RESUMEN
Intracerebral hemorrhage (ICH) is a devastating neurological disorder characterized by an exacerbation of neuroinflammation and neuronal injury, for which few effective therapies are available at present. Inhibition of excessive neuroglial activation has been reported to alleviate ICH-related brain injuries. In the present study, the anti-ICH activity and microglial mechanism of ergosta-7,9(11),22-trien-3ß-ol (EK100), a bioactive ingredient from Asian medicinal herb Antrodia camphorate, were evaluated. Post-treatment of EK100 significantly attenuated neurobehavioral deficit and MRI-related brain lesion in the mice model of collagenase-induced ICH. Additionally, EK100 alleviated the inducible expression of cyclooxygenase (COX)-2 and the activity of matrix metalloproteinase (MMP)-9 in the ipsilateral brain regions. Consistently, it was shown that EK100 concentration-dependently inhibited the expression of COX-2 protein in Toll-like receptor (TLR)-4 activator lipopolysaccharide (LPS)-activated microglial BV-2 and primary microglial cells. Furthermore, the production of microglial prostaglandin E2 and reactive oxygen species were attenuated by EK100. EK100 also attenuated the induction of astrocytic MMP-9 activation. Among several signaling pathways, EK100 significantly and concentration-dependently inhibited activation of c-Jun N-terminal kinase (JNK) MAPK in LPS-activated microglial BV-2 cells. Consistently, ipsilateral JNK activation was markedly inhibited by post-ICH-treated EK100 in vivo. In conclusion, EK100 exerted the inhibitory actions on microglial JNK activation, and attenuated brain COX-2 expression, MMP-9 activation, and brain injuries in the mice ICH model. Thus, EK100 may be proposed and employed as a potential therapeutic agent for ICH.
Asunto(s)
Lesiones Encefálicas/tratamiento farmacológico , Ergosterol/análogos & derivados , Ergosterol/farmacología , Animales , Encéfalo/metabolismo , Lesiones Encefálicas/metabolismo , Hemorragia Cerebral/tratamiento farmacológico , Hemorragia Cerebral/metabolismo , Ciclooxigenasa 2/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Activación de Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Polyporales/metabolismo , Transducción de Señal/efectos de los fármacosRESUMEN
Clinical studies have suggested that the renin-angiotensin system (RAS) may be a promising therapeutic target in treating diabetic retinopathy (DR). While AT1 receptor blockade decreased the incidence of DR in the DIRECT trial, it did not reduce the DR progression. Lack of understanding of the molecular mechanism of retinal microvascular damage induced by RAS is a critical barrier to the use of RAS blockade in preventing or treating DR. The purpose of this study is to investigate the interaction between soluble epoxide hydrolase (sEH) and the AT1 receptor in Angiotensin II (Ang II)- and diabetes-induced retinal microvascular damage. We demonstrate that Ang II increases retinal sEH levels, which is blunted by an AT1 blocker; administration of 11,12-epoxyeicosatrienoic acid (EET) exacerbates intravitreal Ang II-induced retinal albumin leakage; while sEH knockout (KO) and blockade reduce Ang II-induced retinal vascular remodeling, sEH KO causes retinal vascular leakage in Ang II-sEH KO mice; and sEH KO potentiates diabetes-induced retinal damage via promoting retinal vascular endothelial growth factor (VEGF) but reducing expression of tight junction proteins (ZO-1 and occludin). Our studies hold the promise of providing a new strategy, the use of combined EETs blockade with AT1 blocker, to prevent or reduce DR.
Asunto(s)
Angiotensina II/metabolismo , Diabetes Mellitus Experimental/patología , Epóxido Hidrolasas/metabolismo , Microvasos/patología , Receptor de Angiotensina Tipo 1/metabolismo , Sistema Renina-Angiotensina , Retina/patología , Animales , Diabetes Mellitus Experimental/metabolismo , Modelos Animales de Enfermedad , Epóxido Hidrolasas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microvasos/metabolismo , Retina/metabolismoRESUMEN
Activated human monocytes/macrophages, which increase the levels of matrix metalloproteinases (MMPs) and pro-inflammatory cytokines, are the essential mechanisms for the progression of sepsis. In the present study, we determined the functions and mechanisms of hirsutanolA (HA), which is isolated from the red alga-derived marine fungus Chondrostereum sp. NTOU4196, on the production of pro-inflammatory mediators produced from lipopolysaccharide (LPS)-treated THP-1 cells. Our results showed that HA suppressed LPS-triggered MMP-9-mediated gelatinolysis and expression of protein and mRNA in a concentration-dependent manner without effects on TIMP-1 activity. Also, HA significantly attenuated the levels of TNF-α, IL-6, and IL-1ß from LPS-treated THP-1 cells. Moreover, HA significantly inhibited LPS-mediated STAT3 (Tyr705) phosphorylation, IκBα degradation and ERK1/2 activation in THP-1 cells. In an LPS-induced endotoxemia mouse model, studies indicated that HA pretreatment improved endotoxemia-induced acute sickness behavior, including acute motor deï¬cits and anxiety-like behavior. HA also attenuated LPS-induced phospho-STAT3 and pro-MMP-9 activity in the hippocampus. Notably, HA reduced pathologic lung injury features, including interstitial tissue edema, inï¬ltration of inï¬ammatory cells and alveolar collapse. Likewise, HA suppressed the induction of phospho-STAT3 and pro-MMP-9 in lung tissues. In conclusion, our results provide pharmacological evidence that HA could be a useful agent for treating inflammatory diseases, including sepsis.
Asunto(s)
Lesión Pulmonar Aguda/tratamiento farmacológico , Citocinas/metabolismo , Conducta de Enfermedad/efectos de los fármacos , Metaloproteinasa 9 de la Matriz/metabolismo , Sesquiterpenos/farmacología , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/metabolismo , Animales , Línea Celular Tumoral , Endotoxemia/complicaciones , Endotoxemia/metabolismo , Humanos , Lipopolisacáridos/farmacología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos , Células THP-1/efectos de los fármacos , Células THP-1/metabolismoRESUMEN
Advanced oxidation protein products (AOPPs) are independent risk factor for various cardiovascular diseases. Cardiomyocyte apoptosis has been implicated as an important mechanism in cardiac remodeling in chronic kidney disease (CKD). However, whether AOPPs affect cardiomyocyte apoptosis and subsequent cardiac remodeling in CKD is still not very clear. Here, we assessed the role of AOPPs in cardiomyocyte apoptosis in CKD. H9C2 rat cardiomyoblast cells were exposed to AOPPs. Apoptotic cells were determined by TUNEL assay. The expression of apoptotic markers (cleaved caspase-3 and Bax), JNK signaling, and endoplasmic reticulum stress were explored. Serum AOPPs were measured in male Sprague-Dawley rats that underwent sham surgery and 5/6 nephrectomy, respectively. In vitro, our findings showed that AOPPs activated JNK signaling and endoplasmic reticulum stress and significantly aggravated H9C2 rat cardiomyoblast cells apoptosis. These effects were partially ameliorated by apocynin with inhibition of oxidative stress. In vivo, serum levels of AOPPs were progressively elevated with the increasing time course in CKD rats compared with sham-operated rats ( P < 0.05). Serum AOPP levels were positively associated with cardiomyocyte apoptosis ( R2 = 0.76, P < 0.01). In conclusion, AOPPs aggravate cardiomyocyte apoptosis in vitro, and these effects are partially prevented by apocynin via suppressing JNK signaling and endoplasmic reticulum stress with oxidative stress inhibition. In vivo, AOPPs are increased in the CKD model and may contribute to the cardiac pathogenesis, but at this point it is unclear if that is true. These results suggest that pharmacological approaches to attenuate AOPP-aggravated cardiomyocyte apoptosis may be beneficial to improve cardiac remodeling in CKD. NEW & NOTEWORTHY Here, we present new evidence to show that advanced oxidation protein products aggravate cardiomyocyte apoptosis and subsequent cardiac remodeling via upregulations of JNK signaling and endoplasmic reticulum stress in chronic kidney disease. Such processes are mainly prevented by apocynin via oxidative stress inhibition.
Asunto(s)
Productos Avanzados de Oxidación de Proteínas/sangre , Apoptosis , Cardiopatías/sangre , Miocitos Cardíacos/metabolismo , Insuficiencia Renal Crónica/sangre , Remodelación Ventricular , Acetofenonas/farmacología , Animales , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Línea Celular , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico , Cardiopatías/patología , Cardiopatías/fisiopatología , Cardiopatías/prevención & control , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Masculino , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Estrés Oxidativo , Ratas Sprague-Dawley , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/fisiopatología , Transducción de Señal , Regulación hacia Arriba , Remodelación Ventricular/efectos de los fármacosRESUMEN
AIMS: Our previous studies have established a role for 12/15-lipoxygenase (LO) in mediating the inflammatory response in diabetic retinopathy (DR). However, the extent at which the local or systemic induction of 12/15-LO activity involved is unclear. Thus, the current study aimed to characterize the relative contribution of retinal endothelial versus monocytic/macrophagic 12/15-LO to inflammatory responses in DR. MATERIALS & METHODS: We first generated a clustered heat map for circulating bioactive lipid metabolites in the plasma of streptozotocin (STZ)-induced diabetic mice using liquid chromatography coupled with mass-spectrometry (LC-MS) to evaluate changes in circulating 12/15-LO activity. This was followed by comparing the in vitro mouse endothelium-leukocytes interaction between leukocytes isolated from 12/15-LO knockout (KO) versus those isolated from wild type (WT) mice using the myeloperoxidase (MPO) assay. Finally, we examined the effects of knocking down or inhibiting endothelial 12/15-LO on diabetes-induced endothelial cell activation and ICAM-1 expression. RESULTS: Analysis of plasma bioactive lipids' heat map revealed that the activity of circulating 12/15-LO was not altered by diabetes as evident by no significant changes in the plasma levels of major metabolites derived from 12/15-lipoxygenation of different PUFAs, including linoleic acid (13-HODE), arachidonic acid (12- and 15- HETEs), eicosapentaenoic acid (12- and 15- HEPEs), or docosahexaenoic acid (17-HDoHE). Moreover, leukocytes from 12/15-LO KO mice displayed a similar increase in adhesion to high glucose (HG)-activated endothelial cells as do leukocytes from WT mice. Furthermore, abundant proteins of 12-LO and 15-LO were detected in human retinal endothelial cells (HRECs), while it was undetected (15-LO) or hardly detectable (12-LO) in human monocyte-like U937 cells. Inhibition or knock down of endothelial 12/15-LO in HRECs blocked HG-induced expression of ICAM-1, a well-known identified important molecule for leukocyte adhesion in DR. CONCLUSION: Our data support that endothelial, rather than monocytic/macrophagic, 12/15-LO has a critical role in hyperglycemia-induced ICAM-1 expression, leukocyte adhesion, and subsequent local retinal barrier dysfunction. This may facilitate the development of more precisely targeted treatment strategies for DR.
Asunto(s)
Araquidonato 12-Lipooxigenasa/metabolismo , Araquidonato 15-Lipooxigenasa/metabolismo , Retinopatía Diabética/enzimología , Células Endoteliales/enzimología , Leucostasis/enzimología , Macrófagos/enzimología , Monocitos/enzimología , Retina/enzimología , Animales , Araquidonato 12-Lipooxigenasa/genética , Araquidonato 15-Lipooxigenasa/genética , Adhesión Celular/genética , Retinopatía Diabética/genética , Retinopatía Diabética/patología , Células Endoteliales/patología , Humanos , Molécula 1 de Adhesión Intercelular/biosíntesis , Molécula 1 de Adhesión Intercelular/genética , Leucostasis/genética , Leucostasis/patología , Macrófagos/patología , Ratones , Ratones Noqueados , Monocitos/patología , Retina/patología , Células U937RESUMEN
Arachidonic acid (AA) is metabolized by cyclooxygenase (COX) and cytochrome P450 (CYP) enzymes into eicosanoids, which are involved in cardiovascular diseases and stroke. Evidence has demonstrated the important functions of these eicosanoids in regulating cerebral vascular tone, cerebral blood flow, and autoregulation of cerebral circulation. Although COX-2 inhibitors have been suggested as potential treatments for stroke, adverse events, including an increased risk of stroke, occur following long-term use of coxibs. It is important to note that prolonged treatment with rofecoxib increased circulating levels of 20-hydroxyeicosatetraenoic acid (20-HETE), and 20-HETE blockade is a possible strategy to prevent coxib-induced stroke events. It appears that 20-HETE has detrimental effects in the brain, and that its blockade exerts cerebroprotection against ischemic stroke and subarachnoid hemorrhage (SAH). There is clear evidence that activation of EP2 and EP4 receptors exerts cerebroprotection against ischemic stroke. Several elegant studies have contributed to defining the importance of stabilizing the levels of epoxyeicosatrienoic acids (EETs), by inhibiting or deleting soluble epoxide hydrolase (sEH), in stroke research. These reports support the notion that sEH blockade is cerebroprotective against ischemic stroke and SAH. Here, we summarize recent findings implicating these eicosanoid pathways in cerebral vascular function and stroke. We also discuss the development of animal models with targeted gene deletion and specific enzymatic inhibitors in each pathway to identify potential targets for the treatment of ischemic stroke and SAH.
Asunto(s)
Ácido Araquidónico/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Eicosanoides/metabolismo , Prostaglandina-Endoperóxido Sintasas/metabolismo , Accidente Cerebrovascular/metabolismo , Humanos , Ácidos Hidroxieicosatetraenoicos/sangre , Ácidos Hidroxieicosatetraenoicos/metabolismo , Modelos Biológicos , Receptores de Prostaglandina E/metabolismo , Accidente Cerebrovascular/sangre , Hemorragia Subaracnoidea/sangre , Hemorragia Subaracnoidea/metabolismoRESUMEN
Despite the optimization of blood glucose control and the therapeutic management of risk factors, obesity- and diabetes-induced cardiovascular diseases are still major health problems in the United States. Arachidonic acid (AA), an endogenous 20-carbon polyunsaturated fatty acid, is metabolized by cytochrome P450 (CYP) epoxygenases into epoxyeicosatrienoic acids (EETs), which are important lipid mediators with many beneficial effects in type 1 diabetes mellitus (T1DM), type 2 diabetes mellitus (T2DM), and obesity- and diabetes-induced cardiovascular diseases. EETs can be further metabolized to less active dihydroxyeicosatrienoic acids (DHETs) by soluble epoxide hydrolase (sEH). It has been demonstrated that the use of sEH blockers, which prevent EET degradation, is a promising pharmacological approach to promoting insulin secretion, preventing endothelial dysfunction, decreasing blood pressure, and protecting against target organ damage in obesity and metabolic diseases. This review will focus on biochemistry of CYP monooxygenase system as well as the pharmacology and physiological significance of EETs and sEH. We will also discuss the role of EETs/sEH in T1DM, T2DM, and obesity- and diabetes-induced cardiovascular diseases.
Asunto(s)
Ácido 8,11,14-Eicosatrienoico/metabolismo , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/metabolismo , Diabetes Mellitus/metabolismo , Epóxido Hidrolasas/química , Epóxido Hidrolasas/metabolismo , Obesidad/complicaciones , Animales , Enfermedades Cardiovasculares/enzimología , Diabetes Mellitus/enzimología , Humanos , SolubilidadRESUMEN
OBJECTIVE: Inhibition of soluble epoxide hydrolase (Ephx2) has been shown to play a protective role in cardiac hypertrophy, but the mechanism is not fully understood. We tested the hypothesis that deletion of soluble epoxide hydrolase attenuates cardiac hypertrophy via down-regulation of cardiac fibroblasts-derived fibroblast growth factor-2. DESIGN: Prospective, controlled, and randomized animal study. SETTING: University laboratory. SUBJECTS: Male wild-type C57BL/6 mice and Ephx2 (-/-) mice. INTERVENTIONS: Male wild-type or Ephx2 (-/-) mice were subjected to transverse aorta constriction surgery. MEASUREMENTS AND MAIN RESULTS: Four weeks after transverse aorta constriction, Ephx2 (-/-) mice did not develop significant cardiac hypertrophy as that of wild-type mice, indicated by no changes in the ratio of heart weight/body weight and ventricular wall thickness after transverse aorta constriction. Cardiac fibroblast growth factor-2 increased in wild-type-transverse aorta constriction group but this did not change in Ephx2 (-/-)-transverse aorta constriction group, and the serum level of fibroblast growth factor-2 did not change in both groups. In vitro, cardiac fibroblasts were stimulated by angiotensin II to analyze the expression of fibroblast growth factor-2. The effect of increased fibroblast growth factor-2 from cardiac fibroblasts induced by angiotensin II was attenuated by soluble epoxide hydrolase deletion. ERK1/2, p38, and AKT kinase were involved in fibroblast growth factor-2 expression regulated by angiotensin II, and soluble epoxide hydrolase deletion lowered the phosphorylation of ERK1/2 not p38 or AKT to mediate fibroblast growth factor-2 expression. In addition, soluble epoxide hydrolase deletion did not attenuate cardiomyocytes hypertrophy induced by exogenous fibroblast growth factor-2. CONCLUSIONS: Our present data demonstrated that deletion of soluble epoxide hydrolase prevented cardiac hypertrophy not only directly to cardiomyocytes but also to cardiac fibroblasts by reducing expression of fibroblast growth factor-2.
Asunto(s)
Cardiomegalia/metabolismo , Epóxido Hidrolasas/metabolismo , Factor 2 de Crecimiento de Fibroblastos/sangre , Fibroblastos/metabolismo , Miocardio/metabolismo , Angiotensina II/farmacología , Animales , Cardiomegalia/inducido químicamente , Cardiomegalia/genética , Modelos Animales de Enfermedad , Regulación hacia Abajo , Ensayo de Inmunoadsorción Enzimática , Epóxido Hidrolasas/antagonistas & inhibidores , Epóxido Hidrolasas/genética , Factor 2 de Crecimiento de Fibroblastos/genética , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Estudios Prospectivos , Reacción en Cadena en Tiempo Real de la Polimerasa , Vasoconstrictores/farmacologíaRESUMEN
20-Hydroxyeicosatetraenoic acid (20-HETE), Cyp4a-derived eicosanoid, is a lipid mediator that promotes tumor growth, as well as causing detrimental effects in cerebral circulation. We determined whether concurrent inhibition of cyclooxygenase-2 (COX-2) and 20-HETE affects colon tumor growth and ischemic stroke outcomes. The expression of Cyp4a and COXs and production of 20-HETE and PGE2 were determined in murine colon carcinoma (MC38) cells. We then examined the effects of combined treatment with rofecoxib, a potent COX-2 inhibitor, and HET0016, a potent Cyp4a inhibitor, on the growth and proliferation of MC38 cells. Subsequently, we tested the effects of HET0016 plus rofecoxib in MC38 tumor and ischemic stroke models. Cyp4a and COXs are highly expressed in MC38 cells. Respectively, HET0016 and rofecoxib inhibited 20-HETE and PGE2 formation in MC38 cells. Moreover, rofecoxib combined with HET0016 had greater inhibitory effects on the growth and proliferation of MC38 cells than did rofecoxib alone. Importantly, rofecoxib combined with HET0016 provided greater inhibition on tumor growth than did rofecoxib alone in MC38 tumor-bearing mice. Prolonged treatment with rofecoxib selectively induced circulating 20-HETE levels and caused cerebrovascular damage after ischemic stroke, whereas therapy with rofecoxib and HET0016 attenuated 20-HETE levels and reduced rofecoxib-induced cerebrovascular damage and stroke outcomes during anti-tumor therapy. Thus these results demonstrate that combination therapy with rofecoxib and HET0016 provides a new treatment of colon tumor, which can not only enhance the anti-tumor efficacy of rofecoxib, but also reduce rofecoxib-induced cerebrovascular damage and stroke outcomes.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Isquemia Encefálica/prevención & control , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Ciclooxigenasa 2/metabolismo , Ácidos Hidroxieicosatetraenoicos/antagonistas & inhibidores , Accidente Cerebrovascular/prevención & control , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/toxicidad , Isquemia Encefálica/inducido químicamente , Isquemia Encefálica/enzimología , Línea Celular Tumoral , Neoplasias del Colon/enzimología , Neoplasias del Colon/patología , Inhibidores de la Ciclooxigenasa 2/administración & dosificación , Inhibidores de la Ciclooxigenasa 2/toxicidad , Citocromo P-450 CYP4A/antagonistas & inhibidores , Citocromo P-450 CYP4A/metabolismo , Dinoprostona/metabolismo , Humanos , Ácidos Hidroxieicosatetraenoicos/metabolismo , Lactonas/administración & dosificación , Lactonas/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Accidente Cerebrovascular/inducido químicamente , Accidente Cerebrovascular/enzimología , Sulfonas/administración & dosificación , Sulfonas/toxicidad , Factores de Tiempo , Carga TumoralRESUMEN
Glaucoma is considered a neurodegenerative disease characterized by progressive visual field defects that may lead to blindness. Although controlling intraocular pressure (IOP) is the mainstay of glaucoma treatment, some glaucoma patients have unmet needs due to unclear pathogenic mechanisms. Recently, there has been growing evidence that neuroinflammation is a potential target for the development of novel antiglaucoma agents. In this study, we investigated the protective effects and cellular mechanisms of H7E, a novel small molecule inhibits HDAC8, using in vitro and in vivo glaucoma-like models. Importantly, H7E mitigated extracellular MMP-9 activity and MCP-1 levels in glutamate- or S100B-stimulated reactive Müller glia. In addition, H7E inhibited the upregulation of inflammation- and proliferation-related signaling pathways, particularly the ERK and JNK MAPK pathways. Under conditions of oxidative damage, H7E prevents retinal cell death and reduces extracellular glutamate released from stressed Müller glia. In a mouse model of NMDA-induced retinal degeneration, H7E alleviated functional and structural defects within the inner retina as assessed by electroretinography and optical coherence tomography. Our results demonstrated that the newly identified compound H7E protects against glaucoma damage by specifically targeting HDAC8 activity in the retina. This protective effect is attributed to the inhibition of Müller glial activation and the prevention of retinal cell death caused by oxidative stress.
Asunto(s)
Células Ependimogliales , Glaucoma , Inhibidores de Histona Desacetilasas , Histona Desacetilasas , Ratones Endogámicos C57BL , Estrés Oxidativo , Animales , Estrés Oxidativo/efectos de los fármacos , Glaucoma/tratamiento farmacológico , Glaucoma/metabolismo , Glaucoma/patología , Inhibidores de Histona Desacetilasas/farmacología , Células Ependimogliales/efectos de los fármacos , Células Ependimogliales/metabolismo , Células Ependimogliales/patología , Ratones , Histona Desacetilasas/metabolismo , Retina/efectos de los fármacos , Retina/metabolismo , Retina/patología , Modelos Animales de Enfermedad , Fármacos Neuroprotectores/farmacología , Masculino , Degeneración Retiniana/tratamiento farmacológico , Degeneración Retiniana/patología , Degeneración Retiniana/metabolismo , Degeneración Retiniana/prevención & controlRESUMEN
Soluble epoxide hydrolase (sEH) is an enzyme involved in the metabolism of endogenous inflammatory and anti-apoptotic mediators. In the present study, we determined the effects of the inhibition of sEH on glucose homeostasis and islet damage in mice treated with streptozotocin (STZ), a model of chemical-induced diabetes. STZ increased daily water intake and decreased visceral (spleen and pancreas) weight in mice; sEH inhibition in STZ mice decreased water intake, but did not affect visceral weight. Hyperglycemia induced by STZ treatment in mice was attenuated by inhibiting sEH. The beneficial effects of sEH inhibition were accompanied, after 2 and 4 weeks of initial administration, by improving glucose tolerance. In contrast, sEH inhibition did not affect insulin tolerance. Using LC/MS analysis, neither STZ nor STZ plus sEH inhibition affected pancreatic and plasma ratios of epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatrienoic acids (DHETs), an index of EETs levels. Western blot analysis showed that mouse cytochrome P450 (CYP) 2C enzymes are the major epoxygenases in islets. On day 5 after initial STZ treatment, STZ induced islet cell apoptosis, while sEH inhibition in STZ mice significantly reduced islet cell apoptosis. These studies provide pharmacological evidence that inhibiting sEH activity provides significant protection against islet ß-cell damage and improves glucose homeostasis in STZ-induced diabetes.
Asunto(s)
Benzoatos/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Epóxido Hidrolasas/antagonistas & inhibidores , Glucosa/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Urea/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/metabolismo , Animales , Apoptosis/efectos de los fármacos , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/metabolismo , Ingestión de Líquidos/efectos de los fármacos , Epóxido Hidrolasas/metabolismo , Prueba de Tolerancia a la Glucosa , Homeostasis/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Masculino , Ratones , Tamaño de los Órganos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Páncreas/efectos de los fármacos , Páncreas/metabolismo , Páncreas/patología , Bazo/efectos de los fármacos , Bazo/metabolismo , Bazo/patología , Estreptozocina , Urea/farmacologíaRESUMEN
Age-related macular degeneration (AMD) is the leading cause of low vision and blindness for which there is currently no cure. Increased matrix metalloproteinase-9 (MMP-9) was found in AMD and potently contributes to its pathogenesis. Resident microglia also promote the processes of chronic neuroinflammation, accelerating the progression of AMD. The present study investigates the effects and mechanisms of the natural compound theissenolactone B (LB53), isolated from Theissenia cinerea, on the effects of RPE dysregulation and microglia hyperactivation and its retinal protective ability in a sodium iodate (NaIO3)-induced retinal degeneration model of AMD. The fungal component LB53 significantly reduces MMP-9 gelatinolysis in TNF-α-stimulated human RPE cells (ARPE-19). Similarly, LB53 abolishes MMP-9 protein and mRNA expression in ARPE-19 cells. Moreover, LB53 efficiently suppresses nitric oxide (NO) production, iNOS expression, and intracellular ROS levels in LPS-stimulated TLR 4-activated microglial BV-2 cells. According to signaling studies, LB53 specifically targets canonical NF-κB signaling in both ARPE-19 and BV-2 microglia. In an RPE-BV-2 interaction assay, LB53 ameliorates LPS-activated BV-2 conditioned medium-induced MMP-9 activation and expression in the RPE. In NaIO3-induced AMD mouse model, LB53 restores photoreceptor and bipolar cell dysfunction as assessed by electroretinography (ERG). Additionally, LB53 prevents retinal thinning, primarily the photoreceptor, and reduces retinal blood flow from NaIO3 damage evaluated by optic coherence tomography (OCT) and laser speckle flowgraphy (LSFG), respectively. Our results demonstrate that LB53 exerts neuroprotection in a mouse model of AMD, which can be attributed to its anti-retinal inflammatory effects by impeding RPE-mediated MMP-9 activation and anti-microglia.
Asunto(s)
Degeneración Macular , Degeneración Retiniana , Ratones , Animales , Humanos , Metaloproteinasa 9 de la Matriz/metabolismo , Microglía/metabolismo , Epitelio Pigmentado de la Retina , Pigmentos Retinianos/efectos adversos , Pigmentos Retinianos/metabolismo , Lipopolisacáridos/farmacología , Degeneración Macular/inducido químicamente , Degeneración Macular/tratamiento farmacológico , Degeneración Retiniana/metabolismo , Modelos Animales de EnfermedadRESUMEN
BACKGROUND: Despite intensive investigation, how DNA methylation influences endothelial function remains poorly understood. We used methyl-CpG-binding domain protein 2 (MBD2), an interpreter for DNA methylome-encoded information, to dissect the impact of DNA methylation on endothelial function in both physiological and pathophysiological states. METHODS AND RESULTS: Human umbilical vein endothelial cells under normal conditions express moderate levels of MBD2, but knockdown of MBD2 by siRNA significantly enhanced angiogenesis and provided protection against H(2)O(2)-induced apoptosis. Remarkably, Mbd2(-/-) mice were protected against hind-limb ischemia evidenced by the significant improvement in perfusion recovery, along with increased capillary and arteriole formation. Loss of MBD2 activated endothelial survival and proangiogenic signals downstream of vascular endothelial growth factor signaling characterized by an increase in endothelial nitric oxide synthase (eNOS) and vascular endothelial growth factor receptor 2 expression, along with enhanced extracellular signal-regulated kinase 1/2 activation and BCL-2 expression. Mechanistic studies confirmed the methylation of CpG elements in the eNOS and vascular endothelial growth factor receptor 2 promoter. MBD2 binds to these methylated CpG elements and suppresses eNOS promoter activity. On ischemic insult, key endothelial genes such as eNOS and vascular endothelial growth factor receptor 2 undergo a DNA methylation turnover, and MBD2 interprets the changes of DNA methylation to suppress their expressions. Moreover, MBD2 modulation of eNOS expression is likely confined to endothelial cells because nonendothelial cells such as splenocytes fail to express eNOS after loss of MBD2. CONCLUSIONS: We provided direct evidence supporting that DNA methylation regulates endothelial function, which forms the molecular basis for understanding how environmental insults (epigenetic factor) affect the genome to modify disease susceptibility. Because MBD2 itself does not affect the methylation of DNA and is dispensable for normal physiology in mice, it could be a viable epigenetic target for modulating endothelial function in disease states.
Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Endotelio Vascular/fisiología , Miembro Posterior/irrigación sanguínea , Isquemia/prevención & control , Neovascularización Fisiológica/fisiología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Supervivencia Celular/fisiología , Metilación de ADN/fisiología , Endotelio Vascular/citología , Epigénesis Genética/fisiología , Peróxido de Hidrógeno/efectos adversos , Peróxido de Hidrógeno/farmacología , Isquemia/fisiopatología , Masculino , Ratones , Ratones Noqueados , Modelos Animales , Óxido Nítrico Sintasa de Tipo III/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismoRESUMEN
Studies suggest that soluble epoxide hydrolase (sEH) inhibition reduces end-organ damage in cardiovascular diseases. We hypothesize that sEH gene (Ephx2) knockout (KO) improves endothelial function and reduces renal injury in streptozotocin-induced diabetes. After 6 wk of diabetes, afferent arteriolar relaxation to acetylcholine was impaired in diabetic wild-type (WT) mice, as the maximum relaxation was 72% of baseline diameter in the WT but only 31% in the diabetic mice. Ephx2 KO improved afferent arteriolar relaxation to acetylcholine in diabetes as maximum relaxation was 58%. Urinary monocyte chemoattractant protein-1 (MCP-1) excretion significantly increased in diabetic WT mice compared with control (868 ± 195 vs. 31.5 ± 7 pg/day), and this increase was attenuated in diabetic Ephx2 KO mice (420 ± 98 pg/day). The renal phospho-IKK-to-IKK ratio and nuclear factor-κB were significantly decreased, and hemeoxygenase-1 (HO-1) expression increased in diabetic Ephx2 KO compared with diabetic WT mice. Renal NADPH oxidase and urinary thiobarbituric acid reactive substances excretion were reduced in diabetic Ephx2 KO compared with diabetic WT mice. Albuminuria was also elevated in diabetic WT mice compared with control (170 ± 43 vs. 37 ± 13 µg/day), and Ephx2 KO reduced this elevation (50 ± 15 µg/day). Inhibition of sEH using trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (tAUCB) also reduced renal inflammation and injury in diabetic WT mice. Furthermore, inhibition of HO with stannous mesoporphyrin negated the reno-protective effects of tAUCB or Ephx2 KO during diabetes. These data demonstrate that Ephx2 KO improves endothelial function and reduces renal injury during diabetes. Additionally, our data also suggest that activation of HO-1 contributes to improved renal injury in diabetic Ephx2 KO mice.
Asunto(s)
Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 1/complicaciones , Nefropatías Diabéticas/prevención & control , Endotelio Vascular/fisiopatología , Epóxido Hidrolasas/deficiencia , Riñón/enzimología , Nefritis/prevención & control , Vasodilatación , Albuminuria/enzimología , Albuminuria/prevención & control , Animales , Quimiocina CCL2/orina , Colágeno/orina , Diabetes Mellitus Experimental/enzimología , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Tipo 1/enzimología , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 1/fisiopatología , Nefropatías Diabéticas/enzimología , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/fisiopatología , Relación Dosis-Respuesta a Droga , Endotelio Vascular/efectos de los fármacos , Epóxido Hidrolasas/genética , Hemo-Oxigenasa 1/metabolismo , Quinasa I-kappa B/metabolismo , Mediadores de Inflamación/metabolismo , Riñón/irrigación sanguínea , Riñón/efectos de los fármacos , Riñón/patología , Masculino , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/orina , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , NADPH Oxidasas/metabolismo , Nefritis/enzimología , Nefritis/etiología , Nefritis/genética , Nefritis/patología , Estrés Oxidativo , Fosforilación , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Factores de Tiempo , Factor de Transcripción ReIA/metabolismo , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacologíaRESUMEN
Arachidonic acid (AA) is metabolized by cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) enzymes into eicosanoids, which are involved in diverse diseases, including type 1 and type 2 diabetes. During the last 30 years, evidence has been accumulated that suggests important functions for eicosanoids in the control of pancreatic ß-cell function and destruction. AA metabolites of the COX pathway, especially prostaglandin E(2) (PGE(2)), appear to be significant factors to ß-cell dysfunction and destruction, participating in the pathogenesis of diabetes and its complications. Several elegant studies have contributed to the sorting out of the importance of 12-LOX eicosanoids in cytokine-mediated inflammation in pancreatic ß cells. The role of CYP eicosanoids in diabetes is yet to be explored. A recent publication has demonstrated that stabilizing the levels of epoxyeicosatrienoic acids (EETs), CYP eicosanoids, by inhibiting or deleting soluble epoxide hydrolase (sEH) improves ß-cell function and reduces ß-cell apoptosis in diabetes. In this review we summarize recent findings implicating these eicosanoid pathways in diabetes and its complications. We also discuss the development of animal models with targeted gene deletion and specific enzymatic inhibitors in each pathway to identify potential targets for the treatment of diabetes and its complications.
Asunto(s)
Diabetes Mellitus/metabolismo , Eicosanoides/metabolismo , Células Secretoras de Insulina/metabolismo , Animales , Sistema Enzimático del Citocromo P-450/metabolismo , Diabetes Mellitus/patología , Ácidos Grasos Omega-3/metabolismo , Humanos , Células Secretoras de Insulina/patología , Lipooxigenasa/metabolismo , Prostaglandina-Endoperóxido Sintasas/metabolismoRESUMEN
Soluble epoxide hydrolase (sEH) is an enzyme involved in the metabolism of endogenous inflammatory and antiapoptotic mediators. However, the roles of sEH in diabetes and the pancreas are unknown. Our aims were to determine whether sEH is involved in the regulation of hyperglycemia in diabetic mice and to investigate the reasons for the regulation of insulin secretion by sEH deletion or inhibition in islets. We used two separate approaches, targeted disruption of Ephx2 gene [sEH knockout (KO)] and a selective inhibitor of sEH [trans-4-[4-(3-adamantan-1-ylureido)-cyclohexyloxy]-benzoic acid (t-AUCB)], to assess the role of sEH in glucose and insulin homeostasis in streptozotocin (STZ) mice. We also examined the effects of sEH KO or t-AUCB on glucose-stimulated insulin secretion (GSIS) and intracellular calcium levels in islets. Hyperglycemia in STZ mice was prevented by both sEH KO and t-AUCB. In addition, STZ mice with sEH KO had improved glucose tolerance. More important, when insulin levels were assessed by hyperglycemic clamp study, sEH KO was found to promote insulin secretion. In addition, sEH KO and t-AUCB treatment augmented islet GSIS. Islets with sEH KO had a greater intracellular calcium influx when challenged with high glucose or KCl in the presence of diazoxide. Moreover, sEH KO reduced islet cell apoptosis in STZ mice. These results show not only that sEH KO and its inhibition prevent hyperglycemia in diabetes, but also that sEH KO enhances islet GSIS through the amplifying pathway and decreases islet cell apoptosis in diabetes.
Asunto(s)
Apoptosis , Benzoatos/farmacología , Epóxido Hidrolasas/antagonistas & inhibidores , Epóxido Hidrolasas/genética , Hiperglucemia/prevención & control , Insulina/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Urea/análogos & derivados , Animales , Glucemia/metabolismo , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/enzimología , Diabetes Mellitus Experimental/fisiopatología , Diazóxido/farmacología , Prueba de Tolerancia a la Glucosa , Hiperglucemia/inducido químicamente , Hiperglucemia/enzimología , Secreción de Insulina , Espacio Intracelular/metabolismo , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Ratones , Ratones Noqueados , Estreptozocina , Urea/farmacologíaRESUMEN
Oxidative stress is an important factor to cause the pathogenesis of diabetic retinopathy (DR) because the retina has high vascularization and long-time light exposition. Cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) enzymes can convert arachidonic acid (AA) into eicosanoids, which are important lipid mediators to regulate DR development. COX-derived metabolites appear to be significant factors causative to oxidative stress and retinal microvascular dysfunction. Several elegant studies have unraveled the importance of LOX-derived eicosanoids, including LTs and HETEs, to oxidative stress and retinal microvascular dysfunction. The role of CYP eicosanoids in DR is yet to be explored. There is clear evidence that CYP-derived epoxyeicosatrienoic acids (EETs) have detrimental effects on the retina. Our recent study showed that the renin-angiotensin system (RAS) activation augments retinal soluble epoxide hydrolase (sEH), a crucial enzyme degrading EETs. Our findings suggest that EETs blockade can enhance the ability of RAS blockade to prevent or mitigate microvascular damage in DR. This review will focus on the critical information related the function of these eicosanoids in the retina, the interaction between eicosanoids and reactive oxygen species (ROS), and the involvement of eicosanoids in DR. We also identify potential targets for the treatment of DR.
RESUMEN
Type 2 diabetes and dyslipidemia oftentimes present in combination. However, the relative roles of diabetes and diet-induced dyslipidemia in mediating changes in vascular structure, mechanics, and function are poorly understood. Our hypothesis was that addition of a high-fat diet would exacerbate small artery remodeling, compliance, and vascular dysfunction in type 2 diabetes. Vascular remodeling indices [media/lumen (M/L) ratio, collagen abundance and turnover, and matrix metalloproteinase dynamics], mechanical properties (vessel stiffness), and reactivity to pressure and vasoactive factors were measured in third-order mesenteric arteries in control Wistar and type 2 diabetic Goto-Kakizaki (GK) rats fed either a regular or high-fat diet. M/L ratios, total collagen, and myogenic tone were increased in diabetes. Addition of the high-fat diet altered collagen patterns (mature versus new collagen) in favor of matrix accumulation. Addition of a high-fat diet caused increased constriction to endothelin-1 (0.1-100 nM), showed impaired vasorelaxation to both acetylcholine (0.1 nM-1 microM) and sodium nitroprusside (0.1 nM-1 microM), and increased cardiovascular risk factors in diabetes. These results suggest that moderate elevations in blood glucose, as seen in our lean GK model of type 2 diabetes, promote resistance artery remodeling resulting in increased medial thickness, whereas addition of a high-fat diet contributes to diabetic vascular disease predominantly by impairing vascular reactivity in the time frame used for this study. Although differential in their vascular effects, both hyperglycemia and diet-induced dyslipidemia need to be targeted for effective prevention and treatment of diabetic vascular disease.
Asunto(s)
Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/fisiopatología , Grasas de la Dieta/efectos adversos , Dislipidemias/complicaciones , Dislipidemias/fisiopatología , Hiperglucemia/complicaciones , Hiperglucemia/fisiopatología , Arterias Mesentéricas/fisiología , Resistencia Vascular/fisiología , Acetilcolina/farmacología , Angiografía , Animales , Colágeno/metabolismo , Angiopatías Diabéticas/inducido químicamente , Angiopatías Diabéticas/fisiopatología , Angiopatías Diabéticas/prevención & control , Modelos Animales de Enfermedad , Humanos , Masculino , Metaloproteinasas de la Matriz/metabolismo , Arterias Mesentéricas/fisiopatología , Nitroprusiato/farmacología , Ratas , Ratas Wistar , Factores de Riesgo , Vasoconstricción , Vasodilatación/efectos de los fármacosRESUMEN
The aim of this study was to elucidate the concise effects of a traditional herb pair, Curcumae rhizoma-Sparganii rhizoma (CRSR), on uterine leiomyoma (UL) by analyzing transcriptional profiling. The UL rat model was made by intramuscular injection of progesterone and gavage administration of diethylstilbestrol. From 11 weeks of the establishment of the model, rats of the UL+CRSR group were gavaged daily with CRSR (6.67 g/kg). The serum concentrations of progesterone (P) and estradiol (E2) were determined by radioimmunoassay, the uterine index was measured by caliper measurement, and the pathological status was observed by hematoxylin and eosin stain. Gene expression profiling was checked by NimbleGen Rat Gene Expression Microarrays. The results indicated that the uterine mass of UL+CRSR rats was significantly shrunk and serum P and E2 levels significantly reduced compared to UL animals and nearly to the level of normal rats. Results of microarrays displayed the extensive inhibition of CRSR upon the expression of proliferation and deposition of extracellular matrix (ECM)-related genes, and significantly regulated a wide range of metabolism disorders. Furthermore, CRSR extensively regulated key pathways of the UL process, such as MAPK, PPAR, Notch, and TGF-ß/Smad. Regulation of the crucial pathways for the UL process and ECM metabolism may be the underlying mechanisms of CRSR treatment. Further studies will provide clear clues for effectively treating UL with CRSR.
Asunto(s)
Curcuma/química , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Leiomioma/tratamiento farmacológico , Extractos Vegetales/farmacología , Rizoma/química , Neoplasias Uterinas/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Femenino , Leiomioma/genética , Leiomioma/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Radioinmunoensayo , Ratas , Ratas Sprague-Dawley , Factores de Transcripción , Neoplasias Uterinas/genética , Neoplasias Uterinas/metabolismoRESUMEN
Clofibrate, a peroxisome proliferator-activated receptor-alpha (PPAR alpha) agonist, increases renal tubular cytochrome P450 4a (Cyp4a) expression thereby increasing 20-hydroxyeicosatetraenoic acid (20-HETE) production. To determine if clofibrate affects blood pressure regulation we studied mice with DOCA-salt induced hypertension in wild-type and PPAR alpha knockout mice. Wild-type mice treated with DOCA-salt had higher mean arterial pressures and higher cumulative sodium balance, but lower renal 20-HETE production than did vehicle-treated mice. Treating DOCA-salt mice with clofibrate attenuated the increase in mean arterial pressure and cumulative sodium balance while increasing 20-HETE production and renal Cyp4a expression. In contrast the PPAR alpha knockout mice treated with clofibrate and DOCA-salt showed no attenuation in the increase of blood pressure, cumulative sodium balance, renal 20-HETE production or Cyp4a protein expression. Expression of the PPAR alpha protein was greater in proximal tubules than in renal microvessels. Our results show that PPAR alpha pathway induces renal tubular 20-HETE production which affects sodium retention and blood pressure regulation in DOCA-salt-treated mice.