Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Small ; : e2404104, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953403

RESUMEN

Polyimide aerogels have been extensively used in thermal protection domain because they possess a combination of intrinsic characteristics of aerogels and unique features of polyimide. However, polyimide aerogels still suffer significant thermally induced shrinkage at temperatures above 200 °C, restricting their application at high temperature. Here, a novel "double-phase-networking" strategy is proposed for fabricating a lightweight and mechanically robust polyimide hybrid aerogel by forming silica-zirconia-phase networking skeletons, which possess exceptional dimensional stability in high-temperature environments and superior thermal insulation. The rational mechanism responsible for the formation of double-phase-networking aerogel is further explained, generally attributing to chemical crosslinking reactions and supramolecular hydrogen bond interactions derived from the main chains of polyimide and silane/zirconia precursor/sol. The as-prepared aerogels exhibit excellent high-temperature (270 °C) dimensional stability (5.09% ± 0.16%), anti-thermal-shock properties, and low thermal conductivity. Moreover, the hydrophobic treatment provides aerogels high water resistance with water contact angle of 136.9°, further suggestive of low moisture content of 3.6% after exposure to 70 °C and 85% relative humidity for 64 h. The proposed solution for significantly enhancing high-temperature dimensional stability and thermal insulation provides a great supporting foundation for fabricating high-performance organic aerogels as thermal protection materials in aerospace.

2.
Nano Lett ; 22(11): 4325-4332, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35579622

RESUMEN

Thermal properties of materials are often determined by measuring thermalization processes; however, such measurements at the nanoscale are challenging because they require high sensitivity concurrently with high temporal and spatial resolutions. Here, we develop an optomechanical cantilever probe and customize an atomic force microscope with low detection noise ≈1 fm/Hz1/2 over a wide (>100 MHz) bandwidth that measures thermalization dynamics with ≈10 ns temporal resolution, ≈35 nm spatial resolution, and high sensitivity. This setup enables fast nanoimaging of thermal conductivity (η) and interfacial thermal conductance (G) with measurement throughputs ≈6000× faster than conventional macroscale-resolution time-domain thermoreflectance acquiring the full sample thermalization. As a proof-of-principle demonstration, 100 × 100 pixel maps of η and G of a polymer particle are obtained in 200 s with a small relative uncertainty (<10%). This work paves the way to study fast thermal dynamics in materials and devices at the nanoscale.

3.
Int J Mol Sci ; 24(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37240006

RESUMEN

As a natural polymer, lignin is only less abundant in nature than cellulose. It has the form of an aromatic macromolecule, with benzene propane monomers connected by molecular bonds such as C-C and C-O-C. One method to accomplish high-value lignin conversion is degradation. The use of deep eutectic solvents (DESs) to degrade lignin is a simple, efficient and environmentally friendly degradation method. After degradation, the lignin is broken due to ß-O-4 to produce phenolic aromatic monomers. In this work, lignin degradation products were evaluated as additives for the preparation of polyaniline conductive polymers, which not only avoids solvent waste but also achieves a high-value use of lignin. The morphological and structural characteristics of the LDP/PANI composites were investigated using 1H NMR, Fourier-transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis and elemental analysis. The LDP/PANI nanocomposite provides a specific capacitance of 416.6 F/g at 1 A/g and can be used as a lignin-based supercapacitor with good conductivity. Assembled as a symmetrical supercapacitor device, it provides an energy density of 57.86 Wh/kg, an excellent power density of 952.43 W/kg and, better still, a sustained cycling stability. Thus, the combination of polyaniline and lignin degradate, which is environmentally friendly, amplifies the capacitive function on the basis of polyaniline.


Asunto(s)
Lignina , Fenol , Fenoles , Conductividad Eléctrica , Polímeros
4.
Int J Mol Sci ; 25(1)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38203303

RESUMEN

Lignosulfonate/polyaniline (LS/PANI) nanocomposite adsorbent materials were prepared by the chemical polymerization of lignosulfonate with an aniline monomer as a dopant and structure-directing agent, and the adsorption behavior of dyes as well as heavy metal ions was investigated. LS/PANI composites were used as dye adsorbents for the removal of different cationic dyes (malachite green, methylene blue, and crystal violet). The adsorption behavior of LS/PANI composites as dye adsorbents for malachite green was investigated by examining the effects of the adsorbent dosage, solution pH, initial concentration of dye, adsorption time, and temperature on the adsorption properties of this dye. The following conclusions were obtained. The optimum adsorption conditions for the removal of malachite green dye when LS/PANI composites were used as malachite green dye adsorbents were as follows: an adsorbent dosage of 20 mg, an initial concentration of the dye of 250 mg/L, an adsorption time of 300 min, and a temperature of 358 K. The LS/PANI composite adsorbed malachite green dye in accordance with the Langmuir adsorption model and pseudo-second-order kinetic model, which belongs to chemisorption-based monomolecular adsorption, and the equilibrium adsorption amount was 245.75 mg/g. In particular, the adsorption of heavy metal ion Pb2+ was investigated, and the removal performance was also favorable for Pb2+.


Asunto(s)
Colorantes , Lignina/análogos & derivados , Metales Pesados , Colorantes de Rosanilina , Plomo , Compuestos de Anilina , Iones
5.
Phys Rev Lett ; 129(18): 186101, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36374673

RESUMEN

Whispering gallery modes (WGMs) in circularly symmetric optical microresonators exhibit integer quantized angular momentum numbers due to the boundary condition imposed by the geometry. Here, we show that incorporating a photonic crystal pattern in an integrated microring can result in WGMs with fractional optical angular momentum. By choosing the photonic crystal periodicity to open a photonic band gap with a band-edge momentum lying between that of two WGMs of the unperturbed ring, we observe hybridized WGMs with half-integer quantized angular momentum numbers (m∈Z+1/2). Moreover, we show that these modes with fractional angular momenta exhibit high optical quality factors with good cavity-waveguide coupling and an order of magnitude reduced group velocity. Additionally, by introducing multiple artificial defects, multiple modes can be localized to small volumes within the ring, while the relative orientation of the delocalized band-edge states can be well controlled. Our Letter unveils the renormalization of WGMs by the photonic crystal, demonstrating novel fractional angular momentum states and nontrivial multimode orientation control arising from continuous rotational symmetry breaking. The findings are expected to be useful for sensing and metrology, nonlinear optics, and cavity quantum electrodynamics.

6.
Opt Express ; 29(5): 6967-6979, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33726207

RESUMEN

Key for optical microresonator engineering, the total intrinsic loss is easily determined by spectroscopy; however, quantitatively separating absorption and radiative losses is challenging, and there is not a general and robust method. Here, we propose and experimentally demonstrate a general all-optical characterization technique for separating the loss mechanisms with high confidence using only linear spectroscopic measurements and an optically measured resonator thermal time constant. We report the absorption, radiation, and coupling losses for ten whispering-gallery modes of three different radial orders on a Si microdisk. Although the total dissipation rates show order-of-magnitude differences, the small absorptive losses are successfully distinguished from the overwhelming radiation losses and show similar values for all the modes as expected for the bulk material absorption.

7.
Nano Lett ; 20(5): 3050-3057, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32250636

RESUMEN

Microfabricated mechanical resonators enable precision measurement techniques from atomic force microscopy to emerging quantum applications. The resonance frequency-based physical sensing combines high precision with long-term stability. However, widely used Si3N4 resonators suffer from frequency sensitivity to temperature due to the differential thermal expansion vs the Si substrates. Here we experimentally demonstrate temperature- and residual stress-insensitive 16.51 MHz tuning fork nanobeam resonators with nonlinear clamps defining the stress and frequency by design, achieving a low fractional frequency sensitivity of (2.5 ± 0.8) × 10-6 K-1, a 72× reduction. On-chip optical readout of resonator thermomechanical fluctuations allows precision frequency measurement without any external excitation at the thermodynamically limited frequency Allan deviation of ≈7 Hz/Hz1/2 and (relative) bias stability of ≈10 Hz (≈ 0.6 × 10-6) above 1 s averaging, remarkably, on par with state-of-the-art driven devices of similar mass. Both the resonator stabilization and the passive frequency readout can benefit a wide variety of micromechanical sensors.

8.
Phys Rev Lett ; 124(1): 013903, 2020 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-31976735

RESUMEN

We study the Casimir torque between two metallic one-dimensional gratings rotated by an angle θ with respect to each other. We find that, for infinitely extended gratings, the Casimir energy is anomalously discontinuous at θ=0, due to a critical zero-order geometric transition between a 2D- and a 1D-periodic system. This transition is a peculiarity of the grating geometry and does not exist for intrinsically anisotropic materials. As a remarkable practical consequence, for finite-size gratings, the torque per area can reach extremely large values, increasing without bounds with the size of the system. We show that for finite gratings with only ten period repetitions, the maximum torque is already 60 times larger than the one predicted in the case of infinite gratings. These findings pave the way to the design of a contactless quantum vacuum torsional spring, with possible relevance to micro- and nanomechanical devices.

9.
Front Immunol ; 15: 1334348, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38370413

RESUMEN

Background: Immunohistochemistry (IHC) is a widely used laboratory technique for cancer diagnosis, which selectively binds specific antibodies to target proteins in tissue samples and then makes the bound proteins visible through chemical staining. Deep learning approaches have the potential to be employed in quantifying tumor immune micro-environment (TIME) in digitized IHC histological slides. However, it lacks of publicly available IHC datasets explicitly collected for the in-depth TIME analysis. Method: In this paper, a notable Multiplex IHC Histopathological Image Classification (MIHIC) dataset is created based on manual annotations by pathologists, which is publicly available for exploring deep learning models to quantify variables associated with the TIME in lung cancer. The MIHIC dataset comprises of totally 309,698 multiplex IHC stained histological image patches, encompassing seven distinct tissue types: Alveoli, Immune cells, Necrosis, Stroma, Tumor, Other and Background. By using the MIHIC dataset, we conduct a series of experiments that utilize both convolutional neural networks (CNNs) and transformer models to benchmark IHC stained histological image classifications. We finally quantify lung cancer immune microenvironment variables by using the top-performing model on tissue microarray (TMA) cores, which are subsequently used to predict patients' survival outcomes. Result: Experiments show that transformer models tend to provide slightly better performances than CNN models in histological image classifications, although both types of models provide the highest accuracy of 0.811 on the testing dataset in MIHIC. The automatically quantified TIME variables, which reflect proportions of immune cells over stroma and tumor over tissue core, show prognostic value for overall survival of lung cancer patients. Conclusion: To the best of our knowledge, MIHIC is the first publicly available lung cancer IHC histopathological dataset that includes images with 12 different IHC stains, meticulously annotated by multiple pathologists across 7 distinct categories. This dataset holds significant potential for researchers to explore novel techniques for quantifying the TIME and advancing our understanding of the interactions between the immune system and tumors.


Asunto(s)
Neoplasias Pulmonares , Humanos , Redes Neurales de la Computación , Inmunohistoquímica , Microambiente Tumoral
10.
Int J Biol Macromol ; : 133430, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38936567

RESUMEN

Phenolic resins occupy an important position in industrial applications, but since phenol, one of the raw materials for synthesis, is a non-renewable resource. Lignin, as a natural polymer containing phenolic hydroxyl groups, alcohol hydroxyl groups and other reactive groups, can replace some of the phenol in the synthesis of phenolic resins, which can reduce the amount of phenol, thus reducing the cost of phenolic resins, while effectively promoting the high value-added use of renewable biomass resources. Due to its low reactivity, alkaline lignin is usually discharged as production waste, unaware that lignin macromolecules can be modified. In this paper, the phenolic monomers were obtained by acid-catalyzed depolymerization of DES (choline chloride/p-toluenesulfonic acid or choline chloride/lactic acid) from waste alkaline lignin, and the recovery rate of the DES solution during the catalytic treatment was more than 85 %, in which the main monomer was 2-methoxy-4-(1-propyl) phenol. The degradation of alkaline lignin is still favorable after five times of DES solvent recovery. The depolymerized lignin monomer replaced phenol by 50 wt% and then ternary co-polymerized with phenol and formaldehyde to form a biomass phenol-based phenolic resin, providing a green route for phenolic resin production. The cost of resin preparation was economically calculated, and it was found that the cost of resin after accumulating 4 cycles of DES treatment was only 51.1 % of that of pure phenolic resin. The density functional theory (DFT) was used to simulate the possible radical reactions in the intermediate process of phenolic resin reaction, to explore the microscopic mechanism and competition, to provide theoretical reference for further experimental realization of resin structure control and optimization, and to improve the theoretical system of resin synthesis.

11.
Foods ; 13(7)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38611374

RESUMEN

During the production process of refined betel nuts in China, a large amount of processing by-product, betel nut waste seeds, is generated. Betel nut waste seeds are rich in bioactive elements, but they have not been effectively utilized yet. In this study, an ultrasonic-assisted deep eutectic solvent method (DES) was used to selectively extract α-glucosidase inhibitors from waste seeds. Compared with traditional extraction solvents such as water and ethanol, the extraction efficiency of specific DESs is higher, and the content of alkaloids in the extracts is lower. However, it should be noted that some pure DESs exhibit inhibitory activity towards α-glucosidase. DESs, based on choline chloride/urea, were selected due to the high extraction efficiency of α-glucosidase inhibitors and their low alkaloid content as well as low inhibitory activity. The optimal extraction conditions were determined using single-factor experiments as follows: 30% (v/v) water content, a choline chloride/urea ratio of 5:3, a solid-liquid ratio of 1:10, extraction temperature of 40 °C, and a duration of 30 min. Through recovery experiments, it was found that the DES can be reused four times under these conditions, maintaining an inhibition rate comparable to alcohol extraction methods. The IC50 value of the extract was measured at 0.0066 mg/mL, superior to acarbose. In summary, this research has successfully developed an efficient and selective method for extracting α-glucosidase inhibitors from betel nut waste seeds, thereby presenting a promising avenue for future applications.

12.
Int J Biol Macromol ; 252: 126271, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37572820

RESUMEN

Lignin is the most abundant aromatic biomass resource in nature and is the main by-product of paper industry and biorefinery industry, which has the characteristics of abundant source, renewable and low cost. Deep eutectic solvents (DES) are a nascent environmentally friendly solvent option that is gaining traction. DES composed of p-toluenesulfonic acid and choline chloride is used for batch treatment of alkaline lignin, and the bio-oil obtained is ternary polymerized with formaldehyde and phenol to obtain lignin phenolic resin. The porous carbon material is produced through a two-step carbonization process, utilizing phenolic resin derived from lignin as the primary source of carbon. The morphology and composition of the carbon were analyzed by SEM, TEM, XRD, TGA, XPS and Raman spectroscopy, the specific surface area and pore size distribution were analyzed by BET. The results showed that the specific surface area of the lignin-based phenolic resin was significantly higher than that of the pure phenolic resin carbon, and the porous carbon material that was acquired demonstrated a specific surface area of as much as 1026 m2/g. In the three-electrode system, the specific capacitance of DLPFC can reach 245.8 F/g (0.25 A/g), with a very small decrease in the value of specific capacitance at 10,000 cycles, with a retention of 97.62% (10 A/g). The porous carbon demonstrated a specific capacitance of 112.4 F/g at a current density of 0.5 A/g, and the capacitance retention rate could still reach 98.8% after 5000 charge/discharge cycles, with high cycling stability (in the two-electrode system). The prepared symmetrical supercapacitors exhibited high energy density and power density of 3.9 Wh/kg and 125.0 W/kg. The results suggest a new idea of high value-added application of lignin phenolic resin for high-performance supercapacitor electrodes.


Asunto(s)
Carbono , Lignina , Lignina/química , Carbono/química , Porosidad , Fenoles , Formaldehído , Electrodos
13.
Nat Commun ; 14(1): 1119, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36849526

RESUMEN

Twisted light with orbital angular momentum (OAM) has been extensively studied for applications in quantum and classical communications, microscopy, and optical micromanipulation. Ejecting high angular momentum states of a whispering gallery mode (WGM) microresonator through a grating-assisted mechanism provides a scalable, chip-integrated solution for OAM generation. However, demonstrated OAM microresonators have exhibited a much lower quality factor (Q) than conventional WGM resonators (by >100×), and an understanding of the limits on Q has been lacking. This is crucial given the importance of Q in enhancing light-matter interactions. Moreover, though high-OAM states are often desirable, the limits on what is achievable in a microresonator are not well understood. Here, we provide insight on these two questions, through understanding OAM from the perspective of mode coupling in a photonic crystal ring and linking it to coherent backscattering between counter-propagating WGMs. In addition to demonstrating high-Q (105 to 106), a high estimated upper bound on OAM ejection efficiency (up to 90%), and high-OAM number (up to l = 60), our empirical model is supported by experiments and provides a quantitative explanation for the behavior of Q and the upper bound of OAM ejection efficiency with l. The state-of-the-art performance and understanding of microresonator OAM generation opens opportunities for OAM applications using chip-integrated technologies.

14.
Sci Adv ; 9(11): eadf7595, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36921059

RESUMEN

Thermal fluctuations often impose both fundamental and practical measurement limits on high-performance sensors, motivating the development of techniques that bypass the limitations imposed by thermal noise outside cryogenic environments. Here, we theoretically propose and experimentally demonstrate a measurement method that reduces the effective transducer temperature and improves the measurement precision of a dynamic impulse response signal. Thermal noise-limited, integrated cavity optomechanical atomic force microscopy probes are used in a photothermal-induced resonance measurement to demonstrate an effective temperature reduction by a factor of ≈25, i.e., from room temperature down as low as ≈12 K, without cryogens. The method improves the experimental measurement precision and throughput by >2×, approaching the theoretical limit of ≈3.5× improvement for our experimental conditions. The general applicability of this method to dynamic measurements leveraging thermal noise-limited harmonic transducers will have a broad impact across a variety of measurement platforms and scientific fields.

15.
Phys Rev X ; 12(4)2022.
Artículo en Inglés | MEDLINE | ID: mdl-38680940

RESUMEN

Many nonlinear systems are described by eigenmodes with amplitude-dependent frequencies, interacting strongly whenever the frequencies become commensurate at internal resonances. Fast energy exchange via the resonances holds the key to rich dynamical behavior, such as time-varying relaxation rates and signatures of nonergodicity in thermal equilibrium, revealed in the recent experimental and theoretical studies of micro- and nanomechanical resonators. However, a universal yet intuitive physical description for these diverse and sometimes contradictory experimental observations remains elusive. Here we experimentally reveal persistent nonlinear phase-locked states occurring at internal resonances and demonstrate that they are essential for understanding the transient dynamics of nonlinear systems with coupled eigenmodes. The measured dynamics of a fully observable micromechanical resonator system are quantitatively described by the lower-frequency mode entering, maintaining, and exiting a persistent phase-locked period-tripling state generated by the nonlinear driving force exerted by the higher-frequency mode. This model describes the observed phase-locked coherence times, the direction and magnitude of the energy exchange, and the resulting nonmonotonic mode energy evolution. Depending on the initial relative phase, the system selects distinct relaxation pathways, either entering or bypassing the locked state. The described persistent phase locking is not limited to particular frequency fractions or types of nonlinearities and may advance nonlinear resonator systems engineering across physical domains, including photonics as well as nanomechanics.

16.
Microsyst Nanoeng ; 7: 52, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34567765

RESUMEN

Advances in integrated photonics open up exciting opportunities for batch-fabricated optical sensors using high-quality-factor nanophotonic cavities to achieve ultrahigh sensitivities and bandwidths. The sensitivity improves with increasing optical power; however, localized absorption and heating within a micrometer-scale mode volume prominently distorts the cavity resonances and strongly couples the sensor response to thermal dynamics, limiting the sensitivity and hindering the measurement of broadband time-dependent signals. Here, we derive a frequency-dependent photonic sensor transfer function that accounts for thermo-optical dynamics and quantitatively describes the measured broadband optomechanical signal from an integrated photonic atomic force microscopy nanomechanical probe. Using this transfer function, the probe can be operated in the high optical power, strongly thermo-optically nonlinear regime, accurately measuring low- and intermediate-frequency components of a dynamic signal while reaching a sensitivity of 0.7 fm/Hz1/2 at high frequencies, an improvement of ≈10× relative to the best performance in the linear regime. Counterintuitively, we discover that a higher transduction gain and sensitivity are achieved with lower quality-factor optical modes for low signal frequencies. Not limited to optomechanical transducers, the derived transfer function is generally valid for describing the small-signal dynamic responses of a broad range of technologically important photonic sensors subject to the thermo-optical effect.

17.
Commun Phys ; 4(1)2021.
Artículo en Inglés | MEDLINE | ID: mdl-38680632

RESUMEN

All physical oscillators are subject to thermodynamic and quantum perturbations, fundamentally limiting measurement of their resonance frequency. Analyses assuming specific ways of estimating frequency can underestimate the available precision and overlook unconventional measurement regimes. Here we derive a general, estimation-method-independent Cramer Rao lower bound for a linear harmonic oscillator resonance frequency measurement uncertainty, seamlessly accounting for the quantum, thermodynamic and instrumental limitations, including Fisher information from quantum backaction- and thermodynamically-driven fluctuations. We provide a universal and practical maximum-likelihood frequency estimator reaching the predicted limits in all regimes, and experimentally validate it on a thermodynamically-limited nanomechanical oscillator. Low relative frequency uncertainty is obtained for both very high bandwidth measurements (≈ 10-5 for τ=30µs) and measurements using thermal fluctuations alone (<10-6). Beyond nanomechanics, these results advance frequency-based metrology across physical domains.

18.
Nat Commun ; 12(1): 600, 2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33500401

RESUMEN

Quantum fluctuations give rise to Casimir forces between two parallel conducting plates, the magnitude of which increases monotonically as the separation decreases. By introducing nanoscale gratings to the surfaces, recent advances have opened opportunities for controlling the Casimir force in complex geometries. Here, we measure the Casimir force between two rectangular silicon gratings. Using an on-chip detection platform, we achieve accurate alignment between the two gratings so that they interpenetrate as the separation is reduced. Just before interpenetration occurs, the measured Casimir force is found to have a geometry dependence that is much stronger than previous experiments, with deviations from the proximity force approximation reaching a factor of ~500. After the gratings interpenetrate each other, the Casimir force becomes non-zero and independent of displacement. This work shows that the presence of gratings can strongly modify the Casimir force to control the interaction between nanomechanical components.

19.
Chem Commun (Camb) ; 57(61): 7553-7556, 2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34240730

RESUMEN

Fluorophores with photo-modulatory fluorescence properties are valuable for cutting-edge localization microscopy. The existing probes are either photo-activatable, or photo-switchable, but not both. We report a probe (DH-SiR), a leuco-dye obtained by reduction of Si-rhodamine, with both photo-activatable and photo-switchable fluorescence. The potential for super-resolution microscopy was showcased.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA