Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nature ; 585(7824): 298-302, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32669707

RESUMEN

Proteins are manufactured by ribosomes-macromolecular complexes of protein and RNA molecules that are assembled within major nuclear compartments called nucleoli1,2. Existing models suggest that RNA polymerases I and III (Pol I and Pol III) are the only enzymes that directly mediate the expression of the ribosomal RNA (rRNA) components of ribosomes. Here we show, however, that RNA polymerase II (Pol II) inside human nucleoli operates near genes encoding rRNAs to drive their expression. Pol II, assisted by the neurodegeneration-associated enzyme senataxin, generates a shield comprising triplex nucleic acid structures known as R-loops at intergenic spacers flanking nucleolar rRNA genes. The shield prevents Pol I from producing sense intergenic noncoding RNAs (sincRNAs) that can disrupt nucleolar organization and rRNA expression. These disruptive sincRNAs can be unleashed by Pol II inhibition, senataxin loss, Ewing sarcoma or locus-associated R-loop repression through an experimental system involving the proteins RNaseH1, eGFP and dCas9 (which we refer to as 'red laser'). We reveal a nucleolar Pol-II-dependent mechanism that drives ribosome biogenesis, identify disease-associated disruption of nucleoli by noncoding RNAs, and establish locus-targeted R-loop modulation. Our findings revise theories of labour division between the major RNA polymerases, and identify nucleolar Pol II as a major factor in protein synthesis and nuclear organization, with potential implications for health and disease.


Asunto(s)
Nucléolo Celular/enzimología , Nucléolo Celular/genética , ADN Ribosómico/genética , ARN Polimerasa II/metabolismo , ARN no Traducido/biosíntesis , ARN no Traducido/genética , Ribosomas/metabolismo , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Línea Celular Tumoral , Nucléolo Celular/fisiología , ADN Helicasas/metabolismo , ADN Intergénico/genética , Humanos , Enzimas Multifuncionales/metabolismo , Biosíntesis de Proteínas , Estructuras R-Loop , ARN Helicasas/metabolismo , ARN Polimerasa I/antagonistas & inhibidores , ARN Polimerasa I/metabolismo , Ribonucleasa H/metabolismo , Ribosomas/química , Ribosomas/genética , Sarcoma de Ewing/genética , Sarcoma de Ewing/patología
2.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33568529

RESUMEN

Biomolecular condensates concentrate molecules to facilitate basic biochemical processes, including transcription and DNA replication. While liquid-like condensates have been ascribed various functions, solid-like condensates are generally thought of as amorphous sites of protein storage. Here, we show that solid-like amyloid bodies coordinate local nuclear protein synthesis (LNPS) during stress. On stimulus, translationally active ribosomes accumulate along fiber-like assemblies that characterize amyloid bodies. Mass spectrometry analysis identified regulatory ribosomal proteins and translation factors that relocalize from the cytoplasm to amyloid bodies to sustain LNPS. These amyloidogenic compartments are enriched in newly transcribed messenger RNA by Heat Shock Factor 1 (HSF1). Depletion of stress-induced ribosomal intergenic spacer noncoding RNA (rIGSRNA) that constructs amyloid bodies prevents recruitment of the nuclear protein synthesis machinery, abolishes LNPS, and impairs the nuclear HSF1 response. We propose that amyloid bodies support local nuclear translation during stress and that solid-like condensates can facilitate complex biochemical reactions as their liquid counterparts can.


Asunto(s)
Amiloide/metabolismo , Núcleo Celular/metabolismo , Respuesta al Choque Térmico , Amiloide/genética , Hipoxia de la Célula , Citoplasma/metabolismo , Factores de Transcripción del Choque Térmico/metabolismo , Humanos , Células MCF-7 , Biosíntesis de Proteínas , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ribosomas/metabolismo
3.
Nat Commun ; 11(1): 2677, 2020 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-32472050

RESUMEN

Protein expression evolves under greater evolutionary constraint than mRNA levels, and translation efficiency represents a primary determinant of protein levels during stimuli adaptation. This raises the question as to the translatome remodelers that titrate protein output from mRNA populations. Here, we uncover a network of RNA-binding proteins (RBPs) that enhances the translation efficiency of glycolytic proteins in cells responding to oxygen deprivation. A system-wide proteomic survey of translational engagement identifies a family of oxygen-regulated RBPs that functions as a switch of glycolytic intensity. Tandem mass tag-pulse SILAC (TMT-pSILAC) and RNA sequencing reveals that each RBP controls a unique but overlapping portfolio of hypoxic responsive proteins. These RBPs collaborate with the hypoxic protein synthesis apparatus, operating as a translation efficiency checkpoint that integrates upstream mRNA signals to activate anaerobic metabolism. This system allows anoxia-resistant animals and mammalian cells to initiate anaerobic glycolysis and survive hypoxia. We suggest that an oxygen-sensitive RBP cluster controls anaerobic metabolism to confer hypoxia tolerance.


Asunto(s)
Anaerobiosis/fisiología , Hipoxia de la Célula/fisiología , Glucólisis/fisiología , Proteínas de Unión al ARN/metabolismo , Células 3T3 , Células A549 , Animales , Caenorhabditis elegans/metabolismo , Línea Celular Tumoral , Perfilación de la Expresión Génica , Células HCT116 , Humanos , Ratones , Oxígeno/metabolismo , Células PC-3 , Biosíntesis de Proteínas/fisiología , Procesamiento Proteico-Postraduccional/genética , Proteómica , ARN Mensajero/genética
4.
Nat Commun ; 11(1): 5755, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-33188200

RESUMEN

Translatome reprogramming is a primary determinant of protein levels during stimuli adaptation. This raises the question: what are the translatome remodelers that reprogram protein output to activate biochemical adaptations. Here, we identify a translational pathway that represses metabolism to safeguard genome integrity. A system-wide MATRIX survey identified the ancient eIF5A as a pH-regulated translation factor that responds to fermentation-induced acidosis. TMT-pulse-SILAC analysis identified several pH-dependent proteins, including the mTORC1 suppressor Tsc2 and the longevity regulator Sirt1. Sirt1 operates as a pH-sensor that deacetylates nuclear eIF5A during anaerobiosis, enabling the cytoplasmic export of eIF5A/Tsc2 mRNA complexes for translational engagement. Tsc2 induction inhibits mTORC1 to suppress cellular metabolism and prevent acidosis-induced DNA damage. Depletion of eIF5A or Tsc2 leads to metabolic re-initiation and proliferation, but at the expense of incurring substantial DNA damage. We suggest that eIF5A operates as a translatome remodeler that suppresses metabolism to shield the genome.


Asunto(s)
Daño del ADN , Factores de Iniciación de Péptidos/metabolismo , Biosíntesis de Proteínas , Proteínas de Unión al ARN/metabolismo , Acidosis/metabolismo , Acidosis/patología , Transporte Activo de Núcleo Celular , Adenosina Trifosfato/metabolismo , Hipoxia de la Célula , Línea Celular Tumoral , Núcleo Celular/metabolismo , Proliferación Celular , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Factores de Iniciación de Péptidos/genética , Proteómica , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Sirtuina 1/antagonistas & inhibidores , Sirtuina 1/metabolismo , Transcripción Genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo , Factor 5A Eucariótico de Iniciación de Traducción
5.
Front Genet ; 10: 1179, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31824572

RESUMEN

This year marks the 20th anniversary of the discovery that the nucleolus can temporarily immobilize proteins, a process known as nucleolar sequestration. This review reflects on the progress made to understand the physiological roles of nucleolar sequestration and the mechanisms involved in the immobilization of proteins. We discuss how protein immobilization can occur through a highly choreographed amyloidogenic program that converts the nucleolus into a large fibrous organelle with amyloid-like characteristics called the amyloid body (A-body). We propose a working model of A-body biogenesis that includes a role for low-complexity ribosomal intergenic spacer RNA (rIGSRNA) and a discrete peptide sequence, the amyloid-converting motif (ACM), found in many proteins that undergo immobilization. Amyloid bodies provide a unique model to study the multistep assembly of a membraneless compartment and may provide alternative insights into the pathological amyloidogenesis involved in neurological disorders.

6.
Cell Rep ; 24(7): 1713-1721.e4, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30110628

RESUMEN

Amyloid bodies (A-bodies) are inducible membrane-less nuclear compartments composed of heterogeneous proteins that adopt an amyloid-like state. A-bodies are seeded by noncoding RNA derived from stimuli-specific loci of the rDNA intergenic spacer (rIGSRNA). This raises the question of how rIGSRNA recruits a large population of diverse proteins to confer A-body identity. Here, we show that long low-complexity dinucleotide repeats operate as the architectural determinants of rIGSRNA. On stimulus, clusters of rIGSRNA with simple cytosine/uracil (CU) or adenosine/guanine (AG) repeats spanning hundreds of nucleotides accumulate in the nucleolar area. The low-complexity sequences facilitate charge-based interactions with short cationic peptides to produce multiple nucleolar liquid-like foci. Local concentration of proteins with fibrillation propensity in these nucleolar foci induces the formation of an amyloidogenic liquid phase that seeds A-bodies. These results demonstrate the physiological importance of low-complexity RNA and repetitive regions of the genome often dismissed as "junk" DNA.


Asunto(s)
Proteínas Amiloidogénicas/química , Nucléolo Celular/genética , ADN Intergénico/química , ADN Ribosómico/química , ARN Ribosómico/química , ARN no Traducido/química , Amiloide/química , Amiloide/genética , Amiloide/metabolismo , Proteínas Amiloidogénicas/genética , Proteínas Amiloidogénicas/metabolismo , Animales , Secuencia de Bases , Hipoxia de la Célula , Nucléolo Celular/metabolismo , Nucléolo Celular/ultraestructura , ADN Intergénico/genética , ADN Intergénico/metabolismo , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Repeticiones de Dinucleótido , Expresión Génica , Respuesta al Choque Térmico , Humanos , Concentración de Iones de Hidrógeno , Células MCF-7 , Ratones , Transición de Fase , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Electricidad Estática , Estrés Fisiológico , Imagen de Lapso de Tiempo
7.
Trends Cell Biol ; 27(7): 465-467, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28359692

RESUMEN

Historically, amyloids were perceived as toxic/irreversible protein aggregates associated with neurodegenerative disorders including Alzheimer's and Parkinson's diseases. Recent papers are challenging this perception by uncovering widespread cellular roles for physiological amyloidogenesis. These findings suggest that the amyloid-fold should be considered, alongside the native-fold and unfolded configurations, as a physiological and reversible protein organization.


Asunto(s)
Amiloide/metabolismo , Amiloide/genética , Amiloidosis/genética , Humanos , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Agregado de Proteínas , Pliegue de Proteína
8.
Cell Rep ; 14(6): 1293-1300, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26854219

RESUMEN

Protein concentrations evolve under greater evolutionary constraint than mRNA levels. Translation efficiency of mRNA represents the chief determinant of basal protein concentrations. This raises a fundamental question of how mRNA and protein levels are coordinated in dynamic systems responding to physiological stimuli. This report examines the contributions of mRNA abundance and translation efficiency to protein output in cells responding to oxygen stimulus. We show that changes in translation efficiencies, and not mRNA levels, represent the major mechanism governing cellular responses to [O2] perturbations. Two distinct cap-dependent protein synthesis machineries select mRNAs for translation: the normoxic eIF4F and the hypoxic eIF4F(H). O2-dependent remodeling of translation efficiencies enables cells to produce adaptive translatomes from preexisting mRNA pools. Differences in mRNA expression observed under different [O2] are likely neutral, given that they occur during evolution. We propose that mRNAs contain translation efficiency determinants for their triage by the translation apparatus on [O2] stimulus.


Asunto(s)
Factor 4F Eucariótico de Iniciación/genética , Oxígeno/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , ARN Mensajero/genética , Hipoxia de la Célula , Línea Celular Tumoral , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Factor 4F Eucariótico de Iniciación/metabolismo , Evolución Molecular , Humanos , Neuroglía/citología , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , ARN Mensajero/metabolismo
9.
Dev Cell ; 39(2): 155-168, 2016 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-27720612

RESUMEN

The amyloid state of protein organization is typically associated with debilitating human neuropathies and is seldom observed in physiology. Here, we uncover a systemic program that leverages the amyloidogenic propensity of proteins to regulate cell adaptation to stressors. On stimulus, cells assemble the amyloid bodies (A-bodies), nuclear foci containing heterogeneous proteins with amyloid-like biophysical properties. A discrete peptidic sequence, termed the amyloid-converting motif (ACM), is capable of targeting proteins to the A-bodies by interacting with ribosomal intergenic noncoding RNA (rIGSRNA). The pathological ß-amyloid peptide, involved in Alzheimer's disease, displays ACM-like activity and undergoes stimuli-mediated amyloidogenesis in vivo. Upon signal termination, elements of the heat-shock chaperone pathway disaggregate the A-bodies. Physiological amyloidogenesis enables cells to store large quantities of proteins and enter a dormant state in response to stressors. We suggest that cells have evolved a post-translational pathway that rapidly and reversibly converts native-fold proteins to an amyloid-like solid phase.


Asunto(s)
Adaptación Fisiológica , Amiloide/metabolismo , Estrés Fisiológico , Secuencias de Aminoácidos , Péptidos beta-Amiloides/metabolismo , Animales , Fenómenos Biofísicos , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Femenino , Respuesta al Choque Térmico , Humanos , Células MCF-7 , Ratones Desnudos , Chaperonas Moleculares/metabolismo , ARN no Traducido/genética , Ribosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA