Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Rev Cardiovasc Med ; 25(5): 149, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-39076494

RESUMEN

Acute myocardial infarction (AMI) is triggered by the blockage of coronary arteries, leading to restricted blood flow to the myocardium, which results in damage and cell death. While the traditional understanding of cell death primarily revolves around apoptosis, a new player in the game has emerged: ferroptosis. This novel form of cell death relies on iron and is propelled by reactive oxygen species (ROS). Lipid metabolism, an indispensable physiological process, plays a vital role in preserving cellular homeostasis. However, when this metabolic pathway is disrupted, the accumulation of excess waste increases, specifically lipid peroxides, which are strongly linked to the occurrence and progression of AMI. As a result, comprehending this complex interaction between ferroptosis and lipid metabolism could pave the way for new therapeutic approaches in tackling AMI.

3.
BMC Cardiovasc Disord ; 24(1): 123, 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38402377

RESUMEN

BACKGROUND: Acute myocardial infarction (AMI) is indeed a significant cause of mortality and morbidity in individuals with coronary heart disease. Ferroptosis, an iron-dependent cell death, is characterized by the accumulation of intracellular lipid peroxides, which is implicated in cardiomyocyte injury. This study aims to identify biomarkers that are indicative of ferroptosis in the context of AMI, and to examine their potential roles in immune infiltration. METHODS: Firstly, the GSE59867 dataset was used to identify differentially expressed ferroptosis-related genes (DE-FRGs) in AMI. We then performed gene ontology (GO) and functional enrichment analysis on these DE-FRGs. Secondly, we analyzed the GSE76591 dataset and used bioinformatic methods to build ceRNA networks. Thirdly, we identified hub genes in protein-protein interaction (PPI) network. After obtaining the key DE-FRGs through the junction of hub genes with ceRNA and least absolute shrinkage and selection operator (LASSO). ImmucellAI was applied to estimate the immune cell infiltration in each sample and examine the relationship between key DE-FRGs and 24 immunocyte subsets. The diagnostic performance of these genes was further evaluated using the receiver operating characteristic (ROC) curve analysis. Ultimately, we identified an immune-related ceRNA regulatory axis linked to ferroptosis in AMI. RESULTS: Among 56 DE-FRGs identified in AMI, 41 of them were integrated into the construction of competitive endogenous RNA (ceRNA) networks. TLR4 and PIK3CA were identified as key DE-FRGs and PIK3CA was confirmed as a diagnostic biomarker for AMI. Moreover, CD4_native cells, nTreg cells, Th2 cells, Th17 cells, central-memory cells, effector-memory cells, and CD8_T cells had higher infiltrates in AMI samples compared to control samples. In contrast, exhausted cells, iTreg cells, and Tfh cells had lower infiltrates in AMI samples. Spearman analysis confirmed the correlation between 24 immune cells and PIK3CA/TLR4. Ultimately, we constructed an immune-related regulatory axis involving XIST and OIP5-AS1/miR-216a/PIK3CA. CONCLUSION: Our comprehensive analysis has identified PIK3CA as a robust and promising biomarker for this condition. Moreover, we have also identified an immune-related regulatory axis involving XIST and OIP5-AS1/miR-216a/PIK3CA, which may play a key role in regulating ferroptosis during AMI progression.


Asunto(s)
Ferroptosis , MicroARNs , Infarto del Miocardio , Humanos , Ferroptosis/genética , Receptor Toll-Like 4/genética , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/genética , Fosfatidilinositol 3-Quinasa Clase I , Biomarcadores
4.
Rev Cardiovasc Med ; 24(4): 96, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-39076276

RESUMEN

Coronary artery disease (CAD), caused by coronary artery occlusion, is a common cardiovascular disease worldwide. Long non-coding RNAs (lncRNAs) are implicated in the regulation of endothelial cell injury, angiogenesis, plaque formation, and other pathological mechanisms in CAD by acting on different cell types. Some lncRNAs are significantly upregulated in CAD patients; however, other lncRNAs are significantly downregulated. Differential expression of lncRNAs in CAD patients enables them to be exploited as potential biomarkers to evaluate disease progression and diagnosis/prognosis in CAD patients. In this study, we reviewed the role of lncRNAs in the development of different clinical subtypes of CAD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA