Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 63(26): 12350-12359, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38887050

RESUMEN

Hybrid metal halide materials with charming phase transition behaviors have attracted considerable attention. In former works, much attention has been focused on the phase transition triggered by the order-disorder or displacement motions of the organic component. However, manipulating the variation of the inorganic component to achieve the phase transition has rarely been reported. Herein, two novel organic-inorganic hybrid materials, [THPM]n[AgX2]n (THPM = 3,4,5,6-tetrahydropyrimidin-1-ium, X = I for 1 and Br for 2) with the [AgX2]nn- anionic chain structure, were synthesized. At 293 K, the [AgX2]nn- chains in 1 were constructed by the tetramer units of Ag atoms, while that in 2 was assembled by the dimer structure. Upon heating to 355 K, owing to the variation of the metallophilic interaction between adjacent Ag atoms, a unique transformation process from tetramer to dimer in [AgI2]nn- chains of 1 can be detected and endow 1 with a giant anisotropic thermal expansion with linear strain of ∼7% and shear strain of ∼20%, which can be used as a mechanical actuator for switching. Alternatively, for 2, no phase transition process can be observed upon the temperature variation. This work provides an effective approach to design phase transition materials triggered by the inorganic part.

2.
Sheng Li Xue Bao ; 76(1): 137-147, 2024 Feb 25.
Artículo en Zh | MEDLINE | ID: mdl-38444139

RESUMEN

Diabetes is a major metabolic disease and health issue worldwide that imposes a heavy burden. Research on its pathogenesis and development of effective treatments are currently our major national demands. With the advent of organoid technology, islet organoids have emerged and are attracting increasing attention as a promising model for diabetes research. The establishment of islet organoids is based on the current understanding of islet development. With addition of extra induction factors in vitro to programmatically activate or inhibit specific signaling pathways during islet development, stem cells can be induced to differentiate into three-dimensional cell cultures that possess structures and functions similar to those of natural islets. Because of their capability to mimic the development of islets in vitro, faithfully replicate islet structure, and perform islet physiological functions, islet organoids have been widely used as a valuable tool for the investigation of diabetes pathogenesis, drug screening and evaluation, and clinical transplantation, showing a great potential application. This paper reviews the current research progress, application, and challenges of islet organoids, and discusses the future directions for research on islet organoids.


Asunto(s)
Diabetes Mellitus , Organoides , Humanos , Células Madre , Tecnología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA