Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Exp Cell Res ; 420(2): 113358, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36116558

RESUMEN

Glioblastoma multiforme (GBM) is a common intracranial primary tumor of the central nervous system with high malignancy, poor prognosis, and short survival. Studies have shown that mitochondrial energy metabolism plays an important role in GBM chemotherapy resistance, suggesting that interrupting mitochondrial oxidative phosphorylation (OXPHOS) may improve GBM treatment. Human peptide deformylase (HsPDF) is a mitochondrial deformylase that removes the formylated methionine from the N-terminus of proteins encoded by mitochondrial DNA (mtDNA), thereby contributing to correct protein folding and participating in the assembly of the electron respiratory chain complex. In this study, we found that the expression of mtDNA-encoded proteins was significantly downregulated after treatment of GBM cells U87MG and LN229 with the HsPDF inhibitor, actinonin. In combination with temozolomide, a preferred chemotherapeutic medicine for GBM, the OXPHOS level decreased, mitochondrial protein homeostasis was unbalanced, mitochondrial fission increased, and the integrated stress response was activated to promote mitochondrial apoptosis. These findings suggest that HsPDF inhibition is an important strategy for overcoming chemoresistance of GBM cells.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Amidohidrolasas , Antineoplásicos Alquilantes/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , ADN Mitocondrial/genética , Resistencia a Antineoplásicos , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Ácidos Hidroxámicos , Metionina/farmacología , Metionina/uso terapéutico , Proteínas Mitocondriales , Temozolomida/farmacología , Temozolomida/uso terapéutico
2.
Undersea Hyperb Med ; 48(3): 239-245, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34390628

RESUMEN

Breathing less than 50 kPa of oxygen over time can lead to pulmonary oxygen toxicity (POT). Vital capacity (VC) as the sole parameter for POT has its limitations. In this study we try to find out the changes of acid-base status in a POT rat model. Fifty male rats were randomly divided into five groups, exposed to 230 kPa oxygen for three, six, nine and 12 hours, respectively. Rats exposed to air were used as controls. After exposure the mortality and behavior of rats were observed. Arterial blood samples were collected for acid-base status detection and wet-dry (W/D) ratios of lung tissues were tested. Results showed that the acid-base status in rats exposed to 230 kPa oxygen presented a dynamic change. The primary status was in the compensatory period when primary respiratory acidosis was mixed with compensated metabolic alkalosis. Then the status changed to decompensated alkalosis and developed to decompensated acidosis in the end. pH, PCO2, HCO3-, TCO2, and BE values had two phases: an increase and a later decrease with increasing oxygen exposure time, while PaO2 and lung W/D ratio showed continuously increasing trends with the extension of oxygen exposure time. Lung W/D ratio was significantly associated with PaO2 (r = 0.6385, p = 0.002), while other parameters did not show a significant correlation. It is concluded that acid-base status in POT rats presents a dynamic change: in the compensatory period first, then turns to decompensated alkalosis and ends up with decompensated acidosis status. Blood gas analysis is a useful method to monitor the development of POT.


Asunto(s)
Desequilibrio Ácido-Base/sangre , Acidosis Respiratoria/metabolismo , Alcalosis Respiratoria/metabolismo , Oxigenoterapia Hiperbárica/efectos adversos , Oxígeno/toxicidad , Desequilibrio Ácido-Base/etiología , Animales , Presión Atmosférica , Bicarbonatos/sangre , Análisis Químico de la Sangre , Análisis de los Gases de la Sangre , Dióxido de Carbono/sangre , Oxigenoterapia Hiperbárica/métodos , Pulmón/patología , Masculino , Modelos Animales , Tamaño de los Órganos , Presión Parcial , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Factores de Tiempo , Capacidad Vital
3.
Aging (Albany NY) ; 12(10): 9604-9620, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32436862

RESUMEN

Cervical cancer is an aggressive cutaneous malignancy, illuminating the molecular mechanisms of tumorigenesis and discovering novel therapeutic targets are urgently needed. KMT2A is a transcriptional co-activator regulating gene expression during early development and hematopoiesis, but the role of KMT2A in cervical cancer remains unknown. Here, we demonstrated that KMT2A regulated cervical cancer growth via targeting VADC1. Knockdown of KMT2A significantly suppressed cell proliferation and migration and induced apoptosis in cervical cancer cells, accompanying with activation of PARP/caspase pathway and inhibition of VADC1. Overexpression of VDAC1 reversed the KMT2A knockdown-mediated regulation of cell proliferation, migration and apoptosis. The in vivo results from a cervical cancer xenograft mouse model also validated that KMT2A knockdown suppressed tumor growth by inhibiting VDAC1, whereas KMT2A overexpression promoted cervical cancer growth. Moreover, analyses of Biewenga cervix database and clinical samples showed that both KMT2A and VDAC1 were upregulated in cervix squamous cell carcinoma compared with cervix uteri tissues, and their expression was negatively correlated with the differentiation grade of cervical cancer. Our results therefore indicated that the KMT2A/VDAC1 signaling axis may be a potential new mechanism of cervical carcinogenesis.


Asunto(s)
Carcinoma de Células Escamosas/genética , Transformación Celular Neoplásica/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Neoplasias del Cuello Uterino/genética , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Apoptosis/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Cuello del Útero/metabolismo , Cuello del Útero/patología , Femenino , Humanos , Transducción de Señal/genética , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA