Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(13): e2210791120, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36947519

RESUMEN

Adaptive changes in crops contribute to the diversity of agronomic traits, which directly or indirectly affect yield. The change of pubescence form from appressed to erect is a notable feature during soybean domestication. However, the biological significance and regulatory mechanism underlying this transformation remain largely unknown. Here, we identified a major-effect locus, PUBESCENCE FORM 1 (PF1), the upstream region of Mao1, that regulates pubescence form in soybean. The insertion of a Ty3/Gypsy retrotransposon in PF1 can recruit the transcription factor GAGA-binding protein to a GA-rich region, which up-regulates Mao1 expression, underpinning soybean pubescence evolution. Interestingly, the proportion of improved cultivars with erect pubescence increases gradually with increasing latitude, and erect-pubescence cultivars have a higher yield possibly through a higher photosynthetic rate and photosynthetic stability. These findings open an avenue for molecular breeding through either natural introgression or genome editing toward yield improvement and productivity.


Asunto(s)
Glycine max , Retroelementos , Retroelementos/genética , Glycine max/genética , Fenotipo , Regiones Promotoras Genéticas/genética
2.
Plant Biotechnol J ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861663

RESUMEN

The length of hypocotyl affects the height of soybean and lodging resistance, thus determining the final grain yield. However, research on soybean hypocotyl length is scarce, and the regulatory mechanisms are not fully understood. Here, we identified a module controlling the transport of sucrose, where sucrose acts as a messenger moved from cotyledon to hypocotyl, regulating hypocotyl elongation. This module comprises four key genes, namely MYB33, SWEET11, SWEET21 and GA2ox8c in soybean. In cotyledon, MYB33 is responsive to sucrose and promotes the expression of SWEET11 and SWEET21, thereby facilitating sucrose transport from the cotyledon to the hypocotyl. Subsequently, sucrose transported from the cotyledon up-regulates the expression of GA2ox8c in the hypocotyl, which ultimately affects the length of the hypocotyl. During the domestication and improvement of soybean, an allele of MYB33 with enhanced abilities to promote SWEET11 and SWEET21 has gradually become enriched in landraces and cultivated varieties, SWEET11 and SWEET21 exhibit high conservation and have undergone a strong purified selection and GA2ox8c is under a strong artificial selection. Our findings identify a new molecular pathway in controlling soybean hypocotyl elongation and provide new insights into the molecular mechanism of sugar transport in soybean.

3.
Plant Biotechnol J ; 21(4): 782-791, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36578141

RESUMEN

Flowering time is one of important agronomic traits determining the crop yield and affected by high temperature. When facing high ambient temperature, plants often initiate early flowering as an adaptive strategy to escape the stress and ensure successful reproduction. However, here we find opposing ways in the short-day crop soybean to respond to different levels of high temperatures, in which flowering accelerates when temperature changes from 25 to 30 °C, but delays when temperature reaches 35 °C under short day. phyA-E1, possibly photoperiodic pathway, is crucial for 35 °C-mediated late flowering, however, does not contribute to promoting flowering at 30 °C. 30 °C-induced up-regulation of FT2a and FT5a leads to early flowering, independent of E1. Therefore, distinct responsive mechanisms are adopted by soybean when facing different levels of high temperatures for successful flowering and reproduction.


Asunto(s)
Glycine max , Proteínas de Plantas , Temperatura , Proteínas de Plantas/genética , Glycine max/metabolismo , Flores/fisiología , Calor , Fotoperiodo , Regulación de la Expresión Génica de las Plantas
4.
J Integr Plant Biol ; 65(1): 188-202, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36287141

RESUMEN

Soybean (Glycine max L.) is a typical photoperiod-sensitive crop, such that photoperiod determines its flowering time, maturity, grain yield, and phenological adaptability. During evolution, the soybean genome has undergone two duplication events, resulting in about 75% of all genes being represented by multiple copies, which is associated with rampant gene redundancy. Among duplicated genes, the important soybean maturity gene E2 has two homologs, E2-Like a (E2La) and E2-Like b (E2Lb), which encode orthologs of Arabidopsis GIGANTEA (GI). Although E2 was cloned a decade ago, we still know very little about its contribution to flowering time and even less about the function of its homologs. Here, we generated single and double mutants in E2, E2La, and E2Lb by genome editing and determined that E2 plays major roles in the regulation of flowering time and yield, with the two E2 homologs depending on E2 function. At high latitude regions, e2 single mutants showed earlier flowering and high grain yield. Remarkably, in terms of genetic relationship, genes from the legume-specific transcription factor family E1 were epistatic to E2. We established that E2 and E2-like proteins form homodimers or heterodimers to regulate the transcription of E1 family genes, with the homodimer exerting a greater function than the heterodimers. In addition, we established that the H3 haplotype of E2 is the ancestral allele and is mainly restricted to low latitude regions, from which the loss-of-function alleles of the H1 and H2 haplotypes were derived. Furthermore, we demonstrated that the function of the H3 allele is stronger than that of the H1 haplotype in the regulation of flowering time, which has not been shown before. Our findings provide excellent allelic combinations for classical breeding and targeted gene disruption or editing.


Asunto(s)
Glycine max , Fotoperiodo , Glycine max/metabolismo , Variación Genética , Fitomejoramiento , Ritmo Circadiano , Flores/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Plant Biotechnol J ; 20(6): 1110-1121, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35178867

RESUMEN

Seed morphology and quality of cultivated soybean (Glycine max) have changed dramatically during domestication from their wild relatives, but their relationship to selection is poorly understood. Here, we describe a semi-dominant locus, ST1 (Seed Thickness 1), affecting seed thickness and encoding a UDP-D-glucuronate 4-epimerase, which catalyses UDP-galacturonic acid production and promotes pectin biosynthesis. Interestingly, this morphological change concurrently boosted seed oil content, which, along with up-regulation of glycolysis biosynthesis modulated by ST1, enabled soybean to become a staple oil crop. Strikingly, ST1 and an inversion controlling seed coat colour formed part of a single selective sweep. Structural variation analysis of the region surrounding ST1 shows that the critical mutation in ST1 existed in earlier wild relatives of soybean and the region containing ST1 subsequently underwent an inversion, which was followed by successive selection for both traits through hitchhiking during selection for seed coat colour. Together, these results provide direct evidence that simultaneously variation for seed morphology and quality occurred earlier than variation for seed coat colour during soybean domestication. The identification of ST1 thus sheds light on a crucial phase of human empirical selection in soybeans and provides evidence that our ancestors improved soybean based on taste.


Asunto(s)
Domesticación , Glycine max , Fenotipo , Semillas/química , Semillas/genética , Aceite de Soja , Glycine max/genética
6.
J Integr Plant Biol ; 64(10): 1866-1882, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35904035

RESUMEN

Salt stress and flowering time are major factors limiting geographic adaptation and yield productivity in soybean (Glycine max). Although improving crop salt tolerance and latitude adaptation are essential for efficient agricultural production, whether and how these two traits are integrated remains largely unknown. Here, we used a genome-wide association study to identify a major salt-tolerance locus controlled by E2, an ortholog of Arabidopsis thaliana GIGANTEA (GI). Loss of E2 function not only shortened flowering time and maturity, but also enhanced salt-tolerance in soybean. E2 delayed soybean flowering by enhancing the transcription of the core flowering suppressor gene E1, thereby repressing Flowering Locus T (FT) expression. An E2 knockout mutant e2CR displayed reduced accumulation of reactive oxygen species (ROS) during the response to salt stress by releasing peroxidase, which functions in ROS scavenging to avoid cytotoxicity. Evolutionary and population genetic analyses also suggested that loss-of-function e2 alleles have been artificially selected during breeding for soybean adaptation to high-latitude regions with greater salt stress. Our findings provide insights into the coupled selection for adaptation to both latitude and salt stress in soybean; and offer an ideal target for molecular breeding of early-maturing and salt-tolerant cultivars.


Asunto(s)
Arabidopsis , Glycine max , Glycine max/genética , Tolerancia a la Sal/genética , Especies Reactivas de Oxígeno , Flores/genética , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Arabidopsis/genética , Peroxidasas/genética , Regulación de la Expresión Génica de las Plantas
7.
Mol Breed ; 41(7): 45, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37309386

RESUMEN

Soybean (Glycine max (L.) Merrill) is one of the most important crop plants in the world as an important source of protein for both human consumption and livestock fodder. As flowering time contributes to yield, finding new QTLs and further identifying candidate genes associated with various flowering time are fundamental to enhancing soybean yield. In this study, a set of 120 recombinant inbred lines (RILs) which was developed from a cross of two soybean cultivars, Suinong4 (SN4) and ZK168, were genotyped by genotyping-by-sequencing (GBS) approach and phenotyped to expand the cognitive of flowering time by quantitative trait loci (QTL) analysis. Eventually, three stable QTLs related to flowering time which were detected separately located on chromosome 14, 18, and 19 under long-day (LD) conditions. We predicted candidate genes for each QTL and carried out association analyses between the putative causal alleles and flowering time. Moreover, a transient transfection assay was performed and showed that NUCLEAR FACTOR YA 1b (GmNF-YA1b) as a strong candidate for the QTL on chromosome 19 might affect flowering time by suppressing the expression of FLOWERING LOCUS T (GmFT) genes in soybean. QTLs detected in this study would provide fundamental resources for finding candidate genes and clarify the mechanisms of flowering which would be helpful for breeding novel high-yielding soybean cultivars. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01237-w.

8.
Mol Breed ; 41(5): 35, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-37309325

RESUMEN

Soybean [Glycine max (L.) Merrill] is very sensitive to changes in photoperiod as a typical short-day plant. Photoperiodic flowering influences soybean latitudinal adaptability and yield to a considerable degree. Identifying new quantitative trait loci (QTLs) controlling flowering time is a powerful initial approach for elucidating the mechanisms underlying flowering time and adaptation to different latitudes in soybean. In this study, we developed a Recombinant Inbred Lines (RILs) population and recorded flowering time under natural long-day conditions. We also constructed a high-density genetic map by genotyping-by-sequencing and used it for QTL mapping. In total, we detected twelve QTLs, four of which are stable and named by qR1-2, qR1-4, qR1-6.1, and qR1-10, respectively. Among these four QTLs, qR1-4 and qR1-6.1 are novel. QTL mapping in two sub-populations classified by the genotype of the maturity locus E2, genetic interaction evaluation between E2 and qR1-2, and qRT-PCR indicated that E2 has an epistatic effect on qR1-2, and that causal gene of qR1-2 acts upstream of E2. We presumed the most likely candidate genes according to the resequencing data and briefly analyzed the geographic distributions of these genes. These findings will be beneficial for our understanding of the mechanisms underlying photoperiodic flowering in soybean, contribute to further investigate of E2, and provide genetic resources for molecular breeding of soybean. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01224-1.

9.
Mol Breed ; 41(6): 40, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37309444

RESUMEN

Soybean (Glycine max (L.) Merrill) is an important legume crop worldwide. Plant height (PH) is a quantitative trait that is closely related to node number (NN) and internode length (IL) on the main stem, which together affect soybean yield. To identify candidate genes controlling these three traits in soybean, we examined a recombinant inbred line (RIL) population derived from a cross between two soybean varieties with semi-determinate stems (Dt1Dt1Dt2Dt2), JKK378 and HXW. A quantitative trait locus (QTL) named qPH18 was identified that simultaneously controls PH, NN, and IL; this region harbors the semi-determinant gene Dt2. Sequencing of the Dt2 promoter from JKK378 identified three polymorphisms relative to HXW, including two single nucleotide polymorphism (SNPs) and an 18-bp insertion/deletion polymorphism (Indel). Dt2 expression was lower in the qPH18JKK378 group than in the qPH18HXW group, whereas the expression level of the downstream gene Dt1 showed the opposite tendency. A transient transfection assay confirmed that Dt2 promoter activity is lower in JKK378 compared to HXW. We propose that the polymorphisms in the dominant Dt2 promoter underlie the differences in Dt2 expression and its downstream gene Dt1 in the two parents, thereby affecting PH, NN, IL, and grain weight per plant without altering stem growth habit. Compared to the PH18HXW allele, the qPH18JKK378 allele suppresses Dt2 expression, which releases the inhibition of Dt1 expression, thus enhancing NN and grain yield. Our findings shed light on the mechanism underlying NN and PH in soybean and provide a molecular marker to facilitate breeding. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01235-y.

10.
Mikrochim Acta ; 188(5): 167, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33877439

RESUMEN

A novel fluorometric method based on bipyridine-linked three-dimensional covalent organic frameworks (COFs) was developed for the determination of Co2+. The COFs were synthesized by the polyreaction of tetrakis(4-aminophenyl)methane (TAPM), 2,2'-bipyridine-5,5'-diamine (Bpy), and 4,4'-biphenyldicarboxaldehyde (BPDA) under solvothermal conditions. The fluorescence of the COFs, with excitation/emission peaks at 324/406 nm, is quenched by Co2+. Under the optimal conditions, the fluorescence quenching degrees (F0-F) of the resulted COFs linearly enhance as the concentrations of Co2+ increase in the range 0.01 to 0.25 µM, and a limit of detection of 2.63 nM is achieved. The fluorescence response mechanism was discussed in detail. This proposed approach has also been successfully employed to determine Co2+ in complex samples (shrimp and tap water), and satisfactory recoveries (88.1 ~ 109.7%) was obtained. The relative standard deviations are below 4.9%.

11.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 50(5): 633-641, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34986534

RESUMEN

To evaluate the effectiveness and safety of self-prepared absorbable hemostatic fibrils.A kind of absorbable hemostatic fibrils were prepared by self-developed patent technique. The physical form and molecular structure of the fibrils and a marketed product Surgicel were characterized by general observation and infrared spectroscopy; the carboxyl content, pH value and relative molecular mass of fibrils were determined by potentiometric titration method, pH meter and copper ethylenediamine method, respectively. The behavior of the fibrils and Surgicel in contact with blood was observed by inverted microscope, the cytotoxicity was evaluated by agarose diffusion cell assay . The external iliac artery hemorrhage model and the back muscle infiltration model in rats were established. The hemostatic effectiveness of the fibrils was investigated by hemostasis time and blood weight, and the degradation and biosafety of fibrils were investigated by observation photography, immune organ weighing, hematology and coagulation index measuring, and histopathological examination. The fibrils and Surgicel had similar molecular structures. Compared with the raw material regenerated cellulose, the typical carboxyl stretching vibration absorption peak of -COOH appeared near in both fibrils and Surgicel. The carboxyl content of the two materials was about 20%, and the pH value was about 3. The relative molecular mass of the fibers after oxidation was 4466±79, which was close to that of Surgicel(>0.05). After contacting with blood, the volume of fibrils and Surgicel expanded, and absorbed blood of dozens of times as their own weight. The results of agar diffusion test showed that the fibrils had no cytotoxicity. The results of animal experiments showed that the hemostasis completed within and there was no significant difference in blood weight and speed of hemostasis between two products (both >0.05). The fibrils could be degraded 1 week after being implanted to the bleeding sites of the muscle. There were no pathological effects on the appearance, body weight, food intake, immunological tissue thymus, spleen, lymph nodes, hematology and coagulation indexes of the rats, and no obvious abnormality found in the histopathological examination. The prepared absorbable hemostatic fibrils have excellent biological safety and effectiveness.


Asunto(s)
Hemostáticos , Animales , Celulosa/farmacología , Hemostasis , Hemostáticos/farmacología , Ratas , Bazo
12.
J Genet Genomics ; 51(4): 379-393, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37717820

RESUMEN

Soybean (Glycine max [L.] Merr.) is an important crop that provides protein and vegetable oil for human consumption. As soybean is a photoperiod-sensitive crop, its cultivation and yield are limited by the photoperiodic conditions in the field. In contrast to other major crops, soybean has a special plant architecture and a special symbiotic nitrogen fixation system, representing two unique breeding directions. Thus, flowering time, plant architecture, and symbiotic nitrogen fixation are three critical or unique yield-determining factors. This review summarizes the progress made in our understanding of these three critical yield-determining factors in soybean. Meanwhile, we propose potential research directions to increase soybean production, discuss the application of genomics and genomic-assisted breeding, and explore research directions to address future challenges, particularly those posed by global climate changes.

13.
Pharmaceutics ; 16(3)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38543325

RESUMEN

Hydrogels with injectability have emerged as the focal point in tissue filling, owing to their unique properties, such as minimal adverse effects, faster recovery, good results, and negligible disruption to daily activities. These hydrogels could attain their injectability through chemical covalent crosslinking, physical crosslinking, or biological crosslinking. These reactions allow for the formation of reversible bonds or delayed gelatinization, ensuring a minimally invasive approach for tissue filling. Injectable hydrogels facilitate tissue augmentation and tissue regeneration by offering slow degradation, mechanical support, and the modulation of biological functions in host cells. This review summarizes the recent advancements in synthetic strategies for injectable hydrogels and introduces their application in tissue filling. Ultimately, we discuss the prospects and prevailing challenges in developing optimal injectable hydrogels for tissue augmentation, aiming to chart a course for future investigations.

14.
Int J Biol Macromol ; 258(Pt 2): 129115, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38163498

RESUMEN

Chitosan has been commonly used as an adhesive dressing material due to its excellent biocompatibility, degradability, and renewability. Tissue adhesives are outstanding among wound dressings because they can close the wound, absorb excess tissue exudate from the wound site, provide a moist environment, and act as a carrier for loading various bioactive molecules. They have been widely used in both preclinical and clinical treatment of skin wounds. This review summarizes recent research progresses in the application of chitosan and its derivatives for tissue adhesives. We also introduce their biomedical effects on wound adhesion, contamination isolation, antibacterial, immune regulation, and wound healing, and the strategies to achieve these functions when used as wound dressings. Finally, challenges and future perspectives of chitosan-based tissue adhesives are discussed for wound healing.


Asunto(s)
Quitosano , Adhesivos Tisulares , Cicatrización de Heridas , Antibacterianos , Vendajes , Adhesivos , Hidrogeles
15.
J Mater Chem B ; 12(2): 475-488, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38099432

RESUMEN

The clinical application of regenerated silk fibroin (RSF) films for wound treatment is restricted by its undesirable mechanical properties and lack of antibacterial activity. Herein, different pluronic polymers were introduced to optimize their mechanical properties and the RSF film with 2.5% pluronic F127 (RSFPF127) stood out to address the above issues owing to its satisfactory mechanical properties, hydrophilicity, and transmittance. Diverse antibacterial agents (curcumin, Ag nanoparticles, and antimicrobial peptide KR-12) were separately encapsulated in RSFPF127 to endow it with antibacterial activity. In vitro experiments revealed that the medicated RSFPF127 could persistently release drugs and had desirable bioactivities toward killing bacteria, promoting fibroblast adhesion, and modulating macrophage polarization. In vivo experiments revealed that medicated RSFPF127 not only eradicated methicillin-resistant Staphylococcus aureus in the wound area and inhibited inflammatory responses, but also facilitated angiogenesis and re-epithelialization, regardless of the types of antibacterial agents, thus accelerating the recovery of infected wounds. These results demonstrate that RSFPF127 is an ideal matrix platform to load different types of drugs for application as wound dressings.


Asunto(s)
Fibroínas , Nanopartículas del Metal , Staphylococcus aureus Resistente a Meticilina , Fibroínas/farmacología , Fibroínas/química , Plata/química , Antibacterianos/química , Cicatrización de Heridas , Fibroblastos
16.
Nat Commun ; 15(1): 6184, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39039090

RESUMEN

Soybean is a photoperiod-sensitive staple crop. Its photoperiodic flowering has major consequences for latitudinal adaptation and grain yield. Here, we identify and characterise a flowering locus named Time of flower 4b (Tof4b), which encodes E1-Like b (E1Lb), a homologue of the key soybean floral repressor E1. Tof4b protein physically associates with the promoters of two FLOWERING LOCUS T (FT) genes to repress their transcription and delay flowering to impart soybean adaptation to high latitudes. Three E1 homologues undergo subfunctionalisation and show differential subcellular localisation. Moreover, they all possess self-repression capability and each suppresses the two homologous counterparts. Subfunctionalisation and the transcriptional regulation of E1 genes collectively finetune flowering time and high-latitude adaptation in soybean. We propose a model for the functional fate of the three E1 genes after the soybean whole-genome duplication events, refine the molecular mechanisms underlying high-latitude adaption, and provide a potential molecular-breeding resource.


Asunto(s)
Flores , Regulación de la Expresión Génica de las Plantas , Glycine max , Fotoperiodo , Proteínas de Plantas , Glycine max/genética , Glycine max/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Adaptación Fisiológica/genética , Regiones Promotoras Genéticas/genética , Duplicación de Gen , Plantas Modificadas Genéticamente , Filogenia , Genes de Plantas
17.
Dev Cell ; 59(13): 1750-1763.e4, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38688276

RESUMEN

Photoperiod sensitivity is crucial for soybean flowering, adaptation, and yield. In soybean, photoperiod sensitivity centers around the evening complex (EC) that regulates the transcriptional level of the core transcription factor E1, thereby regulating flowering. However, little is known about the regulation of the activity of EC. Our study identifies how E2/GIGANTEA (GI) and its homologs modulate photoperiod sensitivity through interactions with the EC. During long days, E2 interacts with the blue-light receptor flavin-binding, kelch repeat, F box 1 (FKF1), leading to the degradation of J/ELF3, an EC component. EC also suppresses E2 expression by binding to its promoter. This interplay forms a photoperiod regulatory loop, maintaining sensitivity to photoperiod. Disruption of this loop leads to losing sensitivity, affecting soybean's adaptability and yield. Understanding this loop's dynamics is vital for molecular breeding to reduce soybean's photoperiod sensitivity and develop cultivars with better adaptability and higher yields, potentially leading to the creation of photoperiod-insensitive varieties for broader agricultural applications.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Glycine max , Fotoperiodo , Proteínas de Plantas , Glycine max/genética , Glycine max/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Flores/genética , Flores/fisiología , Flores/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Regiones Promotoras Genéticas/genética , Retroalimentación Fisiológica
18.
Acta Pharm Sin B ; 14(6): 2732-2747, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38828144

RESUMEN

The progression of ulcerative colitis (UC) is associated with immunologic derangement, intestinal hemorrhage, and microbiota imbalance. While traditional medications mainly focus on mitigating inflammation, it remains challenging to address multiple symptoms. Here, a versatile gas-propelled nanomotor was constructed by mild fusion of post-ultrasonic CaO2 nanospheres with Cu2O nanoblocks. The resulting CaO2-Cu2O possessed a desirable diameter (291.3 nm) and a uniform size distribution. It could be efficiently internalized by colonic epithelial cells and macrophages, scavenge intracellular reactive oxygen/nitrogen species, and alleviate immune reactions by pro-polarizing macrophages to the anti-inflammatory M2 phenotype. This nanomotor was found to penetrate through the mucus barrier and accumulate in the colitis mucosa due to the driving force of the generated oxygen bubbles. Rectal administration of CaO2-Cu2O could stanch the bleeding, repair the disrupted colonic epithelial layer, and reduce the inflammatory responses through its interaction with the genes relevant to blood coagulation, anti-oxidation, wound healing, and anti-inflammation. Impressively, it restored intestinal microbiota balance by elevating the proportions of beneficial bacteria (e.g., Odoribacter and Bifidobacterium) and decreasing the abundances of harmful bacteria (e.g., Prevotellaceae and Helicobacter). Our gas-driven CaO2-Cu2O offers a promising therapeutic platform for robust treatment of UC via the rectal route.

19.
J Mater Chem B ; 12(1): 250-263, 2023 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-38086697

RESUMEN

During the wound tissue healing process, the relatively weak driving forces of tissue barriers and concentration gradients lead to a slow and inefficient penetration of bioactive substances into the wound area, consequently showing an impact on the effectiveness of deep wound healing. To overcome these challenges, we constructed biocompatible CaO2-Cu2O "micromotors". These micromotors reacted with the fluids at the wound site, releasing oxygen bubbles and propelling particles deep into the wound tissue. In vitro experimental results revealed that these micromotors not only exhibited antibacterial and hemostatic functions but also facilitated the migration of dermal fibroblasts and vascular endothelial cells, while modulating the inflammatory microenvironment. A methicillin-resistant Staphylococcus aureus infected full-thickness-wound model was created in rats, in which CaO2-Cu2O micromotors markedly expedited the wound healing process. Specifically, CaO2-Cu2O provided a sterile microenvironment for wounds and increased the amounts of M1-type macrophages during infection and inflammation. During the proliferation and remodeling stages, the amount of M1 macrophages gradually decreased, while the amount of M2 macrophages increased, and CaO2-Cu2O did not prolong the inflammatory period. Furthermore, the introduction of a regenerated silk fibroin (RSF) film on the wound surface successfully enhanced the therapeutic effects of CaO2-Cu2O against the infected wound. The combined application of oxygen-producing CaO2-Cu2O micromotors and a RSF film demonstrates significant therapeutic potential and emerges as a promising candidate for the treatment of infected wounds.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Ratas , Animales , Células Endoteliales , Cicatrización de Heridas , Antibacterianos/farmacología , Movimiento Celular , Hemostasis , Oxígeno/farmacología
20.
Adv Sci (Weinh) ; 10(16): e2207352, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37060151

RESUMEN

Polyacrylic acid (PAA) and its derivatives are commonly used as essential matrices in wound dressings, but their weak wet adhesion restricts the clinical application. To address this issue, a PAA-based coacervate hydrogel with strong wet adhesion capability is fabricated through a facile mixture of PAA copolymers with isoprenyl oxy poly(ethylene glycol) ether and tannic acid (TA). The poly(ethylene glycol) segments on PAA prevent the electrostatic repulsion among the ionized carboxyl groups and absorbed TA to form coacervates. The absorbed TA provides solid adhesion to dry and wet substrates via multifarious interactions, which endows the coacervate with an adhesive strength to skin of 23.4 kPa and 70% adhesion underwater. This coacervate achieves desirable self-healing and extensible properties suitable for frequently moving joints. These investigations prove that the coacervate has strong antibacterial activity, facilitates fibroblast migration, and modulates M1/M2 polarization of macrophages. In vivo hemorrhage experiments further confirm that the coacervate dramatically shortens the hemostatic time from hundreds to tens of seconds. In addition, full-thickness skin defect experiments demonstrate that the coacervate achieves the best therapeutic effect by significantly promoting collagen deposition, angiogenesis, and epithelialization. These results demonstrate that a PAA-based coacervate hydrogel is a promising wound dressing for medical translation.


Asunto(s)
Adhesivos , Hidrogeles , Adhesivos/farmacología , Adhesivos/química , Hidrogeles/química , Cicatrización de Heridas , Vendajes , Polietilenglicoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA