RESUMEN
BACKGROUND: Laparoscopic right posterior sectionectomy (LRPS) was technically challenging and lack of standardization. There were some approaches for LRPS, such as caudal approach and dorsal approach. During our practice, we initiated pure LRPS using the caudodorsal approach with in situ split and present several advantages of this method. METHODS: From April 2018 to December 2021, consecutive patients who underwent pure LRPS using the caudodorsal approach with in situ split at our institution entered into this retrospective study. The key point of the caudodorsal approach was that the right hepatic vein was exposed from peripheral branches toward the root and the parenchyma was transected from the dorsal side to ventral side. Specially, the right perihepatic ligaments were not divided to keep the right liver in situ before parenchymal dissection for each case. RESULTS: 11 patients underwent pure LRPS using the caudodorsal approach with in situ split. There were 9 hepatocellular carcinoma, 1 sarcomatoid hepatocellular carcinoma, and 1 hepatic hemangioma. Five patients had mild cirrhosis and 1 had moderate cirrhosis. All the procedures were successfully completed laparoscopically. The median operative time was 375 min (range of 290-505 min) and the median blood loss was 300 ml (range of 100-1000 ml). Five patients received perioperative blood transfusion, of which 1 patient received autologous blood transfusion and 2 patients received blood transfusion due to preoperative moderate anemia. No procedure was converted to open surgery. Two patients who suffered from postoperative complications, improved after conservative treatments. The median postoperative stay was 11 days (range of 7-25 days). No postoperative bleeding, hepatic failure, and mortality occurred. CONCLUSION: The preliminary clinical effect of the caudodorsal approach with in situ split for LRPS was satisfactory. Our method was feasible and expected to provide ideas for the standardization of LRPS. Further researches are required due to some limitations of this study.
Asunto(s)
Carcinoma Hepatocelular , Laparoscopía , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/cirugía , Estudios Retrospectivos , Hepatectomía/métodos , Neoplasias Hepáticas/cirugía , Laparoscopía/métodos , Tempo OperativoRESUMEN
Pathological hypertrophy generally progresses to heart failure. Exploring effective and promising therapeutic targets might lead to progress in preventing its detrimental outcomes. Our current knowledge about lipopolysaccharide-induced tumor necrosis factor-α factor (LITAF) is mainly limited to regulate inflammation. However, the role of LITAF in other settings that are not that relevant to inflammation, such as cardiac remodeling and heart failure, remains largely unknown. In the present study, we found that the expression of LITAF decreased in hypertrophic hearts and cardiomyocytes. Meanwhile, LITAF protected cultured neonatal rat cardiomyocytes against phenylephrine-induced hypertrophy. Moreover, using LITAF knockout mice, we demonstrated that LITAF deficiency exacerbated cardiac hypertrophy and fibrosis compared with wild-type mice. Mechanistically, LITAF directly binds to the N-terminal of ASK1, thus disrupting the dimerization of ASK1 and blocking ASK1 activation, ultimately inhibiting ASK1-JNK/p38 signaling over-activation and protecting against cardiac hypertrophy. Furthermore, AAV9-mediated LITAF overexpression attenuated cardiac hypertrophy in vivo. Conclusions: Our findings uncover the novel role of LITAF as a negative regulator of cardiac remodeling. Targeting the interaction between LITAF and ASK1 could be a promising therapeutic strategy for pathological cardiac remodeling.
Asunto(s)
Biomarcadores , Cardiomegalia/etiología , Cardiomegalia/patología , Susceptibilidad a Enfermedades , Fosfoproteínas/genética , Animales , Cardiomegalia/diagnóstico por imagen , Modelos Animales de Enfermedad , Ecocardiografía/métodos , Técnica del Anticuerpo Fluorescente , Expresión Génica , Vectores Genéticos/genética , Inmunohistoquímica , MAP Quinasa Quinasa Quinasa 5/metabolismo , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Noqueados , Modelos Biológicos , Miocitos Cardíacos/metabolismo , Fosfoproteínas/metabolismo , Unión Proteica , Ratas , Transducción GenéticaRESUMEN
Tumor progression locus 2 (TPL2), a serine/threonine kinase, has been regarded as a potentially interesting target for the treatment of various diseases with an inflammatory component. However, the function of TPL2 in regulating hepatocyte metabolism and liver inflammation during the progression of nonalcoholic fatty liver disease (NAFLD) is poorly understood. Here, we report that TPL2 protein expression was significantly increased in fatty liver from diverse species, including humans, monkeys, and mice. Further investigations revealed that compared to wild-type (WT) littermates, hepatocyte-specific TPL2 knockout (HKO) mice exhibited improved lipid and glucose imbalance, reserved insulin sensitivity, and alleviated inflammation in response to high-fat diet (HFD) feeding. Overexpression of TPL2 in hepatocytes led to the opposite phenotype. Regarding the mechanism, we found that mitogen-activated protein kinase kinase 7 (MKK7) was the specific substrate of TPL2 for c-Jun N-terminal kinase (JNK) activation. TPL2-MKK7-JNK signaling in hepatocytes represents a promising drugable target for treating NAFLD and associated metabolic disorders. Conclusion: In hepatocytes, TPL2 acts as a key mediator that promotes both liver and systemic metabolic disturbances by specifically increasing MKK7-JNK activation.
Asunto(s)
Hepatocitos/metabolismo , Inflamación/metabolismo , Resistencia a la Insulina , Quinasas Quinasa Quinasa PAM/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Proteínas Proto-Oncogénicas/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Haplorrinos , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , MAP Quinasa Quinasa 7/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Masculino , Ratones , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/etiología , Obesidad/metabolismo , Proteínas Proto-Oncogénicas/genéticaRESUMEN
Nonalcoholic fatty liver disease (NAFLD) is a prevalent and complex disease that confers a high risk of severe liver disorders. Despite such public and clinical health importance, very few effective therapies are currently available for NAFLD. We report a protective function and the underlying mechanism of dual-specificity phosphatase 14 (DUSP14) in NAFLD and related metabolic disorders. Insulin resistance, hepatic lipid accumulation, and concomitant inflammatory responses, key pathological processes involved in NAFLD development, were significantly ameliorated by hepatocyte-specific DUSP14 overexpression (DUSP14-HTG) in high-fat diet (HFD)-induced or genetically obese mouse models. By contrast, specific DUSP14 deficiency in hepatocytes (DUSP14-HKO) aggravated these pathological alterations. We provided mechanistic evidence that DUSP14 directly binds to and dephosphorylates transforming growth factor ß-activated kinase 1 (TAK1), resulting in the reduced activation of TAK1 and its downstream signaling molecules c-Jun N-terminal kinase 1 (JNK), p38, and nuclear factor kappa B NF-κB. This effect was further evidenced by the finding that inhibiting TAK1 activity effectively attenuated the deterioration of glucolipid metabolic phenotype in DUSP14-HKO mice challenged by HFD administration. Furthermore, we identified that both the binding domain and the phosphatase activity of DUSP14 are required for its protective role against hepatic steatosis, because interruption of the DUSP14-TAK1 interaction abolished the mitigative effects of DUSP14. CONCLUSION: Hepatocyte DUSP14 is required for maintaining hepatic metabolic homeostasis and for suppressing inflammation, a novel function that relies on constraining TAK1 hyperactivation. (Hepatology 2018;67:1320-1338).
Asunto(s)
Fosfatasas de Especificidad Dual/metabolismo , Hepatocitos/metabolismo , Homeostasis/genética , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Western Blotting , Humanos , Inmunohistoquímica , Resistencia a la Insulina/genética , Hígado/metabolismo , Hígado/patología , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones , Enfermedad del Hígado Graso no Alcohólico/patología , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de SeñalRESUMEN
Cellular repressor of E1A-stimulated genes (CREG), a novel cellular glycoprotein, has been identified as a suppressor of various cardiovascular diseases because of its capacity to reduce hyperplasia, maintain vascular homeostasis, and promote endothelial restoration. However, the effects and mechanism of CREG in metabolic disorder and hepatic steatosis remain unknown. Here, we report that hepatocyte-specific CREG deletion dramatically exacerbates high-fat diet and leptin deficiency-induced (ob/ob) adverse effects such as obesity, hepatic steatosis, and metabolic disorders, whereas a beneficial effect is conferred by CREG overexpression. Additional experiments demonstrated that c-Jun N-terminal kinase 1 (JNK1) but not JNK2 is largely responsible for the protective effect of CREG on the aforementioned pathologies. Notably, JNK1 inhibition strongly prevents the adverse effects of CREG deletion on steatosis and related metabolic disorders. Mechanistically, CREG interacts directly with apoptosis signal-regulating kinase 1 (ASK1) and inhibits its phosphorylation, thereby blocking the downstream MKK4/7-JNK1 signaling pathway and leading to significantly alleviated obesity, insulin resistance, and hepatic steatosis. Importantly, dramatically reduced CREG expression and hyperactivated JNK1 signaling was observed in the livers of nonalcoholic fatty liver disease (NAFLD) patients, suggesting that CREG might be a promising therapeutic target for NAFLD and related metabolic diseases. CONCLUSION: The results of our study provides evidence that CREG is a robust suppressor of hepatic steatosis and metabolic disorders through its direct interaction with ASK1 and the resultant inactivation of ASK1-JNK1 signaling. This study offers insights into NAFLD pathogenesis and its complicated pathologies, such as obesity and insulin resistance, and paves the way for disease treatment through targeting CREG. (Hepatology 2017;66:834-854).
Asunto(s)
Dieta Alta en Grasa , Regulación de la Expresión Génica , Resistencia a la Insulina/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Proteínas Represoras/genética , Animales , Biopsia con Aguja , Modelos Animales de Enfermedad , Humanos , Inmunohistoquímica , Metabolismo de los Lípidos/genética , MAP Quinasa Quinasa Quinasa 5/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Distribución Aleatoria , Valores de Referencia , Transducción de Señal , Estadísticas no ParamétricasRESUMEN
Tripartite motif 8 (TRIM8), an E3 ligase ubiquitously expressed in various cells, is closely involved in innate immunity. However, its role in nonalcoholic steatohepatitis is largely unknown. Here, we report evidence that TRIM8 is a robust enhancer of steatohepatitis and its complications induced by a high-fat diet or a genetic deficiency (ob/ob). Using gain-of-function and loss-of-function approaches, we observed dramatic exacerbation of insulin resistance, hepatic steatosis, inflammation, and fibrosis by hepatocyte-specific TRIM8 overexpression, whereas deletion or down-regulation of TRIM8 in hepatocytes led to a completely opposite phenotype. Furthermore, investigations of the underlying mechanisms revealed that TRIM8 directly binds to and ubiquitinates transforming growth factor-beta-activated kinase 1, thus promoting its phosphorylation and the activation of downstream c-Jun N-terminal kinase/p38 and nuclear factor κB signaling. Importantly, the participation of TRIM8 in human nonalcoholic fatty liver disease and nonalcoholic steatohepatitis was verified on the basis of its dramatically increased expression in the livers of these patients, suggesting a promising development of TRIM8 disturbance for the treatment of nonalcoholic steatohepatitis-related metabolic disorders. CONCLUSION: The E3 ligase TRIM8 is a potent regulator that exacerbates steatohepatitis and metabolic disorders dependent on its binding and ubiquitinating capacity on transforming growth factor-beta-activated kinase 1. (Hepatology 2017;65:1492-1511).
Asunto(s)
Proteínas Portadoras/metabolismo , Hígado Graso/enzimología , Quinasas Quinasa Quinasa PAM/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Dieta Alta en Grasa , Fibrosis , Humanos , Resistencia a la Insulina , Metabolismo de los Lípidos , Hígado/metabolismo , Hígado/patología , Sistema de Señalización de MAP Quinasas , Masculino , Ratones Transgénicos , Ubiquitina-Proteína Ligasas , UbiquitinaciónRESUMEN
The liver is an essential insulin-responsive organ that is critical for maintaining glucose homeostasis and lipid metabolism. Oncostatin M receptor ß chain (OSMRß) is implicated in adipose tissue- and immune cell-mediated metabolic regulation. However, the role of hepatocyte-derived OSMRß in metabolic disorders remains unclear. Here, we report on the central role of OSMRß in the protection against obesity and deregulation of glucose and lipids. We observed significantly varied expression levels of OSMRß in hepatic tissues in both human samples and mouse models of nonalcoholic fatty liver disease. Mice lacking either whole-body or hepatic OSMRß displayed exacerbated diet-induced insulin resistance, hepatic steatosis, and inflammation, both in diet-induced and genetically (ob/ob) obese mice. These adverse effects were markedly attenuated by hepatocyte-specific overexpression of OSMRß. Mechanistically, we showed that OSMRß phosphorylates and activates the Janus kinase 2 (JAK2)/STAT3 signaling pathway in the liver. More importantly, the liver-restricted overexpression of STAT3 rescued glucose tolerance and ameliorated hepatic steatosis and inflammation in OSMRß knockout mice, whereas OSMRß overexpression failed to protect against hepatic steatosis, insulin resistance, and hepatic inflammation in STAT3-deficient mice. Thus, activation of STAT3 is both sufficient and required to produce OSMRß-mediated beneficial effects. In conclusion, hepatic OSMRß expression alleviates obesity-induced hepatic insulin resistance and steatosis through the activation of JAK2/STAT3 signaling cascades.
Asunto(s)
Resistencia a la Insulina/fisiología , Enfermedad del Hígado Graso no Alcohólico/etiología , Obesidad/complicaciones , Subunidad beta del Receptor de Oncostatina M/fisiología , Animales , Glucemia/metabolismo , Células Cultivadas , Eliminación de Gen , Humanos , Janus Quinasa 2/antagonistas & inhibidores , Hígado/fisiología , Ratones Mutantes , Ratones Obesos , Ratones Transgénicos , Subunidad beta del Receptor de Oncostatina M/deficiencia , Subunidad beta del Receptor de Oncostatina M/genética , Factor de Transcripción STAT3/antagonistas & inhibidoresRESUMEN
BACKGROUND & AIMS: Tumor necrosis factor receptor-associated factor 1 (TRAF1) is an important adapter protein that is largely implicated in molecular events regulating immunity/inflammation and cell death. Although inflammation is closely related to and forms a vicious circle with insulin dysfunction and hepatic lipid accumulation, the role of TRAF1 in hepatic steatosis and the related metabolic disorders remains unclear. METHODS: The participation of TRAF1 in the initiation and progression of hepatic steatosis was evaluated in high fat diet (HFD)-induced and genetic obesity. Mice with global TRAF1 knockout or liver-specific TRAF1 overexpression were employed to investigate the role of TRAF1 in insulin resistance, inflammation, and hepatic steatosis based on various phenotypic examinations. Molecular mechanisms underlying TRAF1-regulated hepatic steatosis were further explored in vivo and in vitro. RESULTS: TRAF1 expression was significantly upregulated in the livers of NAFLD patients and obese mice and in palmitate-treated hepatocytes. In response to HFD administration or in ob/ob mice, TRAF1 deficiency was hepatoprotective, whereas the overexpression of TRAF1 in hepatocytes contributed to the pathological development of insulin resistance, inflammatory response and hepatic steatosis. Mechanistically, hepatocyte TRAF1 promotes hepatic steatosis through enhancing the activation of ASK1-mediated P38/JNK cascades, as evidenced by the fact that ASK1 inhibition abolished the exacerbated effect of TRAF1 on insulin dysfunction, inflammation, and hepatic lipid accumulation. CONCLUSIONS: TRAF1 functions as a positive regulator of insulin resistance, inflammation, and hepatic steatosis dependent on the activation of ASK1-P38/JNK axis.
Asunto(s)
Inflamación/etiología , Resistencia a la Insulina , MAP Quinasa Quinasa Quinasa 5/fisiología , Enfermedad del Hígado Graso no Alcohólico/etiología , Factor 1 Asociado a Receptor de TNF/fisiología , Animales , Dieta Alta en Grasa , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/fisiología , MAP Quinasa Quinasa Quinasa 5/antagonistas & inhibidores , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal/fisiología , Factor 1 Asociado a Receptor de TNF/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/fisiologíaRESUMEN
BACKGROUND & AIMS: Obesity-related metabolic inflammation, insulin resistance (IR), and excessive fat accumulation are linked phenomena that promote the progression of nonalcoholic fatty liver disease (NAFLD). Previous research has indicated that CD40-TRAF5 signaling protects against obesity-related metabolic disorders; however, the precise roles and underlying mechanisms of TRAF5 in obesity-induced pathological processes have not been fully elucidated. METHODS: TRAF5 expression was evaluated in the livers of NAFLD patients, high-fat diet (HFD)-induced or genetically (ob/ob) induced obese mice, and in palmitate-treated hepatocytes. Gain- or loss-of-function approaches were used to investigate the specific roles and mechanisms of hepatic Traf5 under obesity-related pathological conditions. RESULTS: TRAF5 expression was decreased in the fatty livers of both NAFLD patients and obese mice, and in palmitate-treated hepatocytes in vitro. Traf5 overexpression significantly suppressed nonalcoholic steatohepatitis (NASH)-like phenotypes in mice after HFD treatment for 24weeks and inhibited the progression of NAFLD in ob/ob mice. Conversely, Traf5 deficiency resulted in the deterioration of metabolic disorders induced by HFD. Investigations of the underlying mechanisms revealed that Traf5 regulates hepatic steatosis by targeting Jnk signaling. Specifically, Jnk1 rather than Jnk2 is responsible for the function of Traf5 in metabolic disorders, as evidenced by the fact that Jnk1 ablation markedly ameliorates the detrimental effects of Traf5 deficiency on obesity, inflammation, IR, hepatic steatosis and fibrosis. CONCLUSIONS: Traf5 negatively regulates NAFLD/NASH and related metabolic dysfunctions by blocking Jnk1 activity, which represents a potential therapeutic target for obesity-related metabolic disorders. LAY SUMMARY: Lipid accumulation in the liver induces degradation of Traf5. Increasing Traf5 ameliorates nonalcoholic fatty liver by blocking Jnk1 activity.
Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Dieta Alta en Grasa , Humanos , Resistencia a la Insulina , Hígado , Ratones , Ratones Endogámicos C57BL , Obesidad , Factor 5 Asociado a Receptor de TNF , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis TumoralRESUMEN
BACKGROUND & AIMS: Dickkopf-3 (DKK3), a protein belonging to the DKK family, has been extensively investigated in the context of cancer, including liver cancer. However, the role of DKK3 in hepatic steatosis and related metabolic disorders remains largely unexplored. METHODS: We detected the expression of DKK3 in the fatty livers of NAFLD patients and of obese mice and investigated the function of DKK3 in hepatic steatosis and related metabolic disorders by using hepatocyte-specific DKK3 deficiency or overexpression obese mice induced by high fat diet (HFD) or genetic defect (ob/ob). The molecular mechanisms underlying DKK3-regulated hepatic steatosis were further explored and verified in mice. RESULTS: DKK3 expression was significantly decreased in the livers of NAFLD patients and of obese mice as well as in cultured hepatocytes stimulated with palmitate. Further investigation indicated that specific overexpression of DKK3 in hepatocytes enhanced insulin sensitivity and glucose tolerance, reduced the inflammatory response, and ameliorated the imbalance of lipid metabolism in response to HFD or genetic defects. In contrast, DKK3 deficiency in hepatocytes led to an almost complete reversal of these pathologies. Mechanistically, DKK3 combined with Apoptosis signal-regulating kinase 1 (ASK1) under palmitate stimulation, and thus inhibited the activation of the downstream P38/JNK pathway. Importantly, dominant-negative ASK1 blocked the accelerated effects of DKK3 deficiency, while the constitutively active form of ASK1 overcame the inhibitory effects of DKK3 overexpression on HFD-induced metabolic disorders in vivo. CONCLUSION: DKK3 functions as a negative regulator of insulin resistance, hepatic steatosis, and associated inflammatory responses, which depends on its inhibitory regulation of ASK1 activity. LAY SUMMARY: DKK3 expression is decreased in the non-alcoholic fatty liver of humans and mice. Adding DKK3 expression alleviates fatty liver in mice by inhibiting ASK1 activity.
Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Obesidad , Animales , Dieta Alta en Grasa , Hepatocitos , Humanos , Resistencia a la Insulina , Hígado , MAP Quinasa Quinasa Quinasa 5 , Ratones , Ratones Endogámicos C57BLRESUMEN
BACKGROUND & AIMS: The hallmarks of hepatic ischemia/reperfusion (I/R) injury, a common clinical problem that occurs during liver surgical procedures, include severe cell death and inflammatory responses that contribute to early graft failure and a higher incidence of organ rejection. Unfortunately, effective therapeutic strategies are limited. Tumor necrosis factor receptor (TNFR)-associated factor (TRAF) 3 transduces apoptosis and/or inflammation-related signaling pathways to regulate cell survival and cytokine production. However, the role of TRAF3 in hepatic I/R-induced liver damage remains unknown. METHODS: Hepatocyte- or myeloid cell-specific TRAF3 knockdown or transgenic mice were subjected to an I/R model in vivo, and in vitro experiments were performed by treating primary hepatocytes from these mice with hypoxia/reoxygenation stimulation. The function of TRAF3 in I/R-induced liver damage and the potential underlying mechanisms were investigated through various phenotypic analyses and biological approaches. RESULTS: Hepatocyte-specific, but not myeloid cell-specific, TRAF3 deficiency reduced cell death, inflammatory cell infiltration, and cytokine production in both in vivo and in vitro hepatic I/R models, whereas hepatic TRAF3 overexpression resulted in the opposite effects. Mechanistically, TRAF3 directly binds to TAK1, which enhances the activation of the downstream NF-κB and JNK pathways. Importantly, inhibition of TAK1 almost completely reversed the TRAF3 overexpression-mediated exacerbation of I/R injury. CONCLUSIONS: TRAF3 is a novel hepatic I/R mediator that promotes liver damage and inflammation via TAK1-dependent activation of the JNK and NF-κB pathways. Inhibition of hepatic TRAF3 may represent a promising approach to protect the liver against I/R injury-related diseases.
Asunto(s)
Hígado/irrigación sanguínea , Daño por Reperfusión/etiología , Factor 3 Asociado a Receptor de TNF/fisiología , Animales , Femenino , Humanos , Quinasas Quinasa Quinasa PAM/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/fisiología , Daño por Reperfusión/prevención & controlRESUMEN
BACKGROUND & AIMS: Hepatic ischemia/reperfusion (I/R) injury often occurs during liver surgery and may cause liver failure. Our previous studies revealed that Mindin is involved in the pathogenesis of ischemic stroke. However, the function of Mindin in hepatic I/R injury remains unknown. METHODS: Partial hepatic warm ischemia was induced in parallel in global Mindin knockout mice (Mindin KO), hepatocyte-specific Mindin knockdown mice, hepatocyte-specific Mindin transgenic mice (Mindin TG), myeloid cell-specific Mindin TG mice (LysM-Mindin TG), and their corresponding controls, followed by reperfusion. Hepatic histology, serum aminotransferase, inflammatory cytokines, and hepatocyte apoptosis and proliferation were examined to assess liver injury. The molecular mechanisms of Mindin function were explored in vivo and in vitro. RESULTS: Mindin KO and hepatocyte-specific Mindin knockdown mice exhibited less liver damage than controls, with smaller necrotic areas and lower serum transaminase levels. Mindin deficiency significantly suppressed inflammatory cell infiltration, cytokine and chemokine production, and hepatocyte apoptosis, but increased hepatocyte proliferation following hepatic I/R injury. In contrast, the opposite pathological and biochemical changes were observed in hepatocyte-specific Mindin TG mice, whereas no significant changes in liver damage were found in LysM-Mindin TG mice compared to non-transgenic controls. Mechanistically, Akt signaling was activated in livers of Mindin KO mice but was suppressed in Mindin TG mice. Most importantly, Akt inhibitor treatment blocked the protective effect of Mindin deficiency on hepatic I/R injury. CONCLUSIONS: Mindin is a novel modulator of hepatic I/R injury through regulating inflammatory responses, as well as hepatocyte apoptosis and proliferation via inactivation of the Akt signaling pathway.
Asunto(s)
Proteínas de la Matriz Extracelular/deficiencia , Proteínas de la Matriz Extracelular/genética , Regulación de la Expresión Génica , Hepatopatías/genética , Hígado/irrigación sanguínea , ARN/genética , Daño por Reperfusión/genética , Animales , Apoptosis , Western Blotting , Células Cultivadas , Modelos Animales de Enfermedad , Citometría de Flujo , Etiquetado Corte-Fin in Situ , Hígado/metabolismo , Hígado/patología , Hepatopatías/etiología , Hepatopatías/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena en Tiempo Real de la Polimerasa , Daño por Reperfusión/complicaciones , Daño por Reperfusión/metabolismo , Transducción de SeñalRESUMEN
BACKGROUND & AIMS: Hepatic ischemia/reperfusion (I/R) injury is characterized by anoxic cell injury and the generation of inflammatory mediators, leading to hepatic parenchymal cell death. The activation of interferon regulatory factors (IRFs) has been implicated in hepatic I/R injury, but the role of IRF9 in this progression is unclear. METHODS: We investigated the function and molecular mechanisms of IRF9 in transgene and knockout mice subjected to warm I/R of the liver. Isolated hepatocytes from IRF9 transgene and knockout mice were subjected to hypoxia/reoxygenation (H/R) injury to determine the in vitro effects of IRF9. RESULTS: The injuries were augmented in IRF9-overexpressing mice that were subjected to warm I/R of the liver. In contrast, a deficiency in IRF9 markedly reduced the necrotic area, serum alanine amino transferase/aspartate amino transferase (ALT/AST), immune cell infiltration, inflammatory cytokine levels, and hepatocyte apoptosis after liver I/R. Sirtuin (SIRT) 1 levels were significantly higher and the acetylation of p53 was decreased in the IRF9 knockout mice. Notably, IRF9 suppressed the activity of the SIRT1 promoter luciferase reporter and deacetylase activity. Liver injuries were significantly more severe in the IRF9/SIRT1 double knockout (DKO) mice in the I/R model, eliminating the protective effects observed in the IRF9 knockout mice. CONCLUSIONS: IRF9 has a novel function of inducing hepatocyte apoptosis after I/R injury by decreasing SIRT1 expression and increasing acetyl-p53 levels. Targeting IRF9 may be a potential strategy for ameliorating ischemic liver injury after liver surgery.
Asunto(s)
Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/metabolismo , Hepatopatías/metabolismo , Hígado/metabolismo , Daño por Reperfusión/metabolismo , Animales , Apoptosis , Supervivencia Celular , Células Cultivadas , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Hepatocitos/metabolismo , Hepatocitos/patología , Hígado/patología , Hepatopatías/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Daño por Reperfusión/patologíaRESUMEN
Activation of apoptosis signal-regulating kinase 1 (ASK1) in hepatocytes is a key process in the progression of nonalcoholic steatohepatitis (NASH) and a promising target for treatment of the condition. However, the mechanism underlying ASK1 activation is still unclear, and thus the endogenous regulators of this kinase remain open to be exploited as potential therapeutic targets. In screening for proteins that interact with ASK1 in the context of NASH, we identified the deubiquitinase tumor necrosis factor alpha-induced protein 3 (TNFAIP3) as a key endogenous suppressor of ASK1 activation, and we found that TNFAIP3 directly interacts with and deubiquitinates ASK1 in hepatocytes. Hepatocyte-specific ablation of Tnfaip3 exacerbated nonalcoholic fatty liver disease- and NASH-related phenotypes in mice, including glucose metabolism disorders, lipid accumulation and enhanced inflammation, in an ASK1-dependent manner. In contrast, transgenic or adeno-associated virus-mediated TNFAIP3 gene delivery in the liver in both mouse and nonhuman primate models of NASH substantially blocked the onset and progression of the disease. These results implicate TNFAIP3 as a functionally important endogenous suppressor of ASK1 hyperactivation in the pathogenesis of NASH and identify it as a potential new molecular target for NASH therapy.
Asunto(s)
Proteínas de Unión al ADN/metabolismo , Hígado/enzimología , MAP Quinasa Quinasa Quinasa 5/antagonistas & inhibidores , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Animales , Apoptosis , Dieta Alta en Grasa , Fibrosis/prevención & control , Humanos , Inflamación/prevención & control , Resistencia a la Insulina , Ratones , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Transducción de Señal , Ubiquitinación , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismoRESUMEN
Hepatic ischemia-reperfusion (IR) injury is a common clinical issue lacking effective therapy and validated pharmacological targets. Here, using integrative 'omics' analysis, we identified an arachidonate 12-lipoxygenase (ALOX12)-12-hydroxyeicosatetraenoic acid (12-HETE)-G-protein-coupled receptor 31 (GPR31) signaling axis as a key determinant of the hepatic IR process. We found that ALOX12 was markedly upregulated in hepatocytes during ischemia to promote 12-HETE accumulation and that 12-HETE then directly binds to GPR31, triggering an inflammatory response that exacerbates liver damage. Notably, blocking 12-HETE production inhibits IR-induced liver dysfunction, inflammation and cell death in mice and pigs. Furthermore, we established a nonhuman primate hepatic IR model that closely recapitulates clinical liver dysfunction following liver resection. Most strikingly, blocking 12-HETE accumulation effectively attenuated all pathologies of hepatic IR in this model. Collectively, this study has revealed previously uncharacterized metabolic reprogramming involving an ALOX12-12-HETE-GPR31 axis that functionally determines hepatic IR procession. We have also provided proof of concept that blocking 12-HETE production is a promising strategy for preventing and treating IR-induced liver damage.
Asunto(s)
Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Araquidonato 12-Lipooxigenasa/metabolismo , Hígado/irrigación sanguínea , Receptores Acoplados a Proteínas G/metabolismo , Daño por Reperfusión/metabolismo , Transducción de Señal , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/antagonistas & inhibidores , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/biosíntesis , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Metabolismo de los Lípidos , Ratones , Daño por Reperfusión/parasitología , PorcinosRESUMEN
Nonalcoholic steatohepatitis (NASH) is a common clinical condition that can lead to advanced liver diseases. Lack of effective pharmacotherapies for NASH is largely attributable to an incomplete understanding of its pathogenesis. The deubiquitinase cylindromatosis (CYLD) plays key roles in inflammation and cancer. Here we identified CYLD as a suppressor of NASH in mice and in monkeys. CYLD is progressively degraded upon interaction with the E3 ligase TRIM47 in proportion to NASH severity. We observed that overexpression of Cyld in hepatocytes concomitantly inhibits lipid accumulation, insulin resistance, inflammation and fibrosis in mice with NASH induced in an experimental setting. Mechanistically, CYLD interacts directly with the kinase TAK1 and removes its K63-linked polyubiquitin chain, which blocks downstream activation of the JNK-p38 cascades. Notably, reconstitution of hepatic CYLD expression effectively reverses disease progression in mice with dietary or genetically induced NASH and in high-fat diet-fed monkeys predisposed to metabolic syndrome. Collectively, our findings demonstrate that CYLD mitigates NASH severity and identify the CYLD-TAK1 axis as a promising therapeutic target for management of the disease.
Asunto(s)
Cisteína Endopeptidasas/genética , Inflamación/genética , Quinasas Quinasa Quinasa PAM/genética , Enfermedad del Hígado Graso no Alcohólico/genética , Animales , Proteínas Portadoras/genética , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/metabolismo , Enzima Desubiquitinante CYLD , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Haplorrinos , Humanos , Inflamación/fisiopatología , Hígado/metabolismo , Hígado/patología , MAP Quinasa Quinasa 4/genética , Quinasas Quinasa Quinasa PAM/química , Quinasas Quinasa Quinasa PAM/metabolismo , Síndrome Metabólico/genética , Síndrome Metabólico/patología , Ratones , Proteínas de Neoplasias/genética , Enfermedad del Hígado Graso no Alcohólico/fisiopatología , Proteínas Nucleares/genética , Unión Proteica/genética , Índice de Severidad de la Enfermedad , Transducción de Señal/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genéticaRESUMEN
Tripartite motif (TRIM) 8 functions as an E3 ubiquitin ligase, interacting with and ubiquitinating diverse substrates, and is implicated in various pathological processes. However, the function of TRIM8 in the heart remains largely uncharacterized. This study aims to explore the role of TRIM8 in the development of pathological cardiac hypertrophy. Mice and isolated neonatal rat cardiomyocytes overexpressing or lacking TRIM8 were examined in several experiments. The effect of aortic banding-induced cardiac hypertrophy was analyzed by echocardiographic, pathological and molecular analyses. Our results indicated that the TRIM8 overexpression in hearts exacerbated the cardiac hypertrophy triggered by aortic banding. In contrast, the development of pathological cardiac hypertrophy was profoundly blocked in TRIM8-deficient hearts. Mechanistically, our study suggests that TRIM8 may elicit cardiodetrimental effects by promoting the activation of transforming growth factor ß-activated kinase 1 (TAK1)-p38/JNK signaling pathways. Similar results were observed in cultured neonatal rat cardiomyocytes treated with angiotensin II. The rescue experiments using the TAK1-specific inhibitor 5z-7-ox confirmed the requirement of TAK1 activation in TRIM8-mediated pathological cardiac hypertrophy. Furthermore, TRIM8 contributed to TAK1 activation by binding to and promoting TAK1 ubiquitination. In conclusion, our study demonstrates that TRIM8 plays a deleterious role in pressure overload-induced cardiac hypertrophy by accelerating the activation of TAK1-dependent signaling pathways.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cardiomegalia/genética , Proteínas Portadoras/genética , Regulación del Desarrollo de la Expresión Génica , Miocitos Cardíacos/metabolismo , Proteínas del Tejido Nervioso/genética , ARN/genética , Animales , Animales Recién Nacidos , Cardiomegalia/metabolismo , Cardiomegalia/patología , Proteínas Portadoras/biosíntesis , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Ratones , Miocitos Cardíacos/patología , Proteínas del Tejido Nervioso/biosíntesis , Ratas , Transducción de Señal , Ubiquitina-Proteína LigasasRESUMEN
The secretion of adhesion molecules by endothelial cells, as well as the subsequent infiltration of macrophages, determines the initiation and progression of atherosclerosis. Accumulating evidence suggests that IRF3 (interferon regulatory factor 3) is required for the induction of proinflammatory cytokines and for endothelial cell proliferation. However, the effect and underlying mechanism of IRF3 on atherogenesis remain unknown. Our results demonstrated a moderate-to-strong immunoreactivity effect associated with IRF3 in the endothelium and macrophages of the atherosclerotic plaques in patients with coronary heart disease and in hyperlipidemic mice. IRF3-/-ApoE-/- mice showed significantly decreased atherosclerotic lesions in the whole aorta, aortic sinus, and brachiocephalic arteries. The bone marrow transplantation further suggested that the amelioration of atherosclerosis might be attributed to the effects of IRF3 deficiency mainly in endothelial cells, as well as in macrophages. The enhanced stability of atherosclerotic plaques in IRF3-/-ApoE-/- mice was characterized by the reduction of necrotic core size, macrophage infiltration, and lipids, which was accompanied by increased collagen and smooth muscle cell content. Furthermore, multiple proinflammatory cytokines showed a marked decrease in IRF3-/-ApoE-/- mice. Mechanistically, IRF3 deficiency suppresses the secretion of VCAM-1 (vascular cell adhesion molecule 1) and the expression of ICAM-1 (intercellular adhesion molecule 1) by directly binding to the ICAM-1 promoter, which subsequently attenuates macrophage infiltration. Thus, our study suggests that IRF3 might be a potential target for the treatment of atherosclerosis development.