Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 577(7788): 79-84, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31853069

RESUMEN

Water lilies belong to the angiosperm order Nymphaeales. Amborellales, Nymphaeales and Austrobaileyales together form the so-called ANA-grade of angiosperms, which are extant representatives of lineages that diverged the earliest from the lineage leading to the extant mesangiosperms1-3. Here we report the 409-megabase genome sequence of the blue-petal water lily (Nymphaea colorata). Our phylogenomic analyses support Amborellales and Nymphaeales as successive sister lineages to all other extant angiosperms. The N. colorata genome and 19 other water lily transcriptomes reveal a Nymphaealean whole-genome duplication event, which is shared by Nymphaeaceae and possibly Cabombaceae. Among the genes retained from this whole-genome duplication are homologues of genes that regulate flowering transition and flower development. The broad expression of homologues of floral ABCE genes in N. colorata might support a similarly broadly active ancestral ABCE model of floral organ determination in early angiosperms. Water lilies have evolved attractive floral scents and colours, which are features shared with mesangiosperms, and we identified their putative biosynthetic genes in N. colorata. The chemical compounds and biosynthetic genes behind floral scents suggest that they have evolved in parallel to those in mesangiosperms. Because of its unique phylogenetic position, the N. colorata genome sheds light on the early evolution of angiosperms.


Asunto(s)
Genoma de Planta , Nymphaea/genética , Filogenia , Flores/genética , Flores/metabolismo , Nymphaea/metabolismo , Odorantes/análisis
2.
Plant J ; 118(1): 141-158, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38128030

RESUMEN

The development of photosynthetically competent seedlings requires both light and retrograde biogenic signaling pathways. The transcription factor GLK1 functions at the interface between these pathways and receives input from the biogenic signal integrator GUN1. BBX14 was previously identified, together with GLK1, in a core module that mediates the response to high light (HL) levels and biogenic signals, which was studied by using inhibitors of chloroplast development. Our chromatin immunoprecipitation-Seq experiments revealed that BBX14 is a direct target of GLK1, and RNA-Seq analysis suggests that BBX14 may function as a regulator of the circadian clock. In addition, BBX14 plays a role in chlorophyll biosynthesis during early onset of light. Knockout of BBX14 results in a long hypocotyl phenotype dependent on a retrograde signal. Furthermore, the expression of BBX14 and BBX15 during biogenic signaling requires GUN1. Investigation of the role of BBX14 and BBX15 in GUN-type biogenic (gun) signaling showed that the overexpression of BBX14 or BBX15 caused de-repression of CA1 mRNA levels, when seedlings were grown on norflurazon. Notably, transcripts of the LHCB1.2 marker are not de-repressed. Furthermore, BBX14 is required to acclimate plants to HL stress. We propose that BBX14 is an integrator of biogenic signals and that BBX14 is a nuclear target of retrograde signals downstream of the GUN1/GLK1 module. However, we do not classify BBX14 or BBX15 overexpressors as gun mutants based on a critical evaluation of our results and those reported in the literature. Finally, we discuss a classification system necessary for the declaration of new gun mutants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas , Plantones/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
BMC Plant Biol ; 24(1): 370, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714932

RESUMEN

BACKGROUND: Nymphaea (waterlily) is known for its rich colors and role as an important aquatic ornamental plant globally. Nymphaea atrans and some hybrids, including N. 'Feitian 2,' are more appealing due to the gradual color change of their petals at different flower developmental stages. The petals of N. 'Feitian 2' gradually change color from light blue-purple to deep rose-red throughout flowering. The mechanism of the phenomenon remains unclear. RESULTS: In this work, flavonoids in the petals of N. 'Feitian 2' at six flowering stages were examined to identify the influence of flavonoid components on flower color changes. Additionally, six cDNA libraries of N. 'Feitian 2' over two blooming stages were developed, and the transcriptome was sequenced to identify the molecular mechanism governing petal color changes. As a result, 18 flavonoid metabolites were identified, including five anthocyanins and 13 flavonols. Anthocyanin accumulation during flower development is the primary driver of petal color change. A total of 12 differentially expressed genes (DEGs) in the flavonoid biosynthesis pathway were uncovered, and these DEGs were significantly positively correlated with anthocyanin accumulation. Six structural genes were ultimately focused on, as their expression levels varied significantly across different flowering stages. Moreover, 104 differentially expressed transcription factors (TFs) were uncovered, and three MYBs associated with flavonoid biosynthesis were screened. The RT-qPCR results were generally aligned with high-throughput sequencing results. CONCLUSIONS: This research offers a foundation to clarify the mechanisms underlying changes in the petal color of waterlilies.


Asunto(s)
Flavonoides , Flores , Regulación de la Expresión Génica de las Plantas , Nymphaea , Transcriptoma , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Flavonoides/biosíntesis , Flavonoides/metabolismo , Nymphaea/genética , Nymphaea/metabolismo , Pigmentación/genética , Antocianinas/biosíntesis , Antocianinas/metabolismo , Perfilación de la Expresión Génica , Color
4.
Plant J ; 109(6): 1397-1415, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34919766

RESUMEN

RNA-directed DNA methylation (RdDM) helps to defend plants against invasive nucleic acids. In the canonical form of RdDM, 24-nt small interfering RNAs (siRNAs) are produced by DICER-LIKE 3 (DCL3). The siRNAs are loaded onto ARGONAUTE (AGO) proteins leading ultimately to de novo DNA methylation. Here, we introduce the Arabidopsis thaliana prors1 (LUC) transgenic system, in which 24-nt siRNAs are generated to silence the promoter-LUC construct. A forward genetic screen performed with this system identified, besides known components of RdDM (NRPD2A, RDR2, AGO4 and AGO6), the RNA-binding protein RBP45D. RBP45D is involved in CHH (where H is A, C or T) DNA methylation, and maintains siRNA production originating from the LUC transgene. RBP45D is localized to the nucleus, where it is associated with small nuclear RNAs (snRNAs) and small nucleolar RNAs (snoRNAs). RNA-Seq analysis showed that in CRISPR/Cas-mediated rbp-ko lines FLOWERING LOCUS C (FLC) mRNA levels are upregulated and several loci differentially spliced, among them FLM. In consequence, loss of RBP45D delays flowering, presumably mediated by the release of FLC levels and/or alternative splicing of FLM. Moreover, because levels and processing of transcripts of known RdDM genes are not altered in rbp-ko lines, RBP45D should have a more direct function in transgene silencing, probably independent of the canonical RdDM pathway. We suggest that RBP45D facilitates siRNA production by stabilizing either the precursor RNA or the slicer protein. Alternatively, RBP45D could be involved in chromatin modifications, participate in retention of Pol IV transcripts and/or in Pol V-dependent lncRNA retention in chromatin to enable their scaffold function.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Flores/fisiología , Proteínas de Unión al ARN , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metilación de ADN , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN de Planta/genética , ARN Interferente Pequeño/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transgenes
5.
BMC Plant Biol ; 23(1): 46, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36670355

RESUMEN

BACKGROUND: Petal blotch is a unique ornamental trait in angiosperm families, and blotch in rose petal is rare and has great esthetic value. However, the cause of the formation of petal blotch in rose is still unclear. The influence of key enzyme genes and regulatory genes in the pigment synthesis pathways needs to be explored and clarified. RESULTS: In this study, the rose cultivar 'Sunset Babylon Eyes' with rose-red to dark red blotch at the base of petal was selected as the experimental material. The HPLC-DAD and UPLC-TQ-MS analyses indicated that only cyanidin 3,5-O-diglucoside (Cy3G5G) contributed to the blotch pigmentation of 'Sunset Babylon Eyes', and the amounts of Cy3G5G varied at different developmental stages. Only flavonols but no flavone were found in blotch and non-blotch parts. As a consequence, kaempferol and its derivatives as well as quercetin and its derivatives may act as background colors during flower developmental stages. Despite of the differences in composition, the total content of carotenoids in blotch and non-blotch parts were similar, and carotenoids may just make the petals show a brighter color. Transcriptomic data, quantitative real-time PCR and promoter sequence analyses indicated that RC7G0058400 (F3'H), RC6G0470600 (DFR) and RC7G0212200 (ANS) may be the key enzyme genes for the early formation and color deepening of blotch at later stages. As for two transcription factor, RC7G0019000 (MYB) and RC1G0363600 (WRKY) may bind to the promoters of critical enzyme genes, or RC1G0363600 (WRKY) may bind to the promoter of RC7G0019000 (MYB) to activate the anthocyanin accumulation in blotch parts of 'Sunset Babylon Eyes'. CONCLUSIONS: Our findings provide a theoretical basis for the understanding of the chemical and molecular mechanism for the formation of petal blotch in rose.


Asunto(s)
Rosa , Transcriptoma , Rosa/genética , Rosa/metabolismo , Antocianinas/metabolismo , Pigmentación/genética , Carotenoides/metabolismo , Metaboloma , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas
6.
Planta ; 257(4): 65, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36826722

RESUMEN

MAIN CONCLUSION: Glycosylation from an anthocyanidin 3-O-glucosyltransferase Ps3GT (PsUGT78A27) facilitates the accumulation of pelargonidin 3-O-glucoside, which defines the vivid red flower color and occurs only in specific peony tree cultivars. Although tree peony cultivars of Chinese and Japanese both originated from China, vivid red color is only found in flowers of Japanese cultivars but not of Chinese cultivar groups. In this study, a Japanese tree peony cultivar 'Taiyoh' with vivid red petals and a Chinese tree peony cultivar 'Hu Hong' with reddish pink petals were chosen as the experimental materials. Flavonoids profiling indicated that pelargonidin 3-O-glucoside (Pg3G) detected only in Japanese cultivar contributed to vivid red color of tree peony petals, while pelargonidin 3,5-di-O-glucoside (Pg3G5G) found in both of Japanese and Chinese cultivars was responsible for pink flower color. Through the integration of full-length transcriptome sequencing and in vitro enzymatic activity analysis, two anthocyanin glucosyltransferase genes PsUGT78A27 and PsUGT75L45 were isolated from the petals of tree peony, and their encoding products exhibited enzymatic activities of pelargonidin 3-O-glucosyltransferase and anthocyanin 5-O-glucosyltransferase, respectively. Further quantitative real-time PCR revealed that PsUGT78A27 displayed high expression in petals of both cultivars and PsUGT75L45 was expressed at high levels in cultivar 'Hu Hong' only. Using a gene gun technique, the GFP fusion proteins of PsUGT78A27 and PsUGT75L45 were visualized to be cytoplasmic and nuclear localization in the epidermal cells of tree peony petals, and the glucosylation function of PsUGT78A27 and PsUGT75L45 to alter petal color of tree peony and herbaceous peony had been directly validated in vivo. These results demonstrated that PsUGT78A27 and PsUGT75L45 are key players for the presence or absence of vivid red flower color in tree peony cultivars. Our findings further elucidated the chemical and molecular mechanism of petal pigmentation of Paeonia and could help breed the Paeonia cultivars possessing novel flower colors.


Asunto(s)
Antocianinas , Paeonia , Antocianinas/metabolismo , Paeonia/genética , Fitomejoramiento , Flores/genética , Glucósidos/metabolismo , Glucosiltransferasas/metabolismo , Color
7.
Anticancer Drugs ; 34(10): 1146-1150, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36728908

RESUMEN

The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) dramatically improve the clinical outcomes of non-small cell lung cancer (NSCLC) patients harboring EGFR -sensitive mutations. Despite the remarkable efficacy of first-and second-generation EGFR TKIs, disease relapse is inevitable. EGFR T790M mutation is a primary contributor to the acquired resistance to first- and second-generation EGFR TKIs. Osimertinib, which is an irreversible third-generation EGFR TKI, was designed for EGFR -activating mutations as well as the EGFR T790M mutation in patients with advanced NSCLC and has demonstrated a convincing efficacy. However, acquired resistance to osimertinib after treatment inevitably occurs. The acquired resistance mechanisms to osimertinib are highly complicated and not fully understood, encompassing EGFR -dependent as well as EGFR -independent mechanisms. Treatment approaches for patients progressing from osimertinib have not been established. We present a case of a stage IV lung adenocarcinoma patient harboring EGFR L858R, acquired T790M after treatment with first-line gefitinib. She then acquired a new EML4-ALK gene fusion after treatment with osimertinib. A combination targeted therapy of osimertinib plus alectinib was initiated, with a progression-free survival of 5 months without any serious adverse reaction. After disease progression, EGFR C797S in cis was detected with a loss of the EML4-ALK fusion by targeted next-generation sequencing. Then therapy was changed to pemetrexed combined with bevacizumab plus camrelizumab, but no obvious effect was observed. The patient had achieved an overall survival of 31 months. As far as we know, this was the first reported case that an EGFR -mutant NSCLC patient-acquired ALK fusion mediating resistance to osimertinib, and sequential EGFR C797S mutation mediating resistance to combined targeted therapy with osimertinib and alectinib. Our case shows that EML4-ALK fusion is a rare but critical resistance mechanism to osimertinib, and C797S mutation in cis may be an underlying mechanism of acquired resistance mutation in double TKIs therapy. Furthermore, molecular detection and rebiopsy play important roles in the selection of therapeutic strategies when the disease progresses.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Femenino , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Receptores ErbB/genética , Mutación , Inhibidores de Proteínas Quinasas/uso terapéutico , Compuestos de Anilina/uso terapéutico , Compuestos de Anilina/farmacología , Proteínas de Fusión Oncogénica
8.
Proc Natl Acad Sci U S A ; 117(12): 6918-6927, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32161131

RESUMEN

Singlet oxygen (1O2), the major reactive oxygen species (ROS) produced in chloroplasts, has been demonstrated recently to be a highly versatile signal that induces various stress responses. In the fluorescent (flu) mutant, its release causes seedling lethality and inhibits mature plant growth. However, these drastic phenotypes are suppressed when EXECUTER1 (EX1) is absent in the flu ex1 double mutant. We identified SAFEGUARD1 (SAFE1) in a screen of ethyl methanesulfonate (EMS) mutagenized flu ex1 plants for suppressor mutants with a flu-like phenotype. In flu ex1 safe1, all 1O2-induced responses, including transcriptional rewiring of nuclear gene expression, return to levels, such as, or even higher than, those in flu Without SAFE1, grana margins (GMs) of chloroplast thylakoids (Thys) are specifically damaged upon 1O2 generation and associate with plastoglobules (PGs). SAFE1 is localized in the chloroplast stroma, and release of 1O2 induces SAFE1 degradation via chloroplast-originated vesicles. Our paper demonstrates that flu-produced 1O2 triggers an EX1-independent signaling pathway and proves that SAFE1 suppresses this signaling pathway by protecting GMs.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Estrés Oxidativo , Sustancias Protectoras/metabolismo , Plantones/crecimiento & desarrollo , Oxígeno Singlete/toxicidad , Tilacoides/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cloroplastos/efectos de los fármacos , Cloroplastos/metabolismo , Cloroplastos/patología , Regulación de la Expresión Génica de las Plantas , Luz , Mutación , Especies Reactivas de Oxígeno/metabolismo , Plantones/genética , Plantones/metabolismo , Tilacoides/efectos de los fármacos , Tilacoides/patología
9.
Plant J ; 106(2): 351-365, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33486798

RESUMEN

Lotus plumule, the embryo of the seed of the sacred lotus (Nelumbo nucifera), contains a high accumulation of secondary metabolites including flavonoids and possesses important pharmaceutical value. Flavonoid C-glycosides, which accumulate exclusively in lotus plumule, have attracted considerable attention in recent decades due to their unique chemical structure and special bioactivities. As well as mono-C-glycosides, lotus plumule also accumulates various kinds of di-C-glycosides by mechanisms which are as yet unclear. In this study we identified two C-glycosyltransferase (CGT) genes by mining sacred lotus genome data and provide in vitro and in planta evidence that these two enzymes (NnCGT1 and NnCGT2, also designated as UGT708N1 and UGT708N2, respectively) exhibit CGT activity. Recombinant UGT708N1 and UGT708N2 can C-glycosylate 2-hydroxyflavanones and 2-hydroxynaringenin C-glucoside, forming flavone mono-C-glycosides and di-C-glycosides, respectively, after dehydration. In addition, the above reactions were successfully catalysed by cell-free extracts from tobacco leaves transiently expressing NnCGT1 or NnCGT2. Finally, enzyme assays using cell-free extracts of lotus plumule suggested that flavone di-C-glycosides (vicenin-1, vicenin-3, schaftoside and isoschaftoside) are biosynthesized through sequentially C-glucosylating and C-arabinosylating/C-xylosylating 2-hydroxynaringenin. Taken together, our results provide novel insights into the biosynthesis of flavonoid di-C-glycosides by proposing a new biosynthetic pathway for flavone C-glycosides in N. nucifera and identifying a novel uridine diphosphate-glycosyltransferase (UGT708N2) that specifically catalyses the second glycsosylation, C-arabinosylating and C-xylosylating 2-hydroxynaringenin C-glucoside.


Asunto(s)
Flavonoides/metabolismo , Glicósidos/metabolismo , Nelumbo/metabolismo , Glicosilación , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Redes y Vías Metabólicas , Nelumbo/enzimología , Nelumbo/genética , Filogenia , Plantas Modificadas Genéticamente , Nicotiana
10.
Plant J ; 104(6): 1724-1735, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33085804

RESUMEN

Neoxanthin (Neo), which is only bound to the peripheral antenna proteins of photosystem (PS) II, is a conserved carotenoid in all green plants. It has been demonstrated that Neo plays an important role in photoprotection and its deficiency fails to impact LHCII stability in vitro and indoor plant growth in vivo. Whether Neo is involved in maintaining the PSII complex structure or adaptive mechanisms for the everchanging environment has not yet been elucidated. In this study, the role of Neo in maintaining the structure and function of the PSII-LHCII supercomplexes was studied using Neo deficient Arabidopsis mutants. Our results show that Neo deficiency had little effect on the electron transport capacity and the plant fitness, but the PSII-LHCII supercomplexes were significantly impacted by the lack of Neo. In the absence of Neo, the M-type LHCII trimer cannot effectively associate with the C2 S2 -type PSII-LHCII supercomplexes even in moderate light conditions. Interestingly, Neo deficiency also leads to decreased PSII protein phosphorylation but rapid transition from state 1 to state 2. We suggest that Neo might enforce the interactions between LHCII and the minor antennas and that the absence of Neo makes M-type LHCII disassociate from the PSII complex, leading to the disassembly of the PSII-LHCII C2 S2 M2 supercomplexes, which results in alterations in the phosphorylation patterns of the thylakoid photosynthetic proteins and the kinetics of state transition.


Asunto(s)
Arabidopsis/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Xantófilas/metabolismo , Arabidopsis/fisiología , Arabidopsis/ultraestructura , Cinética , Microscopía Electrónica de Transmisión , Fosforilación , Fotosíntesis , Complejo de Proteína del Fotosistema II/fisiología , Tilacoides/metabolismo , Tilacoides/ultraestructura
11.
Chem Biodivers ; 18(2): e2000848, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33403807

RESUMEN

Paeonia cultivars are famous ornamental plants, and some of them are also traditional Chinese medicinal resources. Intersubgeneric hybrids of Paeonia (IHPs) are formed by the hybridization of herbaceous peony (Paeonia lactiflora) and tree peony (Paeonia×suffruticosa or lutea hybrid tree peony). The phenotypic characteristics of IHPs are similar to those of herbaceous peony, and their root systems are large and vigorous. However, their medicinal value has not been reported yet. In this study, the roots of eight IHP samples were analyzed by high performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS/MS). A total of 18 compounds were identified, including phenols, paeonols, monoterpene glycosides, and tannins. The contents of monoterpene glycosides and tannins in IHPs were higher than herbaceous peony and tree peony, exceeding 44.76 mg/g DW and 11.50 mg/g DW, respectively. Three IHPs, 'Prairie Charm', 'Garden Treasure', and 'Yellow Emperor', with more types and a higher content of medicinal compounds, were screened out by cluster analysis. These IHPs have considerable potential for the development of medicinal resources.


Asunto(s)
Paeonia/química , Raíces de Plantas/química , Acetofenonas/análisis , Glicósidos/análisis , Monoterpenos/análisis , Fenoles/análisis , Taninos/análisis
12.
New Phytol ; 225(4): 1715-1731, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31596965

RESUMEN

Arabidopsis thaliana contains 13 fibrillins (FBNs), which are all localized to chloroplasts. FBN1 and FBN2 are involved in photoprotection of photosystem II, and FBN4 and FBN5 are thought to be involved in plastoquinone transport and biosynthesis, respectively. The functions of the other FBNs remain largely unknown. To gain insight into the function of FBN6, we performed coexpression and Western analyses, conducted fluorescence and transmission electron microscopy, stained reactive oxygen species (ROS), measured photosynthetic parameters and glutathione levels, and applied transcriptomics and metabolomics. Using coexpression analyses, FBN6 was identified as a photosynthesis-associated gene. FBN6 is localized to thylakoid and envelope membranes, and its knockout results in stunted plants. The delayed-growth phenotype cannot be attributed to altered basic photosynthesis parameters or a reduced CO2 assimilation rate. Under moderate light stress, primary leaves of fbn6 plants begin to bleach and contain enlarged plastoglobules. RNA sequencing and metabolomics analyses point to an alteration in sulfate reduction in fbn6. Indeed, glutathione content is higher in fbn6, which in turn confers cadmium tolerance of fbn6 seedlings. We conclude that loss of FBN6 leads to perturbation of ROS homeostasis. FBN6 enables plants to cope with moderate light stress and affects cadmium tolerance.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Cloroplastos/metabolismo , Fibrilinas/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Especies Reactivas de Oxígeno/metabolismo , Aclimatación/genética , Aclimatación/fisiología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cadmio/toxicidad , Proteínas de Cloroplastos/genética , Fibrilinas/genética , Homeostasis , Luz , Fotosíntesis/fisiología , Transporte de Proteínas , Estrés Fisiológico/efectos de los fármacos , Sulfatos/metabolismo , Tilacoides/fisiología
13.
BMC Genomics ; 20(1): 995, 2019 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-31856735

RESUMEN

BACKGROUND: Flavonoids are produced in all flowering plants in a wide range of tissues including in berry fruits. These compounds are of considerable interest for their biological activities, health benefits and potential pharmacological applications. However, transcriptomic and genomic resources for wild and cultivated berry fruit species are often limited, despite their value in underpinning the in-depth study of metabolic pathways, fruit ripening as well as in the identification of genotypes rich in bioactive compounds. RESULTS: To access the genetic diversity of wild and cultivated berry fruit species that accumulate high levels of phenolic compounds in their fleshy berry(-like) fruits, we selected 13 species from Europe, South America and Asia representing eight genera, seven families and seven orders within three clades of the kingdom Plantae. RNA from either ripe fruits (ten species) or three ripening stages (two species) as well as leaf RNA (one species) were used to construct, assemble and analyse de novo transcriptomes. The transcriptome sequences are deposited in the BacHBerryGEN database (http://jicbio.nbi.ac.uk/berries) and were used, as a proof of concept, via its BLAST portal (http://jicbio.nbi.ac.uk/berries/blast.html) to identify candidate genes involved in the biosynthesis of phenylpropanoid compounds. Genes encoding regulatory proteins of the anthocyanin biosynthetic pathway (MYB and basic helix-loop-helix (bHLH) transcription factors and WD40 repeat proteins) were isolated using the transcriptomic resources of wild blackberry (Rubus genevieri) and cultivated red raspberry (Rubus idaeus cv. Prestige) and were shown to activate anthocyanin synthesis in Nicotiana benthamiana. Expression patterns of candidate flavonoid gene transcripts were also studied across three fruit developmental stages via the BacHBerryEXP gene expression browser (http://www.bachberryexp.com) in R. genevieri and R. idaeus cv. Prestige. CONCLUSIONS: We report a transcriptome resource that includes data for a wide range of berry(-like) fruit species that has been developed for gene identification and functional analysis to assist in berry fruit improvement. These resources will enable investigations of metabolic processes in berries beyond the phenylpropanoid biosynthetic pathway analysed in this study. The RNA-seq data will be useful for studies of berry fruit development and to select wild plant species useful for plant breeding purposes.


Asunto(s)
Flavonoides/biosíntesis , Frutas/genética , Genes de Plantas , Rubus/genética , Transcriptoma , Antocianinas/biosíntesis , Vías Biosintéticas/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Magnoliopsida/clasificación , Magnoliopsida/genética , Fenoles/análisis , Filogenia , Proteínas de Plantas/genética , RNA-Seq , Rubus/química , Rubus/crecimiento & desarrollo , Rubus/metabolismo
14.
Plant Cell Physiol ; 60(3): 599-611, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30496505

RESUMEN

Flower color patterns play critical roles in plant-pollinator interactions and represent one of the most common adaptations during angiosperm evolution. However, the molecular mechanisms underlying flower color pattern formation are less understood in non-model organisms. The aim of this study was to identify genes involved in the formation of petal blotches in tree peony (Paeonia suffruticosa) through transcriptome profiling and functional experiments. We identified an R2R3-MYB gene, PsMYB12, representing a distinct R2R3-MYB subgroup, with a spatiotemporal expression pattern tightly associated with petal blotch development. We further demonstrated that PsMYB12 interacts with a basic helix-loop-helix (bHLH) and a WD40 protein in a regulatory complex that directly activates PsCHS expression, which is also specific to the petal blotches. Together, these findings advance our understanding of the molecular mechanisms of pigment pattern formation beyond model plants. They also benefit molecular breeding of tree peony cultivars with novel color patterns and promote germplasm innovation.


Asunto(s)
Paeonia/metabolismo , Factores de Transcripción/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Antocianinas/genética , Antocianinas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Paeonia/genética , Factores de Transcripción/genética
15.
Plant Cell Environ ; 42(4): 1112-1124, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30311663

RESUMEN

Sedum plumbizincicola is able to hyperaccumulate cadmium (Cd), a nonessential and highly toxic metal, in the above-ground tissues, but the mechanisms for its Cd hypertolerance are not fully understood. Here, we show that the heavy metal ATPase 1 (SpHMA1) of S. plumbizincicola plays an important role in chloroplast Cd detoxification. Compared with the HMA1 ortholog in the Cd nonhyperaccumulating ecotype of Sedum alfredii, the expression of SpHMA1 in the leaves of S. plumbizincicola was >200 times higher. Heterologous expression of SpHMA1 in Saccharomyces cerevisiae increased Cd sensitivity and Cd transport activity in the yeast cells. The SpHMA1 protein was localized to the chloroplast envelope. SpHMA1 RNA interference transgenic plants and CRISPR/Cas9-induced mutant lines showed significantly increased Cd accumulation in the chloroplasts compared with wild-type plants. Chlorophyll fluorescence imaging analysis revealed that the photosystem II of SpHMA1 knockdown and knockout lines suffered from a much higher degree of Cd toxicity than wild type. Taken together, these results suggest that SpHMA1 functions as a chloroplast Cd exporter and protects photosynthesis by preventing Cd accumulation in the chloroplast in S. plumbizincicola and hyperexpression of SpHMA1 is an important component contributing to Cd hypertolerance in S. plumbizincicola.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Cadmio/metabolismo , Cloroplastos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Sedum/metabolismo , Southern Blotting , Organismos Modificados Genéticamente , Fotosíntesis , Hojas de la Planta/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Sedum/fisiología
16.
J Exp Bot ; 70(1): 29-40, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30272237

RESUMEN

In plants, highly reactive singlet oxygen (1O2) is known to inhibit photosynthesis and to damage the cell as a cytotoxin. However, more recent studies have also proposed 1O2 as a signal. In plants under stress, not only 1O2 but also other reactive oxygen species (ROS) are generated simultaneously, thus making it difficult to link a particular response to the release of 1O2 and establish a signaling role for this ROS. This obstacle has been overcome by the identification of conditional mutants of Arabidopsis thaliana that selectively generate 1O2 and trigger various 1O2-mediated responses. In chloroplasts of these mutants, chlorophyll or its biosynthetic intermediates may act as a photosensitizer and generate 1O2. These 1O2-mediated responses are not only dependent on the dosage of 1O2 but also are determined by the timing and suborganellar localization of its production. This spatial- and temporal-dependent variability of 1O2-mediated responses emphasizes the importance of 1O2 as a highly versatile and short-lived signal that acts throughout the life cycle of a plant.


Asunto(s)
Arabidopsis/metabolismo , Cloroplastos/metabolismo , Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Oxígeno Singlete/metabolismo , Relación Dosis-Respuesta a Droga
17.
J Exp Bot ; 70(18): 4749-4762, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31106836

RESUMEN

Flavonoids are secondary metabolites widely distributed among angiosperms, where they play diverse roles in plant growth, development, and evolution. The regulation of flavonoid biosynthesis in plants has been extensively studied at the transcriptional level, but post-transcriptional, translational, and post-translational control of flavonoid biosynthesis remain poorly understood. In this study, we analysed post-translational regulation of flavonoid biosynthesis in the ornamental plant Paeonia, using proteome and ubiquitylome profiling, in conjunction with transcriptome data. Three enzymes involved in flavonoid biosynthesis were identified as being putative targets of ubiquitin-mediated degradation. Among these, chalcone synthase (PhCHS) was shown to have the greatest number of ubiquitination sites. We examined PhCHS abundance in petals using PhCHS-specific antibody and found that its accumulation decreased at later developmental stages, resulting from 26S proteasome-mediated degradation. We further identified a ring domain-containing protein (PhRING-H2) that physically interacts with PhCHS and demonstrated that PhRING-H2 is required for PhCHS ubiquitination. Taken together, our results suggest that PhRING-H2-mediates PhCHS ubiquitination and degradation is an important mechanism of post-translational regulation of flavonoid biosynthesis in Paeonia, providing a theoretical basis for the manipulation of flavonoid biosynthesis in plants.


Asunto(s)
Aciltransferasas/metabolismo , Paeonia/metabolismo , Proteínas de Plantas/metabolismo , Ubiquitinación , Flores/química , Flores/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
18.
J Sep Sci ; 42(18): 2888-2899, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31282097

RESUMEN

Elm fruits were once an important food source in the years of famine. Research on the functional compounds in elm fruits was almost unavailable. In this study, we established an efficient high-performance liquid chromatography method for the simultaneous separation of eight chlorogenic acids and 28 flavonoids in elm fruits for the first time. Total flavonoid contents ranged from 286 mg/100 g (Ulmus laciniata) to 1228 mg/100 g (U. pumila). High concentrations of rutin, quercetin 3-O-glucoside, and kaempferol derivatives were present in U. laevis, U. castaneifolia, and U. pumila, respectively. Furthermore, the fruit extracts of U. americana, U. castaneifolia, U. davidiana, and U. pumila showed higher antioxidant activity. These results suggest that fruits of these species can be used as bioresources for the extraction of the corresponding functional compounds. This work provides informative data and can be an important reference for future research on elm fruits as a renewed food resource.


Asunto(s)
Antioxidantes/análisis , Ácido Clorogénico/análisis , Flavonoides/análisis , Frutas/química , Ulmus/química , Antioxidantes/farmacología , Benzotiazoles/antagonistas & inhibidores , Compuestos de Bifenilo/antagonistas & inhibidores , Ácido Clorogénico/farmacología , Flavonoides/farmacología , Picratos/antagonistas & inhibidores , Ácidos Sulfónicos/antagonistas & inhibidores
19.
Proc Natl Acad Sci U S A ; 113(26): E3792-800, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27303039

RESUMEN

Formation of singlet oxygen ((1)O2) has been implicated with damaging photosystem II (PSII) that needs to undergo continuous repair to maintain photosynthetic electron transport. In addition to its damaging effect, (1)O2 has also been shown to act as a signal that triggers stress acclimation and an enhanced stress resistance. A signaling role of (1)O2 was first documented in the fluorescent (flu) mutant of Arabidopsis It strictly depends on the chloroplast protein EXECUTER1 (EX1) and happens under nonphotoinhibitory light conditions. Under severe light stress, signaling is initiated independently of EX1 by (1)O2 that is thought to be generated at the acceptor side of active PSII within the core of grana stacks. The results of the present study suggest a second source of (1)O2 formation in grana margins close to the site of chlorophyll synthesis where EX1 is localized and the disassembly of damaged and reassembly of active PSII take place. The initiation of (1)O2 signaling in grana margins depends on EX1 and the ATP-dependent zinc metalloprotease FtsH. As FtsH cleaves also the D1 protein during the disassembly of damaged PSII, EX1- and (1)O2-mediated signaling seems to be not only spatially but also functionally associated with the repair of PSII.


Asunto(s)
Proteasas ATP-Dependientes/metabolismo , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Proteínas de la Membrana/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Oxígeno Singlete/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Plantones/metabolismo , Transducción de Señal
20.
Plant Cell Rep ; 36(1): 151-162, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27787596

RESUMEN

KEY MESSAGE: Our study is the first to demonstrate that PSK1 , a SKP1 -like gene homologue, is involved in salinity tolerance. Our functional characterization of PSK1 provides new insights into tree peony development. A homologous gene of S-phase kinase-associated protein1 (SKP1) was cloned from tree peony (Paeonia suffruticosa) and denoted as PSK1. The 462-bp open reading frame of PSK1 was predicted to encode a protein comprising 153 amino acids, with a molecular mass of 17 kDa. The full-length gene was 1,634 bp long and included a large 904-bp intron. PSK1 transcription was detected in all tissues, with the highest level observed in sepals, followed by leaves. Under salinity stress, overexpression of PSK1 in Arabidopsis resulted in increased germination percentages, cotyledon greening, and fresh weights relative to wild-type plants. Furthermore, transgenic Arabidopsis lines containing 35S::PSK1 displayed increased expression of genes that would be essential for reproduction and growth under salinity stress: ASK1, LEAFY, FT, and CO involved in flower development and flowering time as well as P5CS, RAB18, DREB, and SOD1-3 contributing to salinity tolerance. Our functional characterization of PSK1 adds to global knowledge of the multiple functions of previously explored SKP1-like genes in plants and sheds light on the molecular mechanism underlying its role in salinity tolerance. Our findings also provide information on the function and molecular mechanism of PSK1 in tree peony flower development, thereby revealing a theoretical basis for regulation of flowering and conferral of salinity tolerance in tree peony.


Asunto(s)
Arabidopsis/genética , Arabidopsis/fisiología , Genes de Plantas , Paeonia/genética , Proteínas de Plantas/metabolismo , Salinidad , Tolerancia a la Sal/genética , Homología de Secuencia de Aminoácido , Secuencia de Aminoácidos , Carbohidratos/análisis , Flores/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas/química , Plantas Modificadas Genéticamente , Prolina/metabolismo , Alineación de Secuencia , Análisis de Secuencia de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA