Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant J ; 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38972041

RESUMEN

Diurnal flower-opening time (DFOT), the time of spikelet opening during the day, is an important trait for hybrid rice (Oryza sativa L.) seed production. Hybrids between indica and japonica rice varieties have strong heterosis, but the parental lines usually have different, nonoverlapping DFOTs. This reduces the success of hybrid seed production in crosses between indica and japonica subspecies, thus hindering the utilization of indica and japonica inter-subspecies heterosis. However, little is known about the molecular mechanisms regulating DFOT in rice. Here, we obtained japonica rice lines with a DFOT 1.5 h earlier than the wild type by overexpressing OsMYC2, a gene encoding a key transcription factor in the jasmonate (JA) signaling pathway. OsMYC2 is activated by JA signaling and directly regulates the transcription of genes related to JA biosynthesis and cell wall metabolism. Overexpressing OsMYC2 led to significantly increased JA contents and decreased cellulose and hemicellulose contents in lodicule cells, as well as the softening of lodicule cell walls. This may facilitate the swelling of lodicules, resulting in early diurnal flower-opening. These results suggest that the OsMYC2-JA feedback loop regulates DFOT in rice via cell wall remodeling. These findings shed light on the understanding of regulatory mechanism of the DFOT of plants, which should promote the development of indica and japonica varieties suitable for hybrid rice breeding.

2.
Plant Biotechnol J ; 22(8): 2267-2281, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38526838

RESUMEN

Inter-subspecific indica-japonica hybrid rice (Oryza sativa) has the potential for increased yields over traditional indica intra-subspecies hybrid rice, but limited yield of F1 hybrid seed production (FHSP) hinders the development of indica-japonica hybrid rice breeding. Diurnal flower-opening time (DFOT) divergence between indica and japonica rice has been a major contributing factor to this issue, but few DFOT genes have been cloned. Here, we found that manipulating the expression of jasmonate (JA) pathway genes can effectively modulate DFOT to improve the yield of FHSP in rice. Treating japonica cultivar Zhonghua 11 (ZH11) with methyl jasmonate (MeJA) substantially advanced DFOT. Furthermore, overexpressing the JA biosynthesis gene OPDA REDUCTASE 7 (OsOPR7) and knocking out the JA inactivation gene CHILLING TOLERANCE 1 (OsHAN1) in ZH11 advanced DFOT by 1- and 2-h respectively; and knockout of the JA signal suppressor genes JASMONATE ZIM-DOMAIN PROTEIN 7 (OsJAZ7) and OsJAZ9 resulted in 50-min and 1.5-h earlier DFOT respectively. The yields of FHSP using japonica male-sterile lines GAZS with manipulated JA pathway genes were significantly higher than that of GAZS wildtype. Transcriptome analysis, cytological observations, measurements of elastic modulus and determination of cell wall components indicated that the JA pathway could affect the loosening of the lodicule cell walls by regulating their composition through controlling sugar metabolism, which in turn influences DFOT. This research has vital implications for breeding japonica rice cultivars with early DFOT to facilitate indica-japonica hybrid rice breeding.


Asunto(s)
Ciclopentanos , Flores , Oryza , Oxilipinas , Oryza/genética , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Flores/genética , Flores/metabolismo , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Fitomejoramiento , Acetatos/farmacología , Acetatos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Ritmo Circadiano/genética
3.
New Phytol ; 241(5): 2059-2074, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38197218

RESUMEN

Thermo-sensitive genic male sterile (TGMS) lines are the core of two-line hybrid rice (Oryza sativa). However, elevated or unstable critical sterility-inducing temperatures (CSITs) of TGMS lines are bottlenecks that restrict the development of two-line hybrid rice. However, the genes and molecular mechanisms controlling CSIT remain unknown. Here, we report the CRITICAL STERILITY-INDUCING TEMPERATURE 2 (CSIT2) that encodes a really interesting new gene (RING) type E3 ligase, controlling the CSIT of thermo-sensitive male sterility 5 (tms5)-based TGMS lines through ribosome-associated protein quality control (RQC). CSIT2 binds to the large and small ribosomal subunits and ubiquitinates 80S ribosomes for dissociation, and may also ubiquitinate misfolded proteins for degradation. Mutation of CSIT2 inhibits the possible damage to ubiquitin system and protein translation, which allows more proteins such as catalases to accumulate for anther development and inhibits abnormal accumulation of reactive oxygen species (ROS) and premature programmed cell death (PCD) in anthers, partly rescuing male sterility and raised the CSIT of tms5-based TGMS lines. These findings reveal a mechanism controlling CSIT and provide a strategy for solving the elevated or unstable CSITs of tms5-based TGMS lines in two-line hybrid rice.


Asunto(s)
Infertilidad Masculina , Oryza , Masculino , Humanos , Temperatura , Oryza/genética , Ubiquitina , Ubiquitina-Proteína Ligasas/genética , Infertilidad Vegetal/genética
4.
Int J Mol Sci ; 24(13)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37445832

RESUMEN

The principal goal of rice (Oryza sativa L.) breeding is to increase the yield. In the past, hybrid rice was mainly indica intra-subspecies hybrids, but its yield has been difficult to improve. The hybridization between the indica and japonica subspecies has stronger heterosis; the utilization of inter-subspecies heterosis is important for long-term improvement of rice yields. However, the different diurnal flower-opening times (DFOTs) between the indica and japonica subspecies seriously reduce the efficiency of cross-pollination and yield and increase the cost of indica-japonica hybrid rice seeds, which has become one of the main constraints for the development of indica-japonica hybrid rice breeding. The DFOT of plants is adapted to their growing environment and is also closely related to species stability and evolution. Herein, we review the structure and physiological basis of rice flower opening, the factors that affect DFOT, and the progress of cloning and characterization of DFOT genes in rice. We also analyze the problems in the study of DFOT and provide corresponding suggestions.


Asunto(s)
Oryza , Oryza/genética , Fitomejoramiento , Hibridación Genética , Vigor Híbrido , Flores/genética
5.
Mol Plant ; 16(10): 1695-1709, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37743625

RESUMEN

Two-line hybrid breeding can fully utilize heterosis in crops. In thermo-sensitive genic male sterile (TGMS) lines, low critical sterility-inducing temperature (CSIT) is vital to safeguard the production of two-line hybrid seeds in rice (Oryza sativa), but the molecular mechanism determining CSIT is unclear. Here, we report the cloning of CSIT1, which encodes an E3 ubiquitin ligase, and show that CSIT1 modulates the CSIT of thermo-sensitive genic male sterility 5 (tms5)-based TGMS lines through ribosome-associated quality control (RQC). Biochemical assays demonstrated that CSIT1 binds to the 80S ribosomes and ubiquitinates abnormal nascent polypeptides for degradation in the RQC process. Loss of CSIT1 function inhibits the possible damage of tms5 to the ubiquitination system and protein translation, resulting in enhanced accumulation of anther-related proteins such as catalase to suppress abnormal accumulation of reactive oxygen species and premature programmed cell death in the tapetum, thereby leading to a much higher CSIT in the tms5-based TGMS lines. Taken together, our findings reveal a regulatory mechanism of CSIT, providing new insights into RQC and potential targets for future two-line hybrid breeding.


Asunto(s)
Infertilidad , Oryza , Temperatura , Oryza/genética , Ubiquitina-Proteína Ligasas/genética , Fitomejoramiento , Ribosomas , Infertilidad Vegetal/genética
6.
Mol Plant ; 15(6): 956-972, 2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35418344

RESUMEN

Flowers are the core reproductive organ of plants, and flowering is essential for cross-pollination. Diurnal flower-opening time is thus a key trait influencing reproductive isolation, hybrid breeding, and thermostability in plants. However, the molecular mechanisms controlling this trait remain unknown. Here, we report that rice Diurnal Flower Opening Time 1 (DFOT1) modulates pectin methylesterase (PME) activity to regulate pectin methylesterification levels of the lodicule cell walls, which affect lodicule swelling to control diurnal flower-opening time. DFOT1 is specifically expressed in the lodicules, and its expression gradually increases with the approach to flowering but decreases with flowering. Importantly, a knockout of DFOT1 showed earlier diurnal flower opening. We demonstrate that DFOT1 interacts directly with multiple PMEs to promote their activity. Knockout of PME40 also resulted in early diurnal flower opening, whereas overexpression of PME42 delayed diurnal flower opening. Lower PME activity was observed to be associated with higher levels of pectin methylesterification and the softening of cell walls in lodicules, which contribute to the absorption of water by lodicules and cause them to swell, thus promoting early diurnal flower opening. Higher PME activity had the opposite effect. Collectively, our work uncovers a molecular mechanism underlying the regulation of diurnal flower-opening time in rice, which would help reduce the costs of hybrid breeding and improve the heat tolerance of flowering plants by avoiding higher temperatures at anthesis.


Asunto(s)
Oryza , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Pared Celular/metabolismo , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Oryza/metabolismo , Pectinas/metabolismo , Fitomejoramiento
7.
Plant Physiol Biochem ; 158: 83-90, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33302124

RESUMEN

TMS5 encodes an RNase ZS1 protein that can process ubiquitin-60S ribosomal protein L40 family (UbL40) mRNAs to regulate thermo-sensitive genic male sterility in rice. Despite the importance of this protein, the structural characteristics and substrate recognition properties of RNase ZS1 remain unclear. Here, we found that the variations in several conservative amino acids alter the activation of RNase ZS1, and its recognition of RNA substrates depends on the structure of RNA. RNase ZS1 acts as a homodimer. The conserved amino acids in or adjacent to enzyme center play a critical role in the enzyme activity of RNase ZS1 and the conserved amino acids that far from active center have little impact on its enzyme activity. The cleavage efficiency of RNase ZS1 for pre-tRNA-MetCAU35 and UbL401 mRNA with cloverleaf-like structure was higher than that of pre-tRNA-AspAUC9 and UbL404 mRNA with imperfect cloverleaf-like structure. This difference implies that the enzyme activity of RNase ZS1 depends on the cloverleaf-like structure of the RNA. Furthermore, the RNase ZS1 activity was not inhibited by the 5' leader sequence and 3' CCA motif of pre-tRNA. These findings provide new insights for studying the cleavage characteristics and substrate recognition properties of RNase ZS.


Asunto(s)
Endorribonucleasas/química , Oryza/enzimología , Precursores del ARN/química , Conformación de Ácido Nucleico , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA