Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Biol Toxicol ; 39(6): 3287-3304, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37804401

RESUMEN

V-domain immunoglobulin suppressor of T-cell activation (VISTA), an important negative checkpoint protein, participates in immunoregulation. Systemic lupus erythematosus (SLE) is an autoimmune disease in which patients exhibit high levels of autoantibodies and multi-organ tissue injury, primarily involving the kidney and skin. In wild-type (WT) mice and Vsir-/- mice with pristane-induced lupus-like disease, we found that VISTA deficiency exacerbated the lupus-like disease in mice, possibly through aberrant activation of type I interferon (IFN-I) signaling, CD4+ T cell, and noncanonical nuclear factor-κB (NF-κB) pathway. Surface plasmon resonance results showed that imatinib, an FDA-approved tyrosine kinase inhibitor, may have a high affinity for human VISTA-ECD with a KD value of 0.2009 µM. The biological activities of imatinib and VISTA agonist M351-0056 were studied in monocytes and T cells and in lupus-like disease murine model of chronic graft-versus-host disease (cGVHD) and lupus-prone MRL/lpr mice. VISTA small-molecule agonist reduced the cytokine production of peripheral blood mononuclear cells (PBMCs) and Jurkat cells and inhibited PBMCs proliferation. Moreover, they attenuated the levels of autoantibodies, renal injury, inflammatory cytokines, chemokines, and immune cell expansion in the cGVHD mouse model and MRL/lpr mice. Our findings also demonstrated that VISTA small-molecule agonist ameliorated the development of SLE through improving aberrantly activated IFN-I signaling and noncanonical NF-κB pathway. In conclusion, VISTA has a protective effect on the development and progression of SLE. VISTA agonist M351-0056 and imatinib have been firstly demonstrated to attenuate SLE, suggesting interventions to enhance VISTA function may be effective in treating SLE. VISTA deficiency exacerbates pristane-induced lupus-like disease in mice by promoting activation of the IFN-I and noncanonical NF-κB pathway. Imatinib was screened as a small-molecule VISTA agonist by molecular docking, SPR, and cellular level experiments. VISTA agonists (M351-0056 and imatinib) alleviated lupus-like disease progression in the cGVHD mouse model and MRL/lpr mice by inhibiting activation of IFN-I and noncanonical NF-κB pathway.


Asunto(s)
Lupus Eritematoso Sistémico , FN-kappa B , Humanos , Animales , Ratones , FN-kappa B/metabolismo , Mesilato de Imatinib/farmacología , Interferones , Leucocitos Mononucleares , Simulación del Acoplamiento Molecular , Ratones Endogámicos MRL lpr , Lupus Eritematoso Sistémico/tratamiento farmacológico , Lupus Eritematoso Sistémico/metabolismo , Citocinas/metabolismo , Autoanticuerpos , Modelos Animales de Enfermedad
2.
Environ Sci Technol ; 57(38): 14472-14481, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37695840

RESUMEN

Catalyst deactivation caused by alkali metal poisoning has long been a key bottleneck in the application of selective catalytic reduction of NOx with NH3 (NH3-SCR), limiting the service life of the catalyst and increasing the cost of environmental protection. Despite great efforts, continuous accumulation of alkali metal deposition makes the resistance capacity of 2 wt % K2O difficult to enhance via merely loading acid sites on the surface, resulting in rapid deactivation and frequent replacement of the NH3-SCR catalyst. To further improve the resistance of alkali metals, encapsulating alkali metals into the bulk phase could be a promising strategy. The bottleneck of 2 wt % K2O tolerance has been solved by virtue of ultrahigh potassium storage capacity in the amorphous FePO4 bulk phase. Amorphous FePO4 as a support of the NH3-SCR catalyst exhibited a self-adaptive alkali-tolerance mechanism, where potassium ions spontaneously migrated into the bulk phase of amorphous FePO4 and were anchored by PO43- with the generation of Fe2O3 at the NH3-SCR reaction temperature. This ingenious potassium storage mechanism could boost the K2O resistance capacity to 6 wt % while maintaining approximately 81% NOx conversion. Besides, amorphous FePO4 also exhibited excellent resistance to individual and coexistence of alkali (K2O and Na2O), alkali earth (CaO), and heavy metals (PbO and CdO), providing long durability for CePO4/FePO4 catalysts in flue gas with multipollutants. The cheap and accessible amorphous FePO4 paves the way for the development and implementation of poisoning-resistant NOx abatement.


Asunto(s)
Álcalis , Potasio , Catálisis , Temperatura
3.
Environ Sci Technol ; 56(10): 6668-6677, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35500206

RESUMEN

Selective catalytic reduction of NOx in the presence of alkali (earth) metals and heavy metals is still a challenge due to the easy deactivation of catalysts. Herein, NOx reduction over smart catalysts with self-created targeted antipoisoning sites is originally demonstrated. The smart catalyst consisted of TiO2 pillared montmorillonite with abundant cation exchange sites to anchor poisoning substances and active components to catalyze NOx into N2. It was not deactivated during the NOx reduction process in the presence of alkali (earth) metals and heavy metals. The enhanced surface acidity, reducible active species, and active chemisorbed oxygen species of the smart catalyst accounted for the remarkable NOx reduction efficiency. More importantly, the self-created targeted antipoisoning sites expressed specific anchoring effects on poisoning substances and protected the active components from poisoning. It was demonstrated that the tetrahedrally coordinated aluminum species of the smart catalyst mainly acted as self-created targeted antipoisoning sites to stabilize the poisoning substances into the interlayers of montmorillonite. This work paves a new way for efficient reduction of NOx from the complex flue gas in practical applications.


Asunto(s)
Bentonita , Metales Pesados , Álcalis , Amoníaco , Catálisis , Oxidación-Reducción , Titanio
4.
Environ Sci Technol ; 56(17): 12553-12562, 2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-35960931

RESUMEN

Selective catalytic reduction (SCR) of NOx from the flue gas is still a grand challenge due to the easy deactivation of catalysts. The copoisoning mechanisms and multipoisoning-resistant strategies for SCR catalysts in the coexistence of heavy metals and phosphorus are barely explored. Herein, we unexpectedly found unique compensation effects of heavy metals and phosphorus copoisoning over NOx reduction catalysts and the introduction of heavy metals results in a dramatic recovery of NOx reduction activity for the P-poisoned CeO2/TiO2 catalysts. P preferentially combines with Ce as a phosphate species to reduce the redox capacity and inhibit NO adsorption. Heavy metals preferentially reduced the Brønsted acid sites of the catalyst and inhibited NH3 adsorption. It has been demonstrated that heavy metal phosphate species generated over the copoisoned catalyst, which boosted the activation of NH3 and NO, subsequently bringing about more active nitrate species to relieve the severe impact by phosphorus and maintain the NOx reduction over CeO2/TiO2 catalysts. The heavy metals and P copoisoned catalysts also possessed more acidic sites, redox sites, and surface adsorbed oxygen species, which thus contributed to the highly efficient NOx reduction. This work elaborates the unique compensation effects of heavy metals and phosphorus copoisoning over CeO2/TiO2 catalysts for NOx reduction and provides a perspective for further designing multipoisoning-resistant CeO2-based catalysts to efficiently control NOx emissions in stationary sources.

5.
Environ Sci Technol ; 56(8): 5141-5149, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35369691

RESUMEN

The catalyst deactivation caused by the coexistence of alkali and heavy metals remains an obstacle for selective catalytic reduction of NOx with NH3. Moreover, the copoisoning mechanism of alkali and heavy metals is still unclear. Herein, the copoisoning mechanism of K and Cd was revealed from the adsorption and variation of reaction intermediates at a molecular level through time-resolved in situ spectroscopy combined with theoretical calculations. The alkali metal K mainly decreased the adsorption of NH3 on Lewis acid sites and altered the reaction more depending on the formation of the NH4NO3 intermediate, which is highly related to NOx adsorption and activation. However, Cd further inhibited the generation of active nitrate intermediates and thus decreased the NOx abatement about 60% on potassium-poisoned CeTiOx catalysts. Physically mixing with acid additives for CeTiOx catalysts could significantly liberate the active Lewis acid sites from the occupation of alkali metals and relieve the high dependence on NOx adsorption and activation, thus recovering the NOx removal rate to the initial state. This work revealed the copoisoning mechanism of K and Cd on Ce-based de-NOx catalysts and developed a facile anti-poisoning strategy, which paves a way for the development of durable catalysts among alkali and heavy metal copoisoning resistant catalytic reduction of NOx.


Asunto(s)
Álcalis , Ácidos de Lewis , Amoníaco , Cadmio , Catálisis , Oxidación-Reducción
6.
Environ Sci Technol ; 56(7): 4386-4395, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35262342

RESUMEN

Nowadays, the serious deactivation of deNOx catalysts caused by alkali metal poisoning was still a huge bottleneck in the practical application of selective catalytic reduction of NOx with NH3. Herein, alkali-resistant NOx catalytic reduction over metal oxide catalysts using Ti-modified attapulgite (ATP) as supports has been originally demonstrated. The self-defense effects of Ti-modified ATP for alkali-resistant NOx catalytic reduction have been clarified. Ti-modified ATP with self-defense ability was obtained by removing alkaline metal cation impurities in the natural ATP materials without destroying its initial layered-chain structure through the ion-exchange procedure, accompanied with an obvious enrichment of Brønsted acid and Lewis acid sites. The self-defense effects embodied that both ion-exchanged Ti octahedral centers and abundant Si-OH sites in the Ti-ion-exchange-modified ATP could effectively anchor alkali metals via coordinate bonding or ion-exchange process, which induced alkali metals to be immobilized by the Ti-ion-exchange-modified ATP carrier rather than impair active species. Under this special protection of self-defense effects, Ti-ion-exchange-modified ATP supported catalysts still retained plentiful acidic sites and superior redox ability even after alkali metal poisoning, giving rise to the maintenance of sufficient NHx and NOx adsorption and the subsequent efficient reaction, which in turn resulted in high NOx catalytic reduction capacity of the catalyst. The strategy provided new inspiration for the development of novel and efficient selective catalytic reduction of NOx with NH3 (NH3-SCR) catalysts with high alkali resistance.


Asunto(s)
Álcalis , Titanio , Amoníaco , Catálisis , Compuestos de Magnesio , Oxidación-Reducción , Compuestos de Silicona
7.
Environ Sci Technol ; 56(18): 13368-13378, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36074097

RESUMEN

Severe catalyst deactivation caused by multiple poisons, including heavy metals and SO2, remains an obstinate issue for the selective catalytic reduction (SCR) of NOx by NH3. The copoisoning effects of heavy metals and SO2 are still unclear and irreconcilable. Herein, the unanticipated differential compensated or aggravated Pb and SO2 copoisoning effects over ceria-based catalysts for NOx reduction was originally unraveled. It was demonstrated that Pb and SO2 exhibited a compensated copoisoning effect over the CeO2/TiO2 (CT) catalyst with sole active CeO2 sites but an aggravated copoisoning effect over the CeO2-WO3/TiO2 (CWT) catalyst with dual active CeO2 sites and acidic WO3 sites. Furthermore, it was uniquely revealed that Pb preferred bonding with CeO2 among CT while further being combined with SO2 to form PbSO4 after copoisoning, which released the poisoned active CeO2 sites and rendered the copoisoned CT catalyst a recovered reactivity. In comparison, Pb and SO2 would poison acidic WO3 sites and active CeO2 sites, respectively, resulting in a seriously degraded reactivity of the copoisoned CWT catalyst. Therefore, this work thoroughly illustrates the internal mechanism of differential compensated or aggravated deactivation effects for Pb and SO2 copoisoning over CT and CWT catalysts and provides effective solutions to design ceria-based SCR catalysts with remarkable copoisoning resistance for the coexistence of heavy metals and SO2.


Asunto(s)
Plomo , Venenos , Amoníaco , Catálisis , Oxidación-Reducción , Titanio
8.
Environ Sci Technol ; 56(16): 11646-11656, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35876848

RESUMEN

SO2-resistant selective catalytic reduction (SCR) of NOx remains a grand challenge for eliminating NOx generated from stationary combustion processes. Herein, SO2-resistant NOx reduction has been boosted by modulating electronic interaction of short-range Fe-O coordination over Fe2O3/TiO2 catalysts. We report a remarkable SO2-tolerant Fe2O3/TiO2 catalyst using sulfur-doped TiO2 as the support. Via an array of spectroscopic and microscopic characterizations and DFT theoretical calculations, the active form of the dopant is demonstrated as SO42- residing at subsurface TiO6 locations. Sulfur doping exerts strong electronic perturbation to TiO2, causing a net charge transfer from Fe2O3 to TiO2 via increased short-range Fe-O coordination. This electronic effect simultaneously weakens charge transfer from Fe2O3 to SO2 and enhances that from NO/NH3 to Fe2O3, resulting in a remarkable "killing two birds with one stone" scenario, that is, improving NO/NH3 adsorption that benefits SCR reaction and inhibiting SO2 poisoning that benefits catalyst long-term stability.


Asunto(s)
Amoníaco , Titanio , Amoníaco/química , Catálisis , Electrónica , Oxidación-Reducción , Azufre , Titanio/química
9.
J Environ Sci (China) ; 111: 340-350, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34949363

RESUMEN

Developing low-temperature SO2-tolerant catalysts for the selective catalytic reduction of NOx is still a challenging task. The sulfation of active metal oxides and deposition of ammonium bisulfate deactivate catalysts, due to the difficult decomposition of the as-formed sulfate species at low temperatures (<300 °C). In recent years, metal sulfate catalysts have attracted increasing attention owing to their good catalytic activity and strong SO2 tolerance at higher temperatures (>300°C); however, the SO2-tolerant mechanism of metal sulfate catalysts is still ambiguous. In this study, Fe2(SO4)3/TiO2 and Ce2(SO4)3/TiO2 catalysts were prepared using the corresponding metal sulfate salt as the precursor. These catalysts were tested for their low-temperature activity and SO2 tolerance activity. Compared to Ce2(SO4)3/TiO2, Fe2(SO4)3/TiO2 showed significantly better low-temperature activity and SO2 tolerance. It was demonstrated that less surface sulfate species formed on Fe2(SO4)3/TiO2 and Ce2(SO4)3/TiO2. However, the presence of NO and O2 could assist the decomposition of NH4HSO4 over Fe2(SO4)3/TiO2 at a lower temperature, endowing Fe2(SO4)3/TiO2 with better low-temperature SO2 tolerance than Ce2(SO4)3/TiO2. This study unraveled the SO2-tolerant mechanism of Fe2(SO4)3/TiO2 at lower temperatures (<300 °C), and a potential strategy is proposed for improving the low-temperature SO2-tolerance of catalysts with Fe2(SO4)3 as the main active component or functional promoter.


Asunto(s)
Amoníaco , Titanio , Catálisis , Oxidación-Reducción , Óxidos
10.
Chem Rev ; 119(19): 10916-10976, 2019 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-31415159

RESUMEN

Selective catalytic reduction with NH3 (NH3-SCR) is the most efficient technology to reduce the emission of nitrogen oxides (NOx) from coal-fired industries, diesel engines, etc. Although V2O5-WO3(MoO3)/TiO2 and CHA structured zeolite catalysts have been utilized in commercial applications, the increasing requirements for broad working temperature window, strong SO2/alkali/heavy metal-resistance, and high hydrothermal stability have stimulated the development of new-type NH3-SCR catalysts. This review summarizes the latest SCR reaction mechanisms and emerging poison-resistant mechanisms in the beginning and subsequently gives a comprehensive overview of newly developed SCR catalysts, including metal oxide catalysts ranging from VOx, MnOx, CeO2, and Fe2O3 to CuO based catalysts; acidic compound catalysts containing vanadate, phosphate and sulfate catalysts; ion exchanged zeolite catalysts such as Fe, Cu, Mn, etc. exchanged zeolite catalysts; monolith catalysts including extruded, washcoated, and metal-mesh/foam-based monolith catalysts. The challenges and opportunities for each type of catalysts are proposed while the effective strategies are summarized for enhancing the acidity/redox circle and poison-resistance through modification, creating novel nanostructures, exposing specific crystalline planes, constructing protective/sacrificial sites, etc. Some suggestions are given about future research directions that efforts should be made in. Hopefully, this review can bridge the gap between newly developed catalysts and practical requirements to realize their commercial applications in the near future.

11.
Environ Sci Technol ; 55(13): 9276-9284, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34142799

RESUMEN

The deactivation issue arising from alkali poisoning over catalysts is still a challenge for the selective catalytic reduction of NOx by NH3. Herein, improved NOx reduction in the presence of alkaline metals over phosphate-modified Fe2O3/TiO2 catalysts has been originally demonstrated via tailoring the reaction paths by in situ creating alkali-poisoning sites. The introduction of phosphate results in the partial formation of iron phosphate species and makes the catalyst to mainly exhibit the characteristics of FePO4, which is responsible for the widened temperature window and enhanced alkali resistance. The tetrahedral [FeO4]/[PO4] structures in iron phosphate act as the Brønsted acid sites to increase the catalyst surface acidity. In addition, the formation of an Fe-O-P structure enhances the redox ability and increases surface adsorbed oxygen. Furthermore, the created phosphate groups (PO43-) serving as alkali-poisoning sites preferentially combine with potassium so that iron species on the active sites are protected. Therefore, the enhanced NH3 species adsorption capacity, improved redox ability, and active nitrate species remaining in the phosphate-modified Fe2O3/TiO2 catalyst ensure the de-NOx activity after being poisoned by alkali metals through the Langmuir-Hinshelwood reaction pathway. Hopefully, this novel strategy could provide an inspiration to design novel catalysts to control NOx emission with extraordinary resistance to alkaline metals.


Asunto(s)
Amoníaco , Fosfatos , Álcalis , Catálisis , Titanio
12.
Environ Sci Technol ; 55(17): 11970-11978, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34488354

RESUMEN

Reducing the poisoning effect arising from alkali metals over catalysts for selective catalytic reduction (SCR) of NOx by NH3 is still an urgent issue to be solved. Herein, alkali-resistant NOx reduction over B-doped CeO2/TiO2 catalysts (Ce-B/TiO2) with Ce-O-B alkali-capture sites was originally demonstrated. It was noted that boron was confirmed to be doped into the lattice of CeO2 to form the Ce-O-B structure. In this way, more active Ce(III) species and oxygen vacancies were generated from B-doped CeO2, thus accelerating the redox cycle and enhancing the adsorption/activation of NO. Gratifyingly, the created Ce-O-B sites as alkali-capture sites could be effectively combined with K and release the poisoned Ce active sites, which maintained efficient NH3 and NO adsorption/activation over K poisoned Ce-B/TiO2. This work paves a way for designing highly efficient and alkali-resistant SCR catalysts in both academic and industrial fields.


Asunto(s)
Álcalis , Amoníaco , Catálisis , Oxidación-Reducción , Titanio
13.
Environ Sci Technol ; 2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34323076

RESUMEN

Releasing the poisoning effect of alkali metals over catalysts is still an intractable issue for selective catalytic reduction (SCR) of NOx with ammonia. The presence of K in fly ash always dramatically suppressed catalytic activity by impairing acidity and redox properties, leading to severe reduction of lifetime for SCR catalysts. Herein, alkali-resistant NOx reduction over TiO2-supported Fe2(SO4)3 catalysts was originally demonstrated via naturally coupling active and poisoning sites. Notably, TiO2-supported Fe2(SO4)3 catalysts expressed admirable NOx conversion and K resistance within a quite broad temperature window of 200-500 °C. The catalysts with more conserved sulfate species revealed that sulfate groups preferred to migrate from the bulk phase to surface, thus effectively binding with K poisons to release the damage on iron active sites. Because of protection effects of migrated sulfates and closely coupling effects with Fe active sites, NH3 and NO adsorption amounts and rates were well maintained. In this way, Fe metal sites and sulfate species closely coupled together on a self-preserved TiO2-supported Fe2(SO4)3 catalyst played essential roles as highly active sites and unique poisoning sites. This work paves a new way to design SCR catalysts with superior alkali resistance that are more reliable in practical deNOx application.

14.
Environ Sci Technol ; 54(10): 6396-6405, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32324392

RESUMEN

Selective catalytic reduction (SCR) of NOx using NH3 in the presence of alkaline and heavy metals is still an issue in the application of a stationary source. Reported here is the rational design of a novel H-SAPO-34-supported ceria-promoted copper-based catalyst (CuCe/H-SAPO-34) that demonstrates exceptional resistance against alkali (K), alkaline earth (Ca), and heavy metal (Pb) poisoning during SCR of NOx. The H-SAPO-34 support contained numerous acid sites that allowed Cu-based catalysts to maintain their catalytic activity while also resisting poisoning by K and Ca. Decorating the catalyst with CeO2 promoted the low-temperature deNOx activity by accelerating the redox cycle with Cu species and assisted the H-SAPO-34 in capturing Ca and Pb. H-SAPO-34-supported ceria-promoted copper oxide catalysts prevented the irreversible combination of K, Ca, or Pb with the active centers, providing the catalyst with excellent poisoning resistance. This work provides a strategy for the development of high-performance, poisoning-resistant catalysts for NH3-SCR of NOx in the presence of alkaline and heavy metals.


Asunto(s)
Amoníaco , Zeolitas , Catálisis , Oxidación-Reducción
15.
Environ Sci Technol ; 54(12): 7697-7705, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32433872

RESUMEN

It is challenging for selective catalytic reduction (SCR) of NOx by NH3 due to the coexistence of heavy metal and SO2 in the flue gas. A thorough probe into deactivation mechanisms is imperative but still lacking. This study unravels unexpected offset effects of Cd and SO2 deactivation over CeO2-WO3/TiO2 catalysts, potential candidates for commercial SCR catalysts. Cd- and SO2-copoisoned catalysts demonstrated higher activity for NOx reduction than a Cd-poisoned catalyst but lower than that for an SO2-poisoned catalyst. In comparison to SO2, Cd had more severe effects on acidic and redox properties, distinctly decreasing the SCR activity. After sulfation of Cd-poisoned catalysts, SO42- preferentially bonded with the surface CdO and released CeO2 active sites poisoned by CdO, thus reserving the highly active CeO2-WO3 sites and maintaining a high activity. The sulfation of Cd-poisoned catalysts also provided more strong acidic sites, and the synergistic effects between the formed cerium sulfate and CeO2 contributed to the high-temperature SCR performance. This work sheds light on the deactivation mechanism of heavy metals and SO2 over CeO2-WO3/TiO2 catalysts and provides an innovative pathway for inventing high-performance SCR catalysts, which have great resistance to heavy metals and SO2 simultaneously. This will be favorable to academic and practical applications in the future.


Asunto(s)
Amoníaco , Cadmio , Catálisis , Oxidación-Reducción , Titanio
16.
Environ Sci Technol ; 54(19): 12752-12760, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32877168

RESUMEN

Reducing the poisoning effect of alkali and heavy metals over ammonia selective catalytic reduction (NH3-SCR) catalysts is still an intractable issue, as the presence of K and Pb in fly ash greatly hampers their catalytic activity by impairing the acidity and affecting the redox properties of the catalysts, leading to the reduction in the lifetime of SCR catalysts. To address this issue, we propose a novel self-protected antipoisoning mechanism by designing SO42-/TiO2 superacid supported CeO2-SnO2 catalysts. Owing to the synergistic effect between CeO2 and SnO2 and the strong acidity originating from the SO42-/TiO2 superacid, the catalysts show superior catalytic activity over a wide temperature range (240-510 °C). Moreover, when K or/and Pb are deposited on SO42-/TiO2 catalysts, the bond effect between SO42- and Ti-O would be broken so that the sulfate in the bulk of SO42-/TiO2 superacid support would be induced to migrate to the surface to bond with K and Pb, thus prohibiting poisons from attacking the Ce-Sn active sites, and significantly boosting the resistance. Hopefully, this novel self-protection mechanism derived from the migration of sulfate in the SO42-/TiO2 superacid to resist alkali and heavy metals provides a new avenue for designing novel catalysts with outstanding resistance to alkali and heavy metals.


Asunto(s)
Álcalis , Metales Pesados , Amoníaco , Catálisis , Oxidación-Reducción , Titanio
17.
Environ Sci Technol ; 54(20): 13314-13321, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-32960572

RESUMEN

Currently, improving the alkali resistance of vanadium-based catalysts still remains as an intractable issue for the selective catalytic reduction of NOx with NH3 (NH3-SCR). It is generally believed that the decrease in adsorbed NHx species deriving from the declined acidic sites is the chief culprit for the deactivation of alkali-poisoned catalysts. Herein, alkali-resistant NOx reduction over SCR catalysts via boosting NH3 adsorption rates was originally demonstrated by in situ constructing the sacrificed sites. It is interesting that the adsorbed NHx species largely decrease while the NH3 adsorption rate is well kept over the V2O5/CeO2 catalyst by in situ constructing the sacrificed sites. The SCR activity could be maintained after alkali poisoning because in situ constructed SO42- groups would prefer to be combined with K+ so that the specific V═O species can endow K-poisoned V2O5/CeO2 with high adsorption rate of NH3 and high reactivity of NHx species. This work provides a new viewpoint that NH3 adsorption rate plays more decisive roles in the performance of alkali-poisoned catalysts than the amount of NH3 adsorption and enlightens an alternative strategy to improve the alkali-resistance of catalysts, which is significant to both the academic and industrial fields.


Asunto(s)
Álcalis , Amoníaco , Adsorción , Catálisis , Vanadio
18.
Environ Sci Technol ; 54(21): 14066-14075, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33064939

RESUMEN

SO2-tolerant selective catalytic reduction (SCR) of NOx at low temperature is still challenging. Traditional metal oxide catalysts are prone to be sulfated and the as-formed sulfates are difficult to decompose. In this study, we discovered that SO2 adsorption could be largely restrained over FeδCe1-δVO4 catalysts, which effectively restrained the deposition of sulfate species and endowed catalysts with strong SO2 tolerance at an extremely low temperature of 240 °C. The increasing oxygen vacancies, enhanced redox properties, and improved acidity contributed to the SCR activity of the FeδCe1-δVO4 catalyst. The reaction pathway changed from the reaction between bidentate nitrate and the NH3 species over CeVO4 catalysts via the Langmuir-Hinshelwood mechanism to that between gaseous NOx and the NH4+/NH3 species over FeδCe1-δVO4 catalysts via the Eley-Rideal mechanism. The effective suppression of SO2 adsorption allowed FeδCe1-δVO4 catalysts to maintain the Eley-Rideal pathways on account of the reduced formation of sulfate species. This work demonstrated an effective route to improve SO2 tolerance via modulating SO2 adsorption on Ce-based vanadate catalysts, which presented a new point for the development of high-performance SO2-tolerant SCR catalysts.


Asunto(s)
Amoníaco , Óxidos , Adsorción , Catálisis , Oxidación-Reducción
19.
Environ Sci Technol ; 54(15): 9693-9701, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32600034

RESUMEN

The ring-opening process was generally considered as the rate-determining step for aromatic volatile organic compound photocatalytic degradation. A sophisticated and intensive degradation pathway is critical to the poor removal efficiency and low mineralization. In the present contribution, we successfully tailored and identified the ring-opening pathway of toluene elimination by electron delocalization in a borocarbonitride photocatalyst. By means of modulation of the dopant coordination configuration and electron geometry in the catalyst, the lone electrons of carbon transform into delocalized counterparts, sequentially elevating the interaction between the toluene molecules and photocatalyst. The aromatic ring of toluene can be attacked directly in the effect of electron delocalization without engendering additional intermediate species, significantly facilitating the removal and mineralization of toluene. This unprecedented route-control strategy alters the aromatic-ring-based reaction behavior from toluene to CO2 and paves a way to purify the refractory pollutants from the top design.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminantes Ambientales , Contaminación del Aire Interior/análisis , Catálisis , Titanio , Tolueno/análisis
20.
Environ Sci Technol ; 54(14): 9132-9141, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32574494

RESUMEN

At present, the deactivation of selective catalytic reduction (SCR) catalysts caused by the coexistence of alkali metal and phosphorus (P) remains an urgent problem and lacks corresponding strategies against catalyst poisoning. Herein, a novel zeolite-like Ce-Si5Al2Ox catalyst derived from an ultrasmall nanozeolite EMT precursor was synthesized without organic templates at ambient temperature. This catalyst was able to maintain above 95% NOx conversion in the 270-540 °C temperature range. Moreover, 1 wt % potassium (K) and 5 wt % P loading had no influence on the SCR performance of the Ce-Si5Al2Ox catalyst at 300-480 °C. It was demonstrated that cerium (Ce) was highly dispersed in the amorphous aluminum (Al) silicate derived from EMT zeolites and expressed high catalytic performance. Besides, a large number of acid sites were reserved to absorb ammonia allowing effective participation in the SCR reaction and capturing alkali metals, thus improving the SCR performance and K resistance. Additionally, the strong interaction between Ce and aluminosilicate decreased cerium phosphate production, preventing deactivation of the catalysts. Thus, this novel low-cost zeolite-like Ce-Si5Al2Ox catalyst with a highly active ion-exchanged metal phase and abundant surface acid sites paves a way for designing new efficient and poisoning-resistant SCR catalysts for practical applications.


Asunto(s)
Zeolitas , Álcalis , Amoníaco , Catálisis , Oxidación-Reducción , Fósforo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA