Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Small ; : e2311779, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38530085

RESUMEN

Micrometer-sized Si particles are beneficial to practical lithium-ion batteries in regard to low cost and high volumetric energy density in comparison with nanostructured Si anodes. However, both the issues of electrical contact loss and overgrowth of solid electrolyte interface for microscale Si induced by colossal volume change still remain to be addressed. Herein, a scalable and template-free method is introduced to fabricate yolk-shell structured Si anode from commercially available Si microparticles. The void is created via a one-step alkali etching process with the remaining silicon core as the yolk, and a double-walled shell is formed from simultaneous in situ growth of the conformal native oxide layer and subsequent carbon coating. In this configuration, the well-defined void spaces allow the Si core to expand without compromising structural integrity, while the double-walled shell acts as a static capsule to confine silicon fragments despite likely particle fracture. Therefore, electrical connectivity is maintained on both the particle and electrode level during deep galvanostatic cycling, and the solid-electrolyte interface is stabilized on the shell surface. Owing to the benefits of tailored design, excellent cycling stability (capacity retention of 95% after 100 cycles) and high coulombic efficiency (99.5%) are realized in a practical full-cell demonstration.

2.
Org Biomol Chem ; 17(38): 8778-8783, 2019 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-31538174

RESUMEN

Hydrogen sulfide (H2S) is very important for humans and is involved in many physiological processes. Here, we designed and reported a new naked-eye colorimetric fluorescent probe Z1 for detecting H2S in absolute HEPES solution. The fluorescence intensity, after the reaction of the probe and H2S, is about 32 times that of the probe alone. When the concentration of H2S is 0-100 µM, the detection limit (DL) is rather low at about 0.15 µM (3σ/slope). The response mechanism is based on the leaving of the 2,4-dinitrobenzene moiety, followed by intramolecular cyclization to give a fluorescent iminocoumarin-benzothiazole group. Moreover, Z1 was applied to endogenous and exogenous H2S imaging in living cells. The high overlap coefficient proved that probe Z1 has good ER-tracker localization in living cells.

3.
Phys Chem Chem Phys ; 17(27): 17562-5, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26082288

RESUMEN

Yolk-shell Si@void@C nanocomposites are prepared via a facile method of resorcinol-formaldehyde coating and LiOH etching, without SiO2 pre-modification on Si particles, expensive carbon sources, or environmentally-unfriendly HF solutions. Profiting from these favorable features, Si@void@C nanocomposites exhibit considerable reversible capacities (628 mA h g(-1) after 100 cycles) and good rate performances.

4.
ACS Appl Mater Interfaces ; 16(7): 8802-8812, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38319879

RESUMEN

Silicon (Si) stands out as a highly promising anode material for next-generation lithium-ion batteries. However, its low intrinsic conductivity and the severe volume changes during the lithiation/delithiation process adversely affect cycling stability and hinder commercial viability. Rational design of electrode architecture to enhance charge transfer and optimize stress distribution of Si is a transformative way to enhance cycling stability, which still remains a great challenge. In this work, we fabricated a stable integrated Si electrode by combining two-dimensional graphene sheets (G), one-dimensional Si nanowires (SiNW), and carbon nanotubes (CNT) through the cyclization process of polyacrylonitrile (PAN). The integrated electrode features a G/SiNW framework enveloped by a conformal coating consisting of cyclized PAN (cPAN) and CNT. This configuration establishes interconnected electron and lithium-ion transport channels, coupled with a rigid-flexible encapsulated coating, ensuring both high conductivity and resistance against the substantial volume changes in the electrode. The unique multidimensional structural design enhances the rate performance, cyclability, and structural stability of the integrated electrode, yielding a gravimetric capacity (based on the total mass of the electrode) of 650 mAh g-1 after 1000 cycles at 3.0 A g-1. When paired with a commercial LiNi0.5Co0.2Mn0.3O2 cathode, the resulting full cell retains 84.8% of its capacity after 160 cycles at 2.0 C and achieves an impressive energy density of 435 Wh kg-1 at 0.5 C, indicating significant potential for practical applications. This study offers valuable insights into comprehensive electrode structure design at the electrode level for Si-based materials.

5.
Front Chem ; 10: 882681, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464200

RESUMEN

Silicon is considered as the most promising candidate for anodes of next generation lithium-ion batteries owing to its natural abundance and low Li-uptake potential. Building a macroporous structure would alleviate the volume variation and particle fracture of silicon anodes during cycling. However, the common approaches to fabricate macroporous silicon are complex, costly, and high energy-consuming. Herein, bamboo leaves are used as a sustainable and abundant resource to produce macroporous silicon via a scalable magnesiothermic reduction method. The obtained silicon inherits the natural interconnected network from the BLs and the mesopores from the BL-derived silica are engineered into macropores by selective etching after magnesiothermic reduction. These unique structural advantages lead to superior electrochemical performance with efficient electron/ion transport and cycling stability. The macroporous Si@C composite anodes deliver a high capacity of 1,247.7 mAh g-1 after 500 cycles at a current density of 1.0 A g-1 with a remarkable capacity retention of 98.8% and average Coulombic efficiency as high as 99.52% for the same cycle period. Furthermore, the rate capabilities of the Si@C composites are enhanced by conformal carbon coating, which enables the anode to deliver a capacity of 538.2 mAh g-1 at a high current density of 4.0 A g-1 after 1,000 deep cycles. Morphology characterization verifies the structural integrity of the macroporous Si@C composite anodes. This work demonstrated herein provides a simple, economical, and scalable route for the industrial production of macroporous Si anode materials utilizing BLs as a sustainable source for high-performance LIBs.

6.
ACS Appl Mater Interfaces ; 14(36): 40975-40984, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36049121

RESUMEN

Many challenges still exist in lithium-oxygen batteries (LOBs), particularly exploring an efficient catalyst to optimize the reaction pathway and regulate the Li2O2 nucleation. Pr6O11 has a unique 4f electronic structure and the highest oxygen ion mobility among rare earth oxides, exhibiting superior electronic, optical, and chemical properties. These unique properties might endow it with advanced catalytic activities for LOBs. This work reports two crystal forms of Pr6O11 as novel catalysts and regulates the oxygen vacancy (Vo) concentrations by feasible calcination. Thermogravimetric analysis, X-ray diffraction, and X-ray photoelectron spectroscopy (XPS) confirm the conversion from commercial Pr6O11 to cubic fluorite Pr6O11 and Vo-rich Pr6O11. Photographs, high-resolution transmission electron microscopy, selected area electron diffraction, XPS, and electron paramagnetic resonance robustly demonstrate the temperature-dependent evolution of Vo. Ex situ XPS, scanning electron microscopy, and electrochemical techniques are used to study the catalytic mechanism and electrochemical reversibility. It is found that an appropriate Vo concentration can boost O2 adsorption/desorption, accelerate electron transport, and reduce the reaction energy barrier. Vo-rich Pr6O11 optimizes the reaction pathway by offering an intermediate Li2-xO2 (with metalloid conductivity) and adjusting Li2O2 into vertically staggered nanoflakes, effectively avoiding the suffocation of the catalytic surface and presenting excellent capacity, cycling stability, and rate performance.

7.
ACS Appl Mater Interfaces ; 13(44): 52519-52529, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34719234

RESUMEN

The in situ growth of active materials on 3D current collectors (such as Ni foams) presents facile and efficient access to high-performance supercapacitors. However, the low surface area of current collectors limits the mass loading, microstructure, and capacitive performance of active materials thereon. Herein, we develop a novel surface modification with hierarchical N-rich carbon nanosheets on Ni foams via a simple sol-gel method. At the same time, its favorable effects on mass loading and utilization are demonstrated using NiCoMn-carbonate hydroxide (NCM) as a model active material. Specifically, the carbon modification greatly boosts the current collector's specific surface area and enables the growth of dense NCM nanoneedles with controllable mass loading ranging from 5.2 to 23.1 mg cm-2. Meanwhile, the correlation between mass loading and utilization is systematically studied, which shows the well-maintained energy storage efficiency due to the conducive surface modification. As a result, excellent performance with the ultrahigh area-specific capacity of 19.36 F cm-2 at 2 mA cm-2 in the three-electrode configuration and remarkable area-specific energy density of 1352 µW h cm-2 in the solid-state asymmetric device can be achieved, demonstrating a prospective pathway toward facile and effective current collector designs for high-energy/power-density supercapacitors.

8.
Materials (Basel) ; 14(16)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34443273

RESUMEN

Lithium-rich manganese oxide is a promising candidate for the next-generation cathode material of lithium-ion batteries because of its low cost and high specific capacity. Herein, a series of xLi2MnO3·(1 - x)LiMnO2 nanocomposites were designed via an ingenious one-step dynamic hydrothermal route. A high concentration of alkaline solution, intense hydrothermal conditions, and stirring were used to obtain nanoparticles with a large surface area and uniform dispersity. The experimental results demonstrate that 0.072Li2MnO3·0.928LiMnO2 nanoparticles exhibit a desirable electrochemical performance and deliver a high capacity of 196.4 mAh g-1 at 0.1 C. This capacity was maintained at 190.5 mAh g-1 with a retention rate of 97.0% by the 50th cycle, which demonstrates the excellent cycling stability. Furthermore, XRD characterization of the cycled electrode indicates that the Li2MnO3 phase of the composite is inert, even under a high potential (4.8 V), which is in contrast with most previous reports of lithium-rich materials. The inertness of Li2MnO3 is attributed to its high crystallinity and few structural defects, which make it difficult to activate. Hence, the final products demonstrate a favorable electrochemical performance with appropriate proportions of two phases in the composite, as high contents of inert Li2MnO3 lower the capacity, while a sufficient structural stability cannot be achieved with low contents. The findings indicate that controlling the composition through a dynamic hydrothermal route is an effective strategy for developing a Mn-based cathode material for lithium-ion batteries.

9.
ACS Appl Mater Interfaces ; 13(19): 22323-22331, 2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-33955750

RESUMEN

Graphite has dominated the market of anode materials for lithium-ion batteries in applications such as consumer electronic devices and electric vehicles. As commercial graphite anodes are approaching their theoretical capacity, significant efforts have been dedicated towards higher capacity by blending capacity-enhancing additives (e.g., Si) with graphite particles. In spite of the improved gravimetric capacity, the areal capacity of such composite anodes might decrease due to excess void spaces and an incompatible material size distribution. Herein, a rational design of compact graphite/Si/SiO2 ternary composites has been proposed to address the abovementioned issues. Si/SiO2 clusters with an optimal particle size are homogeneously dispersed in the interstitial spaces between graphite particles to promote the packing density, leading to a higher areal capacity than that of pure graphite with equivalent mass loading or electrode thickness. By taking the full intrinsic advantages of graphite, Si, and SiO2, the composite electrodes exhibit 553.6 mAh g-1 after 700 cycles with a capacity retention of 95.2%. Furthermore, the graphite/Si/SiO2 electrodes demonstrate a high coulombic efficiency with an average of 99.68% from 2nd to 200th cycles and areal capacities above 1.75 mAh cm-2 during 200 cycles with an areal mass loading as high as 4.04 mg cm-2. A packing model has been proposed and verified by experimental investigation as a design principle of densely compacted anodes. The effective strategy of introducing Si/SiO2 clusters into the void spaces between graphite particles provides an alternative solution for implementation of graphite-Si composite anodes in next-generation Li-ion cells.

10.
Yi Chuan ; 32(9): 881-5, 2010 Sep.
Artículo en Zh | MEDLINE | ID: mdl-20870608

RESUMEN

Parthanatos is a form of cell death, which often occurs in many diseases such as stroke, Parkinson's disease, heart attack, diabetes, and ischemia reperfusion injury. In a cell, the activation of PARP-1 caused by excitotoxicity leads to Parthanatos, which is also known as PARP-1-dependent cell death. There are multiple cell signaling pathways involved in the process of Parthanatos, which have not been fully understood. The main focus of this article is underlying molecular mechanisms of Parthanatos.


Asunto(s)
Muerte Celular/fisiología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Daño por Reperfusión/patología , Transducción de Señal/fisiología , Muerte Celular/efectos de los fármacos , Complicaciones de la Diabetes/patología , Humanos , Enfermedad de Parkinson/patología , Transducción de Señal/inmunología , Accidente Cerebrovascular/patología
11.
Materials (Basel) ; 12(24)2019 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-31835409

RESUMEN

Nano-sized spinel LiMn2O4/carbon nanotubes (LMO/CNTs) composite is facilely synthesized via a one-step dynamic hydrothermal approach. The characterizations and electrochemical measurements reveal that LiMn2O4 particles with narrow size distribution are well dispersed with CNTs in the composite. The LMO/CNTs nanocomposite with 5 wt % CNTs displays a high specific discharge capacity of 114 mAh g-1 at 1C rate, and the retention rate after 180 cycles at room temperature reaches 94.5% in the potential window of 3.3 to 4.3 V vs. Li/Li+. Furthermore, the electrochemical performance of the composite with 5 wt % CNTs at elevated temperature (55 °C) is also impressive, 90% discharging capacity could be maintained after 100 cycles at 1C. Such excellent electrochemical performance of the final product is attributed to the content of CNTs added in the hydrothermal process and small particle size inherited from pretreated MnO2 precursor.

12.
ChemistryOpen ; 8(3): 298-303, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30886787

RESUMEN

In this work, we introduce Ni nanopyramid arrays (NPAs) supported amorphous Ge anode architecture and demonstrate its effective improvement in sodium storage properties. The Ni-Ge NPAs are prepared by facile electrodeposition and sputtering method, which eliminates the need for any binder or conductive additive when used as a Na-ion battery anode. The electrodes display stable cycling performance and enhanced rate capabilities in contrast with planar Ge electrodes, which can be owing to the rational design of the architectured electrodes and firm bonding between current collector and active material (i. e. Ni and Ge, respectively). To validate improvement of nanostructures on electrochemical performance, sodium insertion behavior of crystalline Ge derived from Mg2Ge precursor has been investigated, in which limited but effective enhancement of sodium storage properties are realized by introducing porous nanostructure in crystalline Ge. These results show that elaborately designed configuration of Ge electrodes may be a promising anode for Na-ion battery applications.

13.
ACS Appl Mater Interfaces ; 8(51): 35172-35179, 2016 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-27959502

RESUMEN

The challenging problems of SnO2 anode material for lithium ion batteries are the poor electronic conductivity and the low oxygen reutilization due to the irreversibility of Li2O generated in the initial discharge leading to a theoretical initial Coulombic efficiency (ICE) of only 52.4%. Different from these strategies, this work proposes a novel strategy to level up the oxygen reutilization in SnO2 by introducing Co3Sn2 nanoalloys which can release Co atoms to reversibly react with Li2O instead. According to this protocol, multi-yolk-shell SnO2/Co3Sn2@C nanocubes are designed and successfully prepared using hollow CoSn(OH)6 nanocubes as precursors followed a hydrothermal carbon coating and calcination treatment. The unique multi-yolk-shell nanostructure offers adequate breathing space for the volumetric deformation during long-term cycling. Moreover, the removal of Li2O allows a high electronic conductivity and resultant rate performance. As a result, the efficient reutilization of oxygen enables a high ICE of 71.7% and a reversible capacity of 1003 mA h g-1 after 200 cycles at 100 mA g-1. Cyclic voltammetry, cycling performance at different voltage windows, and X-ray photoelectron spectroscopy confirm the proposed mechanism. This strategy employing oxygen-poor metals or alloys provides a novel approach to enhance the oxygen reutilization in SnO2 for higher reversibility.

14.
ACS Appl Mater Interfaces ; 6(15): 12346-52, 2014 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-25009973

RESUMEN

As substitutions for transition metal oxides (MOs), transition metal carbonates (MCO3) have been attracting more and more attention because of their lithium storage ability in recent years. Is MCO3 better than MOs for lithium storage? To answer this question, monodisperse CoCO3 and CoO microspindles with comparable structures were synthesized and investigated as a case study. Excluding its structural effect, we found CoCO3 still exhibited reversible capacities and rate capabilities much higher than those of CoO. The reversible capacity of CoCO3 after 10 cycles was 1065 mAh g(-1), 48.2% higher than that (∼720 mAh g(-1)) of CoO. Furthermore, the greatly different electrochemical behaviors were investigated by analyzing the discharge-charge profiles, cyclic voltammetry curves, and Nyquist plots in depth. This work can improve our understanding of the lithium storage advantages of MCO3 against MOs and enlighten us in terms of developing high-performance MCO3 with favorable structures.

15.
Front Biosci (Elite Ed) ; 4(3): 1182-94, 2012 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-22201945

RESUMEN

Apoptosis-inducing factor (AIF) is a phylogenetically old, bifunctional protein with a pro-apoptotic function and redox activity. AIF regulates apoptosis and also plays a role in the defense against stress depending on its subcellular localization. Embryo implantation is a complicated process, in which an activated blastocyst interacts with a receptive uterus. The expression and regulation of AIF were investigated in this study in the mouse uterus during early pregnancy, pseudopregnancy, delayed implantation, artificial decidualization and under hormonal treatment using in situ hybridization, immunohistochemistry and real-time PCR. During early pregnancy, temporally and spatially regulated patterns of AIF expression were found in the mouse uterus; AIF expression in the luminal epithelium and glandular epithelium is regulated by steroid hormones; AIF mRNA expression in the stroma is influenced by the active blastocyst; and AIF protein was found to be located in the cytoplasm rather than the nucleus through confocal microscope. Our data suggest that AIF might play an important role during mouse embryo implantation and that the role of AIF might be implemented through its physiological activity rather than through its pro-apoptotic function in the mouse uterus during this period.


Asunto(s)
Factor Inductor de la Apoptosis/metabolismo , Útero/metabolismo , Animales , Secuencia de Bases , Cartilla de ADN , Femenino , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Endogámicos ICR , Embarazo , Seudoembarazo , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA