Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 391
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 19(5): e1011123, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37196033

RESUMEN

SARS-CoV Spike (S) protein shares considerable homology with SARS-CoV-2 S, especially in the conserved S2 subunit (S2). S protein mediates coronavirus receptor binding and membrane fusion, and the latter activity can greatly influence coronavirus infection. We observed that SARS-CoV S is less effective in inducing membrane fusion compared with SARS-CoV-2 S. We identify that S813T mutation is sufficient in S2 interfering with the cleavage of SARS-CoV-2 S by TMPRSS2, reducing spike fusogenicity and pseudoparticle entry. Conversely, the mutation of T813S in SARS-CoV S increased fusion ability and viral replication. Our data suggested that residue 813 in the S was critical for the proteolytic activation, and the change from threonine to serine at 813 position might be an evolutionary feature adopted by SARS-2-related viruses. This finding deepened the understanding of Spike fusogenicity and could provide a new perspective for exploring Sarbecovirus' evolution.


Asunto(s)
COVID-19 , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Humanos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteolisis , Replicación Viral , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo
2.
Anal Chem ; 96(5): 1941-1947, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38279956

RESUMEN

Appropriate separation and enrichment steps can enhance the performance of SERS assays. For rapid, in-situ detection of carbaryl, a novel PA-6/AuNRs@ZIF-8 film that can be applied to dual-mode separation and SERS detection, has been developed. In the film, PA-6 was used as a TLC substrate for the initial separation of the substance to be measured. ZIF-8 provides chemical enhancement in SERS as well as enrichment and secondary separation of the analytes. Utilizing this film, we have successfully implemented a TLC-SERS rapid detection scheme, resulting in a detection limit for carbaryl as low as 1 × 10-9 M in lake water in 15 min, which is significantly lower than existing standards. Additionally, the manufacturing cost of one PA-6/AuNRs@ZIF-8 film can be kept within the range of $0.20-$0.40 economically, presenting substantial financial advantages. The method is highly promising for pesticide detection as well as forensic in-situ testing.

3.
Small ; : e2309922, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38593357

RESUMEN

Self-trapped exciton (STE) luminescence, typically associated with structural deformation of excited states, has attracted significant attention in metal halide materials recently. However, the mechanism of multiexciton STE emissions in certain metal halide crystals remains largely unexplored. This study investigates dual luminescence emissions in HCOO- doped Cs3Cu2I5 single crystals using transient and steady-state spectroscopy. The dual emissions are attributed to intrinsic STE luminescence originating from the host lattice and extrinsic STE luminescence induced by external dopants, respectively, each of which can be triggered independently at distinct energy levels. Theoretical calculations reveal that multiexciton emission originates from structural distortion of the host and dopant STEs within the 0D lattice in their respective excited states. By meticulously tuning the excitation wavelength and selectively exciting different STEs, the dynamic alteration of color change in Cs3Cu2I5:HCOO- crystals is demonstrated. Ultimately, owing to an extraordinarily high photoluminescence quantum yield (99.01%) and a diminished degree of self-absorption in Cs3Cu2I5:HCOO- crystals, they exhibit remarkable X-ray scintillation characteristics with light yield being improved by 5.4 times as compared to that of pristine Cs3Cu2I5 crystals, opening up exciting avenues for achieving low-dose X-ray detection and imaging.

4.
Nat Mater ; 22(6): 737-745, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37024592

RESUMEN

Stretchable light-emitting materials are the key components for realizing skin-like displays and optical biostimulation. All the stretchable emitters reported to date, to the best of our knowledge, have been based on electroluminescent polymers that only harness singlet excitons, limiting their theoretical quantum yield to 25%. Here we present a design concept for imparting stretchability onto electroluminescent polymers that can harness all the excitons through thermally activated delayed fluorescence, thereby reaching a near-unity theoretical quantum yield. We show that our design strategy of inserting flexible, linear units into a polymer backbone can substantially increase the mechanical stretchability without affecting the underlying electroluminescent processes. As a result, our synthesized polymer achieves a stretchability of 125%, with an external quantum efficiency of 10%. Furthermore, we demonstrate a fully stretchable organic light-emitting diode, confirming that the proposed stretchable thermally activated delayed fluorescence polymers provide a path towards simultaneously achieving desirable electroluminescent and mechanical characteristics, including high efficiency, brightness, switching speed and stretchability as well as low driving voltage.

5.
Microb Ecol ; 87(1): 54, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38512483

RESUMEN

Chemical soil fumigation (CSF) and reductive soil disinfestation (RSD) have been proven to be effective agricultural strategies to improve soil quality, restructure microbial communities, and promote plant growth in soil degradation remediation. However, it is still unclear how RSD and CSF ensure soil and plant health by altering fungal communities. Field experiments were conducted to investigate the effects of CSF with chloropicrin, and RSD with animal feces on soil properties, fungal communities and functional composition, and plant physiological characteristics were evaluated. Results showed that RSD and CSF treatment improved soil properties, restructured fungal community composition and structure, enhanced fungal interactions and functions, and facilitated plant growth. There was a significant increase in OM, AN, and AP contents in the soil with both CSF and RSD treatments compared to CK. Meanwhile, compared with CK and CSF, RSD treatment significantly increased biocontrol Chaetomium relative abundance while reducing pathogenic Neonectria relative abundance, indicating that RSD has strong inhibition potential. Furthermore, the microbial network of RSD treatment was more complex and interconnected, and the functions of plant pathogens, and animal pathogen were decreased. Importantly, RSD treatment significantly increased plant SOD, CAT, POD activity, SP, Ca, Zn content, and decreased MDA, ABA, Mg, K, and Fe content. In summary, RSD treatment is more effective than CSF treatment, by stimulating the proliferation of probiotic communities to further enhance soil health and plant disease resistance.


Asunto(s)
Microbiota , Micobioma , Panax , Suelo/química , Agricultura/métodos , Microbiología del Suelo
6.
Org Biomol Chem ; 22(11): 2241-2251, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38372133

RESUMEN

A novel cascade radical addition/cyclization reaction of non-activated olefins and oxamic acids has been proposed. Under transition metal-free conditions, 36 quinazolinone derivatives containing an amide moiety were successfully synthesized, with the highest yield being 81%. This method involves the preparation of aminoacyl fused quinazolinone derivatives under mild conditions, offering advantages such as a high yield, a broad substrate compatibility, and a high atom economy.

7.
BMC Plant Biol ; 23(1): 628, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38062393

RESUMEN

The effect of salt damage on plants is mainly caused by the toxic effect of Na+. Studies showed that the secretory carrier membrane proteins were associated with the Na+ transport. However, the salt tolerance mechanism of secretory carrier protein (SCAMP) in soybean was yet to be defined. In this study, ten potential SCAMP genes distributed in seven soybean chromosomes were identified in the soybean genome. The phylogenetic tree of SCAMP domain sequences of several plants can divide SCAMPs into two groups. Most GmSCAMPs genes contained multiple Box4, MYB and MYC cis-elements indicated they may respond to abiotic stresses. We found that GmSCAMP1, GmSCAMP2 and GmSCAMP4 expressed in several tissues and GmSCAMP5 was significantly induced by salt stress. GmSCAMP5 showed the same expression patterns under NaCl treatment in salt-tolerant and salt-sensitive soybean varieties, but the induced time of GmSCAMP5 in salt-tolerant variety was earlier than that of salt-sensitive variety. To further study the effect of GmSCAMP5 on the salt tolerance of soybean plants, compared to GmSCAMP5-RNAi and EV-Control plants, GmSCAMP5-OE had less wilted leave and higher SPAD value. Compared to empty vector control, less trypan blue staining was observed in GmSCAMP5-OE leaves while more staining in GmSCAMP5-RNAi leaves. The Na+ of GmSCAMP5-RNAi plants leaves under NaCl stress were significantly higher than that in EV-Control plants, while significantly lower Na+ in GmSCAMP5-OE plants than in that EV-Control plants. The contents of leaves K+ of GmSCAMP5-RNAi, EV-Control, and GmSCAMP5-OE plants under NaCl stress were opposite to that of leaves Na+ content. Finally, salt stress-related genes NHX1, CLC1, TIP1, SOD1, and SOS1 in transformed hairy root changed significantly compared with the empty control. The research will provide novel information for study the molecular regulation mechanism of soybean salt tolerance.


Asunto(s)
Glycine max , Tolerancia a la Sal , Tolerancia a la Sal/genética , Glycine max/genética , Filogenia , Cloruro de Sodio/farmacología , Cloruro de Sodio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Proteínas Portadoras/genética , Regulación de la Expresión Génica de las Plantas
8.
Biol Proced Online ; 25(1): 15, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37268878

RESUMEN

BACKGROUND: Deep learning has been extensively used in digital histopathology. The purpose of this study was to test deep learning (DL) algorithms for predicting the vital status of whole-slide image (WSI) of uveal melanoma (UM). METHODS: We developed a deep learning model (Google-net) to predict the vital status of UM patients from histopathological images in TCGA-UVM cohort and validated it in an internal cohort. The histopathological DL features extracted from the model and then were applied to classify UM patients into two subtypes. The differences between two subtypes in clinical outcomes, tumor mutation, and microenvironment, and probability of drug therapeutic response were investigated further. RESULTS: We observed that the developed DL model can achieve a high accuracy of > = 90% for patches and WSIs prediction. Using 14 histopathological DL features, we successfully classified UM patients into Cluster1 and Cluster2 subtypes. Compared to Cluster2, patients in the Cluster1 subtype have a poor survival outcome, increased expression levels of immune-checkpoint genes, higher immune-infiltration of CD8 + T cell and CD4 + T cells, and more sensitivity to anti-PD-1 therapy. Besides, we established and verified prognostic histopathological DL-signature and gene-signature which outperformed the traditional clinical features. Finally, a well-performed nomogram combining the DL-signature and gene-signature was constructed to predict the mortality of UM patients. CONCLUSIONS: Our findings suggest that DL model can accurately predict vital status in UM patents just using histopathological images. We found out two subgroups based on histopathological DL features, which may in favor of immunotherapy and chemotherapy. Finally, a well-performing nomogram that combines DL-signature and gene-signature was constructed to give a more straightforward and reliable prognosis for UM patients in treatment and management.

9.
Small ; 19(11): e2206927, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36541740

RESUMEN

Quasi-2D perovskites have demonstrated great application potential in light-emitting diodes (LEDs). Defect passivation with chemicals plays a critical role to achieve high efficiency. However, there are still challenges in comprehensively passivating the defects distributed at surface, bulk, and buried interface of quasi-2D perovskite emitting films, hindering the further improvement of device performance. Herein, 9,9-substituted fluorene derivatives with different terminal functional groups are developed tactfully to realize comprehensive passivation, which greatly contributes to reducing nonradiative recombination at surface, suppressing ion migration in bulk, and filling interfacial charge traps at buried interface, respectively. Eventually, quasi-2D perovskite LEDs have an increased external quantum efficiency from 18.2% to 23.2%, improved operation lifetime by more than six times and lower turn-on voltage simultaneously. Here the importance of comprehensive passivation is highlighted and guidelines for the design and application of passivators for perovskite optoelectronics are provided.

10.
Small ; : e2309233, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38050935

RESUMEN

Perovskite light-emitting diodes (PeLEDs) have shown incalculable application potential in the fields of next-generation displays and light communication owing to the rapidly increased external quantum efficiencies (EQEs). However, most PeLEDs obtain a maximum EQE at small current density (J) region and suffer from severe efficiency roll-off in different extents. Herein, it is demonstrated that the dopant with large dipole moment like KBF4 facilitates the effective dielectric regulation of perovskite emissive layer. The increased dielectric constant lowers the exciton binding energy and suppresses the Auger recombination of the 2D/3D segregated perovskite structure, which improves the photoluminescence quantum yield remarkably at an excitation intensity up to 103  mW cm-2 . Accordingly, the top-emission PeLED that delivers a high maximum EQE above 20% is fabricated and can retain EQE > 10% at an extremely high J of 708 mA cm-2 . These results represent one of the most efficient top-emission PeLEDs with ultra-low efficiency roll-off, which provide a viable methodology for tuning the dielectric response of perovskite films for improved high radiance performance of perovskite electroluminescence devices.

11.
Opt Express ; 31(19): 30570-30577, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37710597

RESUMEN

Efficient and stable near-infrared silicon-based light source is a challenge for future optoelectronic integration and interconnection. In this paper, alkaline earth metal Ca2+ doped SiO2-SnO2: Er3+ films were prepared by sol-gel method. The oxygen vacancies introduced by the doped Ca2+ significantly increase the near-infrared luminescence intensity of Er3+ ions. It was found that the doping concentration of Sn precursors not only modulate the crystallinity of SnO2 nanocrystals but also enhance the luminescence performance of Er3+ ions. The stable electroluminescent devices based on SiO2-SnO2: Er3+/Ca2+ films exhibit the power efficiency as high as 1.04×10-2 with the external quantum efficiency exceeding 10%.

12.
Microb Ecol ; 87(1): 23, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38159169

RESUMEN

Anoplophora glabripennis (Asian longhorned beetle) is a wood-boring pest that can inhabit a wide range of healthy deciduous host trees in native and non-native habitats. Lignocellulose degradation plays a major role in the acquisition of nutrients during the growth and development of A. glabripennis larvae. In this study, the lignocellulose degradation capacity of Fusarium solani, a fungal symbiont of A. glabripennis, was investigated in fermentation culture and in four host tree species. The impact of F. solani on larval growth and survival parameters was assessed. Fermentation culture demonstrated continuous and stable production of lignocellulolytic enzymes over the cultivation period. Furthermore, F. solani was able to degrade host tree lignocellulose, as shown by decreased soluble sugar and cellulose contents and an increase in protein content. No significant differences in larval survival were observed in larvae fed with or without F. solani. However, weight and head capsule width were higher in larvae fed on F. solani, and gut lignocellulose activities were elevated in fed larvae. Our results indicate a role for F. solani in the predigestion of lignocellulose during the colonization and parasitic stages of A. glabripennis larval development, and also the F. solani an important symbiotic partner to A. glabripennis, lowering barriers to colonization and development in a range of habitats.


Asunto(s)
Escarabajos , Fusarium , Animales , Larva/microbiología , Escarabajos/microbiología
13.
Anal Bioanal Chem ; 415(14): 2655-2664, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36995409

RESUMEN

Acetylcholinesterase (AChE), a crucial enzyme related to liver function, is involved in numerous physiological processes such as neurotransmission and muscular contraction. The currently reported techniques for detecting AChE mainly rely on a single signal output, limiting their high-accuracy quantification. The few reported dual-signal assays are challenging to implement in dual-signal point-of-care testing (POCT) because of the need for large instruments, costly modifications, and trained operators. Herein, we report a colorimetric and photothermal dual-signal POCT sensing platform based on CeO2-TMB (3,3',5,5'-tetramethylbenzidine) for the visualization of AChE activity in liver-injured mice. The method compensates for the false positives of a single signal and realizes the rapid, low-cost portable detection of AChE. More importantly, the CeO2-TMB sensing platform enables the diagnosis of liver injury and provides an effective tool for studying liver disease in basic medicine and clinical applications. Rapid colorimetric and photothermal biosensor for sensitive detection of acetylcholinesterase (I) and acetylcholinesterase levels in mouse serum (II).


Asunto(s)
Acetilcolinesterasa , Técnicas Biosensibles , Ratones , Animales , Colorimetría/métodos , Hígado , Bencidinas , Técnicas Biosensibles/métodos
14.
Phys Chem Chem Phys ; 25(27): 18175-18181, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37387207

RESUMEN

Alkaline earth metal ions (Mg2+, Ca2+, Sr2+) have been introduced into Er3+:SnO2 nanocrystal co-doped silica thin films fabricated by a sol-gel method combined with a spin-coating technique. It is found that the incorporation of alkaline earth metal ions can enhance the light emission from Er3+ at the wavelength around 1540 nm and the strongest enhancement is observed in samples doped with 5 mol% Sr2+ ions. Based on X-ray diffraction, X-ray photoelectron spectroscopy and other spectroscopic measurements, the improved light emission can be attributed to more oxygen vacancies, better crystallinity and a stronger cross-relaxation process with the introduction of alkaline earth metal ions.

15.
Chem Soc Rev ; 51(1): 153-187, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34851333

RESUMEN

Organic solar cells (OSCs) are emerging as a new photovoltaic technology with the great advantages of low cost, light-weight, flexibility and semi-transparency. They are promising for portable energy-conversion products and building-integrated photovoltaics. Organoboron chemistry offers an important toolbox to design novel organic/polymer optoelectronic materials and to tune their optoelectronic properties for OSC applications. At present, organoboron small molecules and polymers have become an important class of organic photovoltaic materials. Power conversion efficiencies (PCEs) of 16% and 14% have been realized with organoboron polymer electron donors and electron acceptors, respectively. In this review, we summarize the research progress in various kinds of organoboron photovoltaic materials for OSC applications, including organoboron small molecular electron donors, organoboron small molecular electron acceptors, organoboron polymer electron donors and organoboron polymer electron acceptors. This review also discusses how to tune their opto-electronic properties and active layer morphology for enhancing OSC device performance. We also offer our insight into the opportunities and challenges in improving the OSC device performance of organoboron photovoltaic materials.


Asunto(s)
Energía Solar , Polímeros
16.
Int Ophthalmol ; 43(11): 4333-4342, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37495937

RESUMEN

BACKGROUND: Femtosecond laser-assisted in situ keratomileusis (FS-LASIK) with accelerated corneal crosslinking (FS-LASIK Xtra) is a recent procedure to achieve safer corneal ablation in myopic patients with borderline corneal thickness. Despite its well-accepted effectiveness, the development of remarkable interface haze is a potential concern but has rarely been reported and discussed. METHODS: We report for the first time a case series of 11 eyes of 7 patients who developed typical interface haze 1-3 months after FS-LASIK Xtra for the correction of myopia with astigmatism, with intensity grades ranging from 0.5 + to 3 + at the time of onset. RESULTS: The preclinical spherical diopters of the 7 patients ranged from - 2.25 D to - 9.25 D and cylindrical diopters ranged from - 0.25 D to - 2.50 D. The haze tended to be self-limiting, and topical anti-inflammatory therapy was given to moderate and severe cases, who responded well to treatment. CONCLUSIONS: The development of clinically significant interface haze is a relatively rare complication after FS-LASIK Xtra but tends to have a higher incidence and intensity compared to conventional stromal surgery such as FS-LASIK. Timely treatment and close follow-up are essential to patients undertaking FS-LASIK Xtra.


Asunto(s)
Astigmatismo , Queratomileusis por Láser In Situ , Miopía , Humanos , Queratomileusis por Láser In Situ/efectos adversos , Queratomileusis por Láser In Situ/métodos , Agudeza Visual , Láseres de Excímeros/efectos adversos , Córnea/cirugía , Miopía/cirugía , Astigmatismo/etiología , Astigmatismo/cirugía , Sustancia Propia/cirugía
17.
Angew Chem Int Ed Engl ; 62(24): e202303870, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37040127

RESUMEN

Since the breakthrough of conductive polymers in 1977, scientists have made great efforts to create small band gap (Eg ) conjugated polymers. Two general strategies to design small Eg conjugated polymers are quinoid structure and donor-acceptor structure. Ultrasmall Eg conjugated polymers (Eg <1.0 eV) always suffer from poor air stability because of high-lying HOMO energy levels. In this work, we report a new strategy to design ultrasmall Eg conjugated polymers by N-B←N unit, i.e. balanced resonant boron-nitrogen covalent bond (B-N) and boron-nitrogen coordination bond (B←N). The resulting polymer exhibits an Eg of 0.82 eV and an onset absorption wavelength of >1500 nm. Moreover, the polymer exhibits excellent air stability because of its low-lying LUMO/HOMO energy levels. An unprecedented property of this polymer is the selective light absorption in the infrared range (800-1500 nm) and high transparency in the visible range (400-780 nm). Using this property, for the first time, we demonstrate the application of conjugated polymers as transparent thermal-shielding coating layer on glass, which reduces indoor solar irradiation through window and consequently reduces power consumption for cooling of buildings and cars in summer.

18.
Angew Chem Int Ed Engl ; 62(42): e202310838, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37635075

RESUMEN

Organic molecules with near-infrared II (NIR II) light absorption are essential for many biological and opto-electronic applications. Herein, we report monodispersed oligomers as NIR II light absorber using a new molecular design strategy of resonant N-B←N unit, i.e. balanced resonant boron-nitrogen covalent bond (B-N) and boron-nitrogen coordination bond (B←N). We synthesize a series of monodispersed oligomers with thiophene-fused 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (TB), which contains resonant N-B←N unit, as the repeating unit. The TB pentamer exhibits the maximum absorption wavelength of 1169 nm, which is the longest for oligomers reported so far. Organic photodetectors (OPDs) with the TB tetramer as the electron acceptor shows the specific detectivity of 2.98×1011 Jones at 1180 nm under zero bias. This performance is among the best for NIR II OPDs. These results indicate a new kind of NIR II absorbing molecules as excellent opto-electronic materials.

19.
Angew Chem Int Ed Engl ; 62(47): e202313084, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37775994

RESUMEN

The hyperfluorescence has drawn great attention in achieving efficient narrowband emitting devices based on multiple resonance thermally activated delayed fluorescence (MR-TADF) emitters. However, achieving efficient solution-processed pure blue hyperfluorescence devices is still a challenge, due to the unbalanced charge transport and serious exciton quenching caused by that the holes are easily trapped on the high-lying HOMO (the highest occupied molecular orbital) level of traditional diphenylamine-decorated emitters. Here, we developed two narrowband blue organoboron emitters with low-lying HOMO levels by decorating the MR-TADF core with weakly electron-donating carbazoles, which could suppress the hole trapping effect by reducing the hole traps between host and MR-TADF emitter from deep (0.40 eV) to shallow (0.14/0.20 eV) ones for facilitating hole transport and exciton formation, as well as avoiding exciton quenching. And the large dihedral angle between the carbazole and MR-TADF core makes the carbazole act as a steric hindrance to inhibit molecular aggregation. Accordingly, the optimized solution-processed pure blue hyperfluorescence devices simultaneously realize record external quantum efficiency of 29.2 %, narrowband emission with a full-width at half-maximum of 16.6 nm, and pure blue color with CIE coordinates of (0.139, 0.189), which is the best result for the solution-processed organic light-emitting diodes based on MR-TADF emitters.

20.
Angew Chem Int Ed Engl ; 62(2): e202212979, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36345132

RESUMEN

High charge carrier mobility polymer semiconductors are always semi-crystalline. Amorphous conjugated polymers represent another kind of polymer semiconductors with different charge transporting mechanism. Here we report the first near-amorphous n-type conjugated polymer with decent electron mobility, which features a remarkably rigid, straight and planar polymer backbone. The molecular design strategy is to copolymerize two fused-ring building blocks which are both electron-accepting, centrosymmetrical and planar. The polymer is the alternating copolymer of double B←N bridged bipyridine (BNBP) unit and benzobisthiazole (BBTz) unit. It shows a decent electron mobility of 0.34 cm2  V-1 s-1 in organic field-effect transistors. The excellent electron transporting property of the polymer is possibly due to the ultrahigh backbone stiffness, small π-π stacking distance, and high molecular weight.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA