence of high-throughput technologies, computational screening based on gene expression profiles has become one of the most effective methods for drug discovery. More importantly, profile-based approaches remarkably enhance novel drug-disease pair discovery without relying on drug- or disease-specific prior knowledge, which has been widely used in modern medicine. However, profile-based systematic screening of active ingredients of traditional Chinese medicine (TCM) has been scarcely performed due to inadequate pharmacotranscriptomic data. Here, we develop the largest-to-date online TCM active ingredients-based pharmacotranscriptomic platform integrated traditional Chinese medicine (ITCM) for the effective screening of active ingredients. First, we performed unified high-throughput experiments and constructed the largest data repository of 496 representative active ingredients, which was five times larger than the previous one built by our team. The transcriptome-based multi-scale analysis was also performed to elucidate their mechanism. Then, we developed six state-of-art signature search methods to screen active ingredients and determine the optimal signature size for all methods. Moreover, we integrated them into a screening strategy, TCM-Query, to identify the potential active ingredients for the special disease. In addition, we also comprehensively collected the TCM-related resource by literature mining. Finally, we applied ITCM to an active ingredient bavachinin, and two diseases, including prostate cancer and COVID-19, to demonstrate the power of drug discovery. ITCM was aimed to comprehensively explore the active ingredients of TCM and boost studies of pharmacological action and drug discovery. ITCM is available at http://itcm.biotcm.net.


Asunto(s)
COVID-19 , Medicamentos Herbarios Chinos , Humanos , Medicina Tradicional China , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Perfilación de la Expresión Génica , Transcriptoma
6.
PLoS Genet ; 18(6): e1010229, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35696369

RESUMEN

The regulation of glycometabolism homeostasis is vital to maintain health and development of animal and humans; however, the molecular mechanisms by which organisms regulate the glucose metabolism homeostasis from a feeding state switching to a non-feeding state are not fully understood. Using the holometabolous lepidopteran insect Helicoverpa armigera, cotton bollworm, as a model, we revealed that the steroid hormone 20-hydroxyecdysone (20E) upregulated the expression of transcription factor Krüppel-like factor (identified as Klf15) to promote macroautophagy/autophagy, apoptosis and gluconeogenesis during metamorphosis. 20E via its nuclear receptor EcR upregulated Klf15 transcription in the fat body during metamorphosis. Knockdown of Klf15 using RNA interference delayed pupation and repressed autophagy and apoptosis of larval fat body during metamorphosis. KLF15 promoted autophagic flux and transiting to apoptosis. KLF15 bound to the KLF binding site (KLF bs) in the promoter of Atg8 (autophagy-related gene 8/LC3) to upregulate Atg8 expression. Knockdown Atg8 reduced free fatty acids (FFAs), glycerol, free amino acids (FAAs) and glucose levels. However, knockdown of Klf15 accumulated FFAs, glycerol, and FAAs. Glycolysis was switched to gluconeogenesis, trehalose and glycogen synthesis were changed to degradation during metamorphosis, which were accompanied by the variation of the related genes expression. KLF15 upregulated phosphoenolpyruvate carboxykinase (Pepck) expression by binding to KLF bs in the Pepck promoter for gluconeogenesis, which utilised FFAs, glycerol, and FAAs directly or indirectly to increase glucose in the hemolymph. Taken together, 20E via KLF15 integrated autophagy and gluconeogenesis by promoting autophagy-related and gluconeogenesis-related genes expression.


Asunto(s)
Ecdisterona , Mariposas Nocturnas , Animales , Autofagia/genética , Ecdisterona/metabolismo , Técnicas de Silenciamiento del Gen , Gluconeogénesis/genética , Glucosa/metabolismo , Glicerol/metabolismo , Homeostasis/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Mariposas Nocturnas/genética
7.
BMC Biol ; 22(1): 171, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39135168

RESUMEN

BACKGROUND: Free fatty acids (FFAs) play vital roles as energy sources and substrates in organisms; however, the molecular mechanism regulating the homeostasis of FFA levels in various circumstances, such as feeding and nonfeeding stages, is not fully clarified. Holometabolous insects digest dietary triglycerides (TAGs) during larval feeding stages and degrade stored TAGs in the fat body during metamorphosis after feeding cessation, which presents a suitable model for this study. RESULTS: This study reported that two lipases are differentially regulated by hormones to maintain the homeostasis of FFA levels during the feeding and nonfeeding stages using the lepidopteran insect cotton bollworm Helicoverpa armigera as a model. Lipase member H-A-like (Lha-like), related to human pancreatic lipase (PTL), was abundantly expressed in the midgut during the feeding stage, while the monoacylglycerol lipase ABHD12-like (Abhd12-like), related to human monoacylglycerol lipase (MGL), was abundantly expressed in the fat body during the nonfeeding stage. Lha-like was upregulated by juvenile hormone (JH) via the JH intracellular receptor methoprene-tolerant 1 (MET1), and Abhd12-like was upregulated by 20-hydroxyecdysone (20E) via forkhead box O (FOXO) transcription factor. Knockdown of Lha-like decreased FFA levels in the hemolymph and reduced TAG levels in the fat body. Moreover, lipid droplets (LDs) were small, the brain morphology was abnormal, the size of the brain was small, and the larvae showed the phenotype of delayed pupation, small pupae, and delayed tissue remodeling. Knockdown of Abhd12-like decreased FFA levels in the hemolymph; however, TAG levels increased in the fat body, and LDs remained large. The development of the brain was arrested at the larval stage, and the larvae showed a delayed pupation phenotype and delayed tissue remodeling. CONCLUSIONS: The differential regulation of lipases expression by different hormones determines FFAs homeostasis and different TAG levels in the fat body during the feeding larval growth and nonfeeding stages of metamorphosis in the insect. The homeostasis of FFAs supports insect growth, brain development, and metamorphosis.


Asunto(s)
Encéfalo , Ácidos Grasos no Esterificados , Homeostasis , Animales , Encéfalo/metabolismo , Encéfalo/crecimiento & desarrollo , Ácidos Grasos no Esterificados/metabolismo , Lipasa/metabolismo , Lipasa/genética , Mariposas Nocturnas/crecimiento & desarrollo , Mariposas Nocturnas/fisiología , Mariposas Nocturnas/metabolismo , Larva/crecimiento & desarrollo , Larva/metabolismo , Hormonas Juveniles/metabolismo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Metamorfosis Biológica/fisiología , Ecdisterona/metabolismo
8.
Development ; 148(5)2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33692089

RESUMEN

Animal steroid hormones initiate signaling by passive diffusion into cells and binding to their nuclear receptors to regulate gene expression. Animal steroid hormones can initiate signaling via G protein-coupled receptors (GPCRs); however, the underlying mechanisms are unclear. Here, we show that a newly discovered ecdysone-responsive GPCR, ErGPCR-3, transmits the steroid hormone 20-hydroxyecdysone (20E) signal by binding 20E and promoting its entry into cells in the lepidopteran insect Helicoverpa armigera Knockdown of ErGPCR-3 in larvae caused delayed and abnormal pupation, inhibited remodeling of the larval midgut and fat body, and repressed 20E-induced gene expression. Also, 20E induced both the interaction of ErGPCR-3 with G proteins and rapid intracellular increase in calcium, cAMP and protein phosphorylation. ErGPCR-3 was endocytosed by GPCR kinase 2-mediated phosphorylation, and interacted with ß-arrestin-1 and clathrin, to terminate 20E signaling under 20E induction. We found that 20E bound to ErGPCR-3 and induced the ErGPCR-3 homodimer to form a homotetramer, which increased 20E entry into cells. Our study revealed that homotetrameric ErGPCR-3 functions as a cell membrane receptor and increases 20E diffusion into cells to transmit the 20E signal and promote metamorphosis.


Asunto(s)
Ecdisterona/farmacología , Proteínas de Insectos/metabolismo , Metamorfosis Biológica/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo , Animales , Clatrina/metabolismo , Ecdisterona/química , Ecdisterona/metabolismo , Endocitosis , Proteínas de Insectos/antagonistas & inhibidores , Proteínas de Insectos/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Mariposas Nocturnas/crecimiento & desarrollo , Mariposas Nocturnas/metabolismo , Fosforilación/efectos de los fármacos , Unión Proteica , Multimerización de Proteína/efectos de los fármacos , Interferencia de ARN , ARN Bicatenario/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/genética , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
9.
PLoS Pathog ; 18(9): e1010808, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36067252

RESUMEN

Previous studies have shown that the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway has antiviral functions or is beneficial for viral replication, however, the detail mechanisms by which mTORC1 enhances viral infection remain unclear. Here, we found that proliferation of white spot syndrome virus (WSSV) was decreased after knockdown of mTor (mechanistic target of rapamycin) or injection inhibitor of mTORC1, rapamycin, in Marsupenaeus japonicus, which suggests that mTORC1 is utilized by WSSV for its replication in shrimp. Mechanistically, WSSV infects shrimp by binding to its receptor, polymeric immunoglobulin receptor (pIgR), and induces the interaction of its intracellular domain with Calmodulin. Calmodulin then promotes the activation of protein kinase B (AKT) by interaction with the pleckstrin homology (PH) domain of AKT. Activated AKT phosphorylates mTOR and results in the activation of the mTORC1 signaling pathway to promote its downstream effectors, ribosomal protein S6 kinase (S6Ks), for viral protein translation. Moreover, mTORC1 also phosphorylates eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1), which will result in the separation of 4EBP1 from eukaryotic translation initiation factor 4E (eIF4E) for the translation of viral proteins in shrimp. Our data revealed a novel pathway for WSSV proliferation in shrimp and indicated that mTORC1 may represent a potential clinical target for WSSV control in shrimp aquaculture.


Asunto(s)
Receptores de Inmunoglobulina Polimérica , Virus del Síndrome de la Mancha Blanca 1 , Antivirales/farmacología , Calmodulina/metabolismo , Factor 4E Eucariótico de Iniciación/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Inmunoglobulina Polimérica/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo , Proteínas Quinasas S6 Ribosómicas/farmacología , Transducción de Señal , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Virales/metabolismo , Replicación Viral , Virus del Síndrome de la Mancha Blanca 1/metabolismo
10.
Langmuir ; 40(28): 14540-14547, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38954464

RESUMEN

The electrochemical properties of TiB4 and TiB5 monolayers in Na-ion batteries (NIBs) were studied by using the first-principles calculation method based on density functional theory. The TiB4/TiB5 monolayer showed excellent Na storage capacity, capable of adsorbing two layers of Na with theoretical capacities of 1176.77 and 1052.05 mA g-1, respectively. The average operating voltages of the TiB4 and TiB5 monolayers are 0.073 and 0.042 eV, respectively, indicating that they can be used as anode materials for NIBs. More interestingly, the exposed B surface not only brings a high theoretical capacity but also provides a relatively small diffusion barrier of 0.16 (for TiB4) and 0.33 eV (for TiB5), enhancing their rate capability in NIBs.

11.
Fish Shellfish Immunol ; 151: 109679, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38844185

RESUMEN

The constitutive photomorphogenesis 9 (COP9) signalosome (CSN) typically composing of eight subunits (CSN1-8) mediates the process of deneddylation and deubiquitination. The fifth subunit of COP9 signalosome, CSN5, has special characteristics compared with the other seven subunits, and plays vital roles in the deneddylation activity and diverse cellular processes. However, the role of CSN5 in antiviral immunity is not clear. In this study, we identified 8 subunits (CSN1-8) of COP9 signalosome in shrimp Marsupenaeus japonicus. CSN1-6 were existed in all tested tissues, but CSN7-CSN8 were not detected in hepatopancreas. After WSSV challenged, the expression level of Csn1 to Csn4, and Csn6 to Csn8 were highly decreased, but the expression level of Csn5 was conspicuously increased in shrimp challenged by white spot syndrome virus (WSSV). The CSN5 was recombinantly expressed in Escherichia coli and its polyclonal antibody was prepared. The expression level of CSN5 was conspicuously increased at RNA and protein levels in the shrimp challenged by WSSV. After knockdown of Csn5 by RNA interference, the WSSV replication was obviously increased in shrimp. When injected the recombinant protein of CSN5 with the membrane penetrating peptide into shrimp, WSSV replication was inhibited and the survival rate of shrimp was significantly improved compared with control. We further analyzed the expression of antimicrobial peptides (AMPs) in Csn5-RNAi shrimp, and the results showed that the expression of several AMPs was declined significantly. These results indicate that CSN5 inhibits replication of WSSV via regulating expression of AMPs in shrimp, and the recombinant CSN5 might be used in shrimp aquaculture for the white spot syndrome disease control.


Asunto(s)
Proteínas de Artrópodos , Complejo del Señalosoma COP9 , Inmunidad Innata , Penaeidae , Virus del Síndrome de la Mancha Blanca 1 , Animales , Penaeidae/genética , Penaeidae/inmunología , Complejo del Señalosoma COP9/genética , Complejo del Señalosoma COP9/inmunología , Virus del Síndrome de la Mancha Blanca 1/fisiología , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Proteínas de Artrópodos/química , Inmunidad Innata/genética , Regulación de la Expresión Génica/inmunología , Perfilación de la Expresión Génica/veterinaria , Alineación de Secuencia/veterinaria , Filogenia
12.
Ann Vasc Surg ; 99: 233-241, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37802137

RESUMEN

BACKGROUND: With favorable results of thoracic endovascular aortic repair (TEVAR) in patients with uncomplicated acute type B intramural hematoma (uTBIMH), TEVAR is increasingly utilized in the management of patients with uTBIMH. However, optimal timing for intervention has not been decided. This study aimed to compare the efficacy of acute and delayed TEVAR in patients with uTBIMH. METHODS: We included patients with uTBIMH who underwent TEVAR between October 2014 and December 2021. The participants were divided into the acute TEVAR (aTEVAR) and delayed TEVAR (dTEVAR) groups. We analyzed the total aortic diameter (TAD)/true lumen diameter (TLD) ratio on computed tomography angiography (CTA) and aortic-related adverse events and all-cause mortality (AREM). RESULTS: We included 34 individuals with uTBIMH, among which 20 underwent aTEVAR and 14 underwent dTEVAR. We observed no significant differences in baseline characteristics between both groups. However, compared with the aTEVAR group, better aortic remodeling was achieved in the dTEVAR group before discharge (1.32 ± 0.11 vs. 1.21 ± 0.09, P = 0.005) and at the 1-year follow-up (1.18 ± 0.09 vs. 1.10 ± 0.04, P = 0.034). Although the 30-day and 1-year follow-up outcomes of AREM were not significantly different, the Kaplan-Meier analysis showed that AREM incidence in the dTEVAR group was significantly lower than that in the aTEVAR group (85.7% for dTEVAR vs. 65.0% for aTEVAR, log-rank P = 0.20). Moreover, subgroup analysis revealed a significant difference in the TAD/TLD ratio between the aTEVAR and dTEVAR groups in individuals without a focal intimal disruption (1.33 ± 0.11 vs. 1.17 ± 0.09, P = 0.008). CONCLUSIONS: For individuals with uTBIMH, delaying TEVAR by >7 days improved aortic remodeling and lowered the incidence of early AREM. Additionally, the absence of focal intimal disruption on preoperative CTA supports delayed intervention.


Asunto(s)
Aneurisma de la Aorta Torácica , Disección Aórtica , Implantación de Prótesis Vascular , Procedimientos Endovasculares , Humanos , Aneurisma de la Aorta Torácica/diagnóstico por imagen , Aneurisma de la Aorta Torácica/cirugía , Aneurisma de la Aorta Torácica/complicaciones , Implantación de Prótesis Vascular/efectos adversos , Resultado del Tratamiento , Factores de Tiempo , Aorta Torácica/diagnóstico por imagen , Aorta Torácica/cirugía , Hematoma/diagnóstico por imagen , Hematoma/cirugía , Hematoma/etiología , Estudios Retrospectivos , Factores de Riesgo
13.
BMC Biol ; 21(1): 119, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37226192

RESUMEN

BACKGROUND: The regulation of glycolysis and autophagy during feeding and metamorphosis in holometabolous insects is a complex process that is not yet fully understood. Insulin regulates glycolysis during the larval feeding stage, allowing the insects to grow and live. However, during metamorphosis, 20-hydroxyecdysone (20E) takes over and regulates programmed cell death (PCD) in larval tissues, leading to degradation and ultimately enabling the insects to transform into adults. The precise mechanism through which these seemingly contradictory processes are coordinated remains unclear and requires further research. To understand the coordination of glycolysis and autophagy during development, we focused our investigation on the role of 20E and insulin in the regulation of phosphoglycerate kinase 1 (PGK1). We examined the glycolytic substrates and products, PGK1 glycolytic activity, and the posttranslational modification of PGK1 during the development of Helicoverpa armigera from feeding to metamorphosis. RESULTS: Our findings suggest that the coordination of glycolysis and autophagy during holometabolous insect development is regulated by a balance between 20E and insulin signaling pathways. Glycolysis and PGK1 expression levels were decreased during metamorphosis under the regulation of 20E. Insulin promoted glycolysis and cell proliferation via PGK1 phosphorylation, while 20E dephosphorylated PGK1 via phosphatase and tensin homolog (PTEN) to repress glycolysis. The phosphorylation of PGK1 at Y194 by insulin and its subsequent promotion of glycolysis and cell proliferation were important for tissue growth and differentiation during the feeding stage. However, during metamorphosis, the acetylation of PGK1 by 20E was key in initiating PCD. Knockdown of phosphorylated PGK1 by RNA interference (RNAi) at the feeding stage led to glycolysis suppression and small pupae. Insulin via histone deacetylase 3 (HDAC3) deacetylated PGK1, whereas 20E via acetyltransferase arrest-defective protein 1 (ARD1) induced PGK1 acetylation at K386 to stimulate PCD. Knockdown of acetylated-PGK1 by RNAi at the metamorphic stages led to PCD repression and delayed pupation. CONCLUSIONS: The posttranslational modification of PGK1 determines its functions in cell proliferation and PCD. Insulin and 20E counteractively regulate PGK1 phosphorylation and acetylation to give it dual functions in cell proliferation and PCD.


Asunto(s)
Ecdisterona , Insulina , Animales , Ecdisterona/farmacología , Fosfoglicerato Quinasa/genética , Fosforilación , Apoptosis , Larva
14.
PLoS Pathog ; 17(4): e1009479, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33798239

RESUMEN

Invertebrates rely on innate immunity, including humoral and cellular immunity, to resist pathogenic infection. Previous studies showed that forkhead box transcription factor O (FOXO) participates in mucosal immune responses of mammals and the gut humoral immune regulation of invertebrates. However, whether FOXO is involved in systemic and cellular immunity regulation in invertebrates remains unknown. In the present study, we identified a FOXO from shrimp (Marsupenaeus japonicus) and found that it was expressed at relatively basal levels in normal shrimp, but was upregulated significantly in shrimp challenged by Vibrio anguillarum. FOXO played a critical role in maintaining hemolymph and intestinal microbiota homeostasis by promoting the expression of Relish, the transcription factor of the immune deficiency (IMD) pathway for expression of antimicrobial peptides (AMPs) in shrimp. We also found that pathogen infection activated FOXO and induced its nuclear translocation by reducing serine/threonine kinase AKT activity. In the nucleus, activated FOXO directly regulated the expression of its target Amp and Relish genes against bacterial infection. Furthermore, FOXO was identified as being involved in cellular immunity by promoting the phagocytosis of hemocytes through upregulating the expression of the phagocytotic receptor scavenger receptor C (Src), and two small GTPases, Rab5 and Rab7, which are related to phagosome trafficking to the lysosome in the cytoplasm. Taken together, our results indicated that FOXO exerts its effects on homeostasis of hemolymph and the enteric microbiota by activating the IMD pathway in normal shrimp, and directly or indirectly promoting AMP expression and enhancing phagocytosis of hemocytes against pathogens in bacteria-infected shrimp. This study revealed the different functions of FOXO in the mucosal (local) and systemic antibacterial immunity of invertebrates.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Microbiota , Penaeidae/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Vibrio/fisiología , Animales , Factores de Transcripción Forkhead/genética , Hemocitos/inmunología , Homeostasis , Inmunidad Innata , Penaeidae/inmunología , Penaeidae/microbiología , Fagocitosis/inmunología
15.
J Immunol ; 206(9): 2075-2087, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33863791

RESUMEN

White spot syndrome virus (WSSV) is a threatening pathogenic virus in shrimp culture, and at present, no effective strategy can prevent and control the disease. Intestinal flora and its metabolites are important for the resistance of shrimp to lethal pathogenic viruses. However, the changes of metabolites in the shrimp intestines after WSSV infection remain unclear. We established an artificial oral infection method to infect shrimp with WSSV and analyzed the metabolites in intestinal content of shrimp by HPLC and tandem mass spectrometry. A total of 78 different metabolites and five different metabolic pathways were identified. Among them, we found that the content of linoleic acid, an unsaturated fatty acid, increased significantly after WSSV infection, indicating that linoleic acid might be involved in antiviral immunity in shrimp. Further study showed that, after oral administration of linoleic acid, WSSV proliferation decreased evidently in the shrimp, and survival rate of the shrimp increased significantly. Mechanical analysis showed that linoleic acid directly bound to WSSV virions and inhibited the viral replication. Linoleic acid also promoted the expression of antimicrobial peptides and IFN-like gene Vago5 by activating the ERK-NF-κB signaling pathway. Our results indicated that WSSV infection caused metabolomic transformation of intestinal microbiota and that the metabolite linoleic acid participated in the immune response against WSSV in shrimp.


Asunto(s)
Antivirales/farmacología , Intestinos/efectos de los fármacos , Intestinos/microbiología , Ácido Linoleico/farmacología , Virus del Síndrome de la Mancha Blanca 1/efectos de los fármacos , Animales , Antivirales/metabolismo , Ácido Linoleico/metabolismo , Pruebas de Sensibilidad Microbiana , Penaeidae
16.
PLoS Genet ; 15(8): e1008331, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31412019

RESUMEN

Holometabolous insects stop feeding at the final larval instar stage and then undergo metamorphosis; however, the mechanism is unclear. In the present study, using the serious lepidopteran agricultural pest Helicoverpa armigera as a model, we revealed that 20-hydroxyecdysone (20E) binds to the dopamine receptor (DopEcR), a G protein-coupled receptor, to stop larval feeding and promote pupation. DopEcR was expressed in various tissues and its level increased during metamorphic molting under 20E regulation. The 20E titer was low during larval feeding stages and high during wandering stages. By contrast, the dopamine (DA) titer was high during larval feeding stages and low during the wandering stages. Injection of 20E or blocking dopamine receptors using the inhibitor flupentixol decreased larval food consumption and body weight. Knockdown of DopEcR repressed larval feeding, growth, and pupation. 20E, via DopEcR, promoted apoptosis; and DA, via DopEcR, induced cell proliferation. 20E opposed DA function by repressing DA-induced cell proliferation and AKT phosphorylation. 20E, via DopEcR, induced gene expression and a rapid increase in intracellular calcium ions and cAMP. 20E induced the interaction of DopEcR with G proteins αs and αq. 20E, via DopEcR, induced protein phosphorylation and binding of the EcRB1-USP1 transcription complex to the ecdysone response element. DopEcR could bind 20E inside the cell membrane or after being isolated from the cell membrane. Mutation of DopEcR decreased 20E binding levels and related cellular responses. 20E competed with DA to bind to DopEcR. The results of the present study suggested that 20E, via binding to DopEcR, arrests larval feeding and promotes pupation.


Asunto(s)
Ecdisterona/metabolismo , Proteínas de Insectos/metabolismo , Mariposas Nocturnas/fisiología , Receptores Dopaminérgicos/metabolismo , Animales , Dopamina/metabolismo , Antagonistas de Dopamina/farmacología , Conducta Alimentaria/efectos de los fármacos , Conducta Alimentaria/fisiología , Flupentixol/farmacología , Técnicas de Silenciamiento del Gen , Proteínas de Insectos/genética , Larva/efectos de los fármacos , Larva/fisiología , Muda/efectos de los fármacos , Muda/fisiología , Mariposas Nocturnas/efectos de los fármacos , Interferencia de ARN , Receptores Dopaminérgicos/genética , Células Sf9
17.
J Environ Manage ; 324: 116316, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36182839

RESUMEN

Deficient seed sludge, low substrate concentrations are recognized as the major barriers for the application of anaerobic ammonia oxidation (Anammox) to treat mainstream wastewater. In this work, anammox biofilter (A-BF) was started up by inoculating denitrification sludge at low nitrogen strength at 25 °C. The total nitrogen removal efficiency (TNRE) and nitrogen removal rate (NRR) reached 74.8 ± 3.4% and 0.81 kg-N m-3 d-1 under nitrogen loading rate (NLR) of 1.20 kg-N m-3 d-1 with 7.00 mg-NH4+-N L-1 and 10.00 mg-NO2--N L-1 as influent. 1.00-2.00 mg-DO L-1 negatively impacted effluent, but the total nitrogen of effluent (TNeff) was 10.65 ± 2.76 mg L-1, in limit of the standard of Class 1A for municipal WWTP discharge (GB18918-2002). The abundance of Planctomycetes increased from 0.6% to 1.4-2.6%, in which, Candidatus_Brocadia was the dominant genera. The results establish the application feasibility of A-BFs as advanced nitrogen removal technique in treating mainstream wastewater.


Asunto(s)
Aguas del Alcantarillado , Aguas Residuales , Desnitrificación , Nitrógeno , Reactores Biológicos , Oxidación Anaeróbica del Amoníaco , Oxidación-Reducción , Semillas , Planctomicetos
18.
PLoS Pathog ; 15(2): e1007558, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30726286

RESUMEN

Viral entry into the host cell is the first step towards successful infection. Viral entry starts with virion attachment, and binding to receptors. Receptor binding viruses either directly release their genome into the cell, or enter cells through endocytosis. For DNA viruses and a few RNA viruses, the endocytosed viruses will transport from cytoplasm into the nucleus followed by gene expression. Receptors on the cell membrane play a crucial role in viral infection. Although several attachment factors, or candidate receptors, for the infection of white spot syndrome virus (WSSV) were identified in shrimp, the authentic entry receptors for WSSV infection and the intracellular signaling triggering by interaction of WSSV with receptors remain unclear. In the present study, a receptor for WSSV infection in kuruma shrimp, Marsupenaeus japonicus, was identified. It is a member of the immunoglobulin superfamily (IgSF) with a transmembrane region, and is similar to the vertebrate polymeric immunoglobulin receptor (pIgR); therefore, it was designated as a pIgR-like protein (MjpIgR for short). MjpIgR was detected in all tissues tested, and its expression was significantly induced by WSSV infection at the mRNA and protein levels. Knockdown of MjpIgR, and blocking MjpIgR with its antibody inhibited WSSV infection in shrimp and overexpression of MjpIgR facilitated the invasion of WSSV. Further analyses indicated that MjpIgR could independently render non-permissive cells susceptible to WSSV infection. The extracellular domain of MjpIgR interacts with envelope protein VP24 of WSSV and the intracellular domain interacts with calmodulin (MjCaM). MjpIgR was oligomerized and internalized following WSSV infection and the internalization was associated with endocytosis of WSSV. The viral internalization facilitating ability of MjpIgR could be blocked using chlorpromazine, an inhibitor of clathrin dependent endocytosis. Knockdown of Mjclathrin and its adaptor protein AP-2 also inhibited WSSV internalization. All the results indicated that MjpIgR-mediated WSSV endocytosis was clathrin dependent. The results suggested that MjpIgR is a WSSV receptor, and that WSSV enters shrimp cells via the pIgR-CaM-Clathrin endocytosis pathway.


Asunto(s)
Penaeidae/inmunología , Receptores de Inmunoglobulina Polimérica/inmunología , Virus del Síndrome de la Mancha Blanca 1/metabolismo , Animales , Acuicultura/métodos , Virus ADN , Endocitosis , Penaeidae/metabolismo , Penaeidae/patogenicidad , Unión Proteica , Receptores de Inmunoglobulina Polimérica/metabolismo , Proteínas del Envoltorio Viral , Internalización del Virus , Replicación Viral , Virus del Síndrome de la Mancha Blanca 1/patogenicidad
19.
Nanotechnology ; 32(49)2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34450609

RESUMEN

Magnesium ion battery is one of the promising next-generation energy storage systems. Nevertheless, lack of appropriate cathode materials to ensure massive storage and efficient migration of Mg cations is a big obstacle for development of Mg-ion batteries. Herein, by means of first principles calculations, the geometric structure, electronic structure, Mg intercalation behavior and Mg diffusion behavior of the layered MoO2and two MoOSe (MoOSe(I) and MoOSe(V)) were systematically investigated. Layered MoO2shows semiconductor properties, while MoOSe displays metallic characteristics which ensure higher conductivity. The Mg cations tend to intercalate into octahedral sites for both MoO2and MoOSe. The maximum Mg-storage phases of the layered MoO2, MoOSe(I) and MoOSe(V) correspond to Mg0.666MoO2, Mg0.666MoOSe(I) and Mg0.666MoOSe(V), with theoretical specific capacities of 279, 191 and 191 mAh g-1, respectively. The calculated discharge plateaus of MoO2and two MoOSe are all about 1 V, which ensure that the layered MoO2and MoOSe electrodes can act as cathodes for Mg-ion batteries in the early stage. Moreover, comparing with other cathodes, the diffusion barrier of Mg cations and volume expansion during Mg intercalation process are competitive. The results suggest that layered MoO2and MoOSe are the promising cathode materials for Mg-ion batteries.

20.
J Immunol ; 203(5): 1131-1141, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31331974

RESUMEN

The myeloid differentiation factor 2 (MD-2)-related lipid-recognition (ML) domain is found in multiple proteins, including MD-2, MD-1, Niemann-Pick disease type C2, and mite major allergen proteins. The significance of ML proteins in antibacterial signal transduction and in lipid metabolism has been well studied. However, their function in host-virus interaction remains poorly understood. In the current study, we found that the ML protein family is involved in resistance against white spot syndrome virus in kuruma shrimp, Marsupenaeus japonicus One member, which showed a high similarity to mammalian MD-2/MD-1 and was designated as ML1, participated in the antiviral response by recognizing cholesta-3,5-diene (CD), a lipid component of the white spot syndrome virus envelope. After recognizing CD, ML1 induced the translocation of Rel family NF-κB transcription factor Dorsal into the nucleus, resulting in the expression of Vago, an IFN-like antiviral cytokine in arthropods. Overall, this study revealed the significance of an MD-2 homologue as an immune recognition protein for virus lipids. The identification and characterization of CD-ML1-Dorsal-Vago signaling provided new insights into invertebrate antiviral immunity.


Asunto(s)
Colestadienos/inmunología , Interacciones Huésped-Patógeno , Antígeno 96 de los Linfocitos/fisiología , Penaeidae/inmunología , Virus del Síndrome de la Mancha Blanca 1/inmunología , Animales , FN-kappa B/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA