Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biol Imaging ; 3: e12, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38510164

RESUMEN

Microscopy is a widely used method in biological research to observe the morphology and structure of cells. Amongst the plethora of microscopy techniques, fluorescent labeling with dyes or antibodies is the most popular method for revealing specific cellular organelles. However, fluorescent labeling also introduces new challenges to cellular observation, as it increases the workload, and the process may result in nonspecific labeling. Recent advances in deep visual learning have shown that there are systematic relationships between fluorescent and bright-field images, thus facilitating image translation between the two. In this article, we propose the cross-attention conditional generative adversarial network (XAcGAN) model. It employs state-of-the-art GANs (GANs) to solve the image translation task. The model uses supervised learning and combines attention-based networks to explore spatial information during translation. In addition, we demonstrate the successful application of XAcGAN to infer the health state of translated nuclei from bright-field microscopy images. The results show that our approach achieves excellent performance both in terms of image translation and nuclei state inference.

2.
Sci Total Environ ; 884: 163902, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37137371

RESUMEN

Plant elemental composition and stoichiometry are useful tools for understanding plant nutrient strategy and biogeochemical cycling in terrestrial ecosystems. However, no studies have examined how plant leaf carbon (C), nitrogen (N), and phosphorus (P) stoichiometry responds to abiotic and biotic factors in the fragile desert-grassland ecological transition zone in northern China. Then a systematically designed 400 km transect was established to investigate the C, N, and P stoichiometry of 870 leaf samples of 61 species from 47 plant communities in the desert-grassland transition zone. At the individual level, plant taxonomic groups and life forms rather than climate or soil factors determined the leaf C, N, and P stoichiometry. In addition, leaf C, N, and P stoichiometry (except leaf C) was significantly influenced by soil moisture content in the desert-grassland transition zone. At the community level, leaf C content showed a considerable interspecific variation (73.41 %); however, the variation in leaf N and P content, as well as C:N and C:P ratios, was mainly due to intraspecific variation, which was in turn driven by soil moisture. We suggested that intraspecific trait variation played a key role in regulating community structure and function to enhance the resistance and resilience of plant communities to climate change in the desert-grassland transition zone. Our results highlighted the role of soil moisture content as a critical parameter for modeling the biogeochemical cycling in dryland plant-soil systems.


Asunto(s)
Ecosistema , Pradera , Hojas de la Planta/química , Plantas/química , China , Nitrógeno/análisis , Fósforo/análisis , Suelo/química
3.
PeerJ ; 6: e4325, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29404218

RESUMEN

This study was conducted to evaluate the effects of mercury stress on growth, photosynthesis and mercury accumulation in different cultivars of a non-food energy crop, Jerusalem artichoke, and to screen appropriate cultivars for their efficacy in the phytoremediation of mercury (Hg2+) contaminated soil. Cultivars LZJ033 (high above-ground biomass and nutrient content, and strongly sexual reproduction) and LZJ119 (a long period of vegetative growth) exhibited more tolerance to mercury stress than LZJ047 (the highest tuber yield and total sugar content). The lines LZJ119 and LZJ047 showed delays in emergence time of about four weeks, and LZJ047 exhibited the highest mortality rate, 85.19%, under treatment with 10 mg kg-1 mercury. The MDA (malondialdehyde) content increased whereas and the Pn (net photosynthetic rate), Fv ∕Fm (the maximum quantum yield of PSII photochemistry) and chlorophyll content decreased in response to mercury stress. The stem diameter, stem biomass and photosynthetic rate of Jerusalem artichoke showed some modest increases in response to mercury stress and exhibited hormesis at least 1 mg kg-1 mercury treatment. Overall, LZJ119 produced more biomass under mercury stress, whereas LZJ033 exhibited a greater capacity for mercury bioaccumulation. Accordingly, LZJ119 may be a good candidate cultivar for use in cases of moderate-low mercury contamination, whereas LZJ033 may be a better candidate under conditions of high mercury contamination. When Jerusalem artichoke was cultivated in mercury contaminated soil, it not only removed the mercury from soil but also produced large amounts of tubers and shoots which could be used as feedstock for the production of bioethanol.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA