Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(15): e2400675121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38564634

RESUMEN

Atherosclerosis is fueled by a failure to resolve lipid-driven inflammation within the vasculature that drives plaque formation. Therapeutic approaches to reverse atherosclerotic inflammation are needed to address the rising global burden of cardiovascular disease (CVD). Recently, metabolites have gained attention for their immunomodulatory properties, including itaconate, which is generated from the tricarboxylic acid-intermediate cis-aconitate by the enzyme Immune Responsive Gene 1 (IRG1/ACOD1). Here, we tested the therapeutic potential of the IRG1-itaconate axis for human atherosclerosis. Using single-cell RNA sequencing (scRNA-seq), we found that IRG1 is up-regulated in human coronary atherosclerotic lesions compared to patient-matched healthy vasculature, and in mouse models of atherosclerosis, where it is primarily expressed by plaque monocytes, macrophages, and neutrophils. Global or hematopoietic Irg1-deficiency in mice increases atherosclerosis burden, plaque macrophage and lipid content, and expression of the proatherosclerotic cytokine interleukin (IL)-1ß. Mechanistically, absence of Irg1 increased macrophage lipid accumulation, and accelerated inflammation via increased neutrophil extracellular trap (NET) formation and NET-priming of the NLRP3-inflammasome in macrophages, resulting in increased IL-1ß release. Conversely, supplementation of the Irg1-itaconate axis using 4-octyl itaconate (4-OI) beneficially remodeled advanced plaques and reduced lesional IL-1ß levels in mice. To investigate the effects of 4-OI in humans, we leveraged an ex vivo systems-immunology approach for CVD drug discovery. Using CyTOF and scRNA-seq of peripheral blood mononuclear cells treated with plasma from CVD patients, we showed that 4-OI attenuates proinflammatory phospho-signaling and mediates anti-inflammatory rewiring of macrophage populations. Our data highlight the relevance of pursuing IRG1-itaconate axis supplementation as a therapeutic approach for atherosclerosis in humans.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Humanos , Ratones , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Colesterol , Inflamación/metabolismo , Leucocitos Mononucleares/metabolismo , Lípidos , Placa Aterosclerótica/tratamiento farmacológico , Succinatos/metabolismo
2.
J Immunol ; 204(9): 2360-2373, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32198142

RESUMEN

COPA syndrome is a recently described Mendelian autoimmune disorder caused by missense mutations in the coatomer protein complex subunit α (COPA) gene. Patients with COPA syndrome develop arthritis and lung disease that presents as pulmonary hemorrhage or interstitial lung disease (ILD). Immunosuppressive medications can stabilize the disease, but many patients develop progressive pulmonary fibrosis, which requires life-saving measures, such as lung transplantation. Because very little is understood about the pathogenesis of COPA syndrome, it has been difficult to devise effective treatments for patients. To date, it remains unknown which cell types are critical for mediating the disease as well as the mechanisms that lead to autoimmunity. To explore these issues, we generated a CopaE241K/+ germline knock-in mouse bearing one of the same Copa missense mutations in patients. Mutant mice spontaneously developed ILD that mirrors lung pathology in patients, as well as elevations of activated cytokine-secreting T cells. In this study, we show that mutant Copa in epithelial cells of the thymus impairs the thymic selection of T cells and results in both an increase in autoreactive T cells and decrease in regulatory T cells in peripheral tissues. We demonstrate that T cells from CopaE241K/+ mice are pathogenic and cause ILD through adoptive transfer experiments. In conclusion, to our knowledge, we establish a new mouse model of COPA syndrome to identify a previously unknown function for Copa in thymocyte selection and demonstrate that a defect in central tolerance is a putative mechanism by which COPA mutations lead to autoimmunity in patients.


Asunto(s)
Autoinmunidad/inmunología , Proteína Coatómero/inmunología , Tolerancia Inmunológica/inmunología , Linfocitos T/inmunología , Timo/inmunología , Traslado Adoptivo/métodos , Animales , Autoinmunidad/genética , Proteína Coatómero/genética , Modelos Animales de Enfermedad , Células Epiteliales/inmunología , Femenino , Tolerancia Inmunológica/genética , Pulmón/inmunología , Enfermedades Pulmonares Intersticiales/genética , Enfermedades Pulmonares Intersticiales/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Mutación/genética , Mutación/inmunología , Síndrome
3.
J Clin Invest ; 132(7)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35192546

RESUMEN

Platelets have a wide range of functions including critical roles in hemostasis, thrombosis, and immunity. We hypothesized that during acute inflammation, such as in life-threatening sepsis, there are fundamental changes in the sites of platelet production and phenotypes of resultant platelets. Here, we showed during sepsis that the spleen was a major site of megakaryopoiesis and platelet production. Sepsis provoked an adrenergic-dependent mobilization of megakaryocyte-erythrocyte progenitors (MEPs) from the bone marrow to the spleen, where IL-3 induced their differentiation into megakaryocytes (MKs). In the spleen, immune-skewed MKs produced a CD40 ligandhi platelet population with potent immunomodulatory functions. Transfusions of post-sepsis platelets enriched from splenic production enhanced immune responses and reduced overall mortality in sepsis-challenged animals. These findings identify a spleen-derived protective platelet population that may be broadly immunomodulatory in acute inflammatory states such as sepsis.


Asunto(s)
Plaquetas , Sepsis , Animales , Plaquetas/metabolismo , Ligando de CD40 , Megacariocitos , Sepsis/metabolismo , Bazo
4.
JCI Insight ; 7(3)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35132956

RESUMEN

Acute respiratory distress syndrome (ARDS) results in catastrophic lung failure and has an urgent, unmet need for improved early recognition and therapeutic development. Neutrophil influx is a hallmark of ARDS and is associated with the release of tissue-destructive immune effectors, such as matrix metalloproteinases (MMPs) and membrane-anchored metalloproteinase disintegrins (ADAMs). Here, we observed using intravital microscopy that Adam8-/- mice had impaired neutrophil transmigration. In mouse pneumonia models, both genetic deletion and pharmacologic inhibition of ADAM8 attenuated neutrophil infiltration and lung injury while improving bacterial containment. Unexpectedly, the alterations of neutrophil function were not attributable to impaired proteolysis but resulted from reduced intracellular interactions of ADAM8 with the actin-based motor molecule Myosin1f that suppressed neutrophil motility. In 2 ARDS cohorts, we analyzed lung fluid proteolytic signatures and identified that ADAM8 activity was positively correlated with disease severity. We propose that in acute inflammatory lung diseases such as pneumonia and ARDS, ADAM8 inhibition might allow fine-tuning of neutrophil responses for therapeutic gain.


Asunto(s)
Proteínas ADAM/genética , Antígenos CD/genética , Regulación de la Expresión Génica , Proteínas de la Membrana/genética , ARN/genética , Síndrome de Dificultad Respiratoria/genética , Proteínas ADAM/biosíntesis , Animales , Antígenos CD/biosíntesis , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Masculino , Proteínas de la Membrana/biosíntesis , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Síndrome de Dificultad Respiratoria/metabolismo , Síndrome de Dificultad Respiratoria/patología
5.
JCI Insight ; 7(24)2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36346670

RESUMEN

Clinical outcomes after lung transplantation, a life-saving therapy for patients with end-stage lung diseases, are limited by primary graft dysfunction (PGD). PGD is an early form of acute lung injury with no specific pharmacologic therapies. Here, we present a large multicenter study of plasma and bronchoalveolar lavage (BAL) samples collected on the first posttransplant day, a critical time for investigations of immune pathways related to PGD. We demonstrated that ligands for NKG2D receptors were increased in the BAL from participants who developed severe PGD and were associated with increased time to extubation, prolonged intensive care unit length of stay, and poor peak lung function. Neutrophil extracellular traps (NETs) were increased in PGD and correlated with BAL TNF-α and IFN-γ cytokines. Mechanistically, we found that airway epithelial cell NKG2D ligands were increased following hypoxic challenge. NK cell killing of hypoxic airway epithelial cells was abrogated with NKG2D receptor blockade, and TNF-α and IFN-γ provoked neutrophils to release NETs in culture. These data support an aberrant NK cell/neutrophil axis in human PGD pathogenesis. Early measurement of stress ligands and blockade of the NKG2D receptor hold promise for risk stratification and management of PGD.


Asunto(s)
Trasplante de Pulmón , Disfunción Primaria del Injerto , Humanos , Subfamilia K de Receptores Similares a Lectina de Células NK , Disfunción Primaria del Injerto/etiología , Factor de Necrosis Tumoral alfa , Trasplante de Pulmón/efectos adversos , Pulmón/metabolismo
6.
J Clin Invest ; 130(4): 2041-2053, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31961827

RESUMEN

Cystic fibrosis (CF) lung disease is characterized by an inflammatory response that can lead to terminal respiratory failure. The cystic fibrosis transmembrane conductance regulator (CFTR) is mutated in CF, and we hypothesized that dysfunctional CFTR in platelets, which are key participants in immune responses, is a central determinant of CF inflammation. We found that deletion of CFTR in platelets produced exaggerated acute lung inflammation and platelet activation after intratracheal LPS or Pseudomonas aeruginosa challenge. CFTR loss of function in mouse or human platelets resulted in agonist-induced hyperactivation and increased calcium entry into platelets. Inhibition of the transient receptor potential cation channel 6 (TRPC6) reduced platelet activation and calcium flux, and reduced lung injury in CF mice after intratracheal LPS or Pseudomonas aeruginosa challenge. CF subjects receiving CFTR modulator therapy showed partial restoration of CFTR function in platelets, which may be a convenient approach to monitoring biological responses to CFTR modulators. We conclude that CFTR dysfunction in platelets produces aberrant TRPC6-dependent platelet activation, which is a major driver of CF lung inflammation and impaired bacterial clearance. Platelets and TRPC6 are what we believe to be novel therapeutic targets in the treatment of CF lung disease.


Asunto(s)
Plaquetas/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/metabolismo , Pulmón/metabolismo , Neumonía Bacteriana/metabolismo , Infecciones por Pseudomonas/metabolismo , Pseudomonas aeruginosa/metabolismo , Animales , Plaquetas/patología , Fibrosis Quística/genética , Fibrosis Quística/microbiología , Fibrosis Quística/patología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Pulmón/patología , Masculino , Ratones , Ratones Noqueados , Activación Plaquetaria/genética , Neumonía Bacteriana/genética , Neumonía Bacteriana/patología , Infecciones por Pseudomonas/genética , Infecciones por Pseudomonas/patología , Canal Catiónico TRPC6/genética , Canal Catiónico TRPC6/metabolismo
7.
ERJ Open Res ; 4(2)2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29977900

RESUMEN

The COPA syndrome is a monogenic, autoimmune lung and joint disorder first identified in 2015. This study sought to define the main pulmonary features of the COPA syndrome in an international cohort of patients, analyse patient responses to treatment and highlight when genetic testing should be considered. We established a cohort of subjects (N=14) with COPA syndrome seen at multiple centres including the University of California, San Francisco, CA, USA. All subjects had one of the previously established mutations in the COPA gene, and had clinically apparent lung disease and arthritis. We analysed cohort characteristics using descriptive statistics. All subjects manifested symptoms before the age of 12 years, had a family history of disease, and developed diffuse parenchymal lung disease and arthritis. 50% had diffuse alveolar haemorrhage. The most common pulmonary findings included cysts on chest computed tomography and evidence of follicular bronchiolitis on lung biopsy. All subjects were positive for anti-neutrophil cytoplasmic antibody, anti-nuclear antibody or both and 71% of subjects had rheumatoid factor positivity. All subjects received immunosuppressive therapy. COPA syndrome is an autoimmune disorder defined by diffuse parenchymal lung disease and arthritis. We analysed an international cohort of subjects with genetically confirmed COPA syndrome and found that common pulmonary features included cysts, follicular bronchiolitis and diffuse alveolar haemorrhage. Common extrapulmonary features included early age of onset, family history of disease, autoantibody positivity and arthritis. Longitudinal data demonstrated improvement on chest radiology but an overall decline in pulmonary function despite chronic treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA