Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Res Sq ; 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38585839

RESUMEN

Many cancers, including glioblastoma (GBM), have a male-biased sex difference in incidence and outcome. The underlying reasons for this sex bias are unclear but likely involve differences in tumor cell state and immune response. This effect is further amplified by sex hormones, including androgens, which have been shown to inhibit anti-tumor T cell immunity. Here, we show that androgens drive anti-tumor immunity in brain tumors, in contrast to its effect in other tumor types. Upon castration, tumor growth was accelerated with attenuated T cell function in GBM and brain tumor models, but the opposite was observed when tumors were located outside the brain. Activity of the hypothalamus-pituitary-adrenal gland (HPA) axis was increased in castrated mice, particularly in those with brain tumors. Blockade of glucocorticoid receptors reversed the accelerated tumor growth in castrated mice, indicating that the effect of castration was mediated by elevated glucocorticoid signaling. Furthermore, this mechanism was not GBM specific, but brain specific, as hyperactivation of the HPA axis was observed with intracranial implantation of non-GBM tumors in the brain. Together, our findings establish that brain tumors drive distinct endocrine-mediated mechanisms in the androgen-deprived setting and highlight the importance of organ-specific effects on anti-tumor immunity.

2.
bioRxiv ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38559056

RESUMEN

Background: Biological sex is an important risk factor for glioblastoma (GBM), with males having a higher incidence and poorer prognosis. The mechanisms for this sex bias are thought to be both tumor intrinsic and tumor extrinsic. MicroRNAs (miRNAs), key post-transcriptional regulators of gene expression, have been previously linked to sex differences in various cell types and diseases, but their role in the sex bias of GBM remains unknown. Methods: We leveraged previously published paired miRNA and mRNA sequencing of 39 GBM patients (22 male, 17 female) to identify sex-biased miRNAs. We further interrogated a separate single-cell RNA sequencing dataset of 110 GBM patients to examine whether differences in miRNA target gene expression were tumor cell intrinsic or tumor cell extrinsic. Results were validated in a panel of patient-derived cell models. Results: We identified 10 sex-biased miRNAs (adjusted < 0.1), of which 3 were more highly expressed in males and 7 more highly expressed in females. Of these, miR-644a was higher in females, and increased expression of miR-644a target genes was significantly associated with decreased overall survival (HR 1.3, p = 0.02). Furthermore, analysis of an independent single-cell RNA sequencing dataset confirmed sex-specific expression of miR-644a target genes in tumor cells (p < 10-15). Among patient derived models, miR-644a was expressed a median of 4.8-fold higher in females compared to males. Conclusions: Our findings implicate miR-644a as a candidate tumor cell-intrinsic regulator of sex-biased gene expression in GBM.

3.
Neurooncol Adv ; 6(1): vdad154, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38239626

RESUMEN

Background: Glioblastoma (GBM) displays alterations in iron that drive proliferation and tumor growth. Iron regulation is complex and involves many regulatory mechanisms, including the homeostatic iron regulator (HFE) gene, which encodes the homeostatic iron regulatory protein. While HFE is upregulated in GBM and correlates with poor survival outcomes, the function of HFE in GBM remains unclear. Methods: We interrogated the impact of cell-intrinsic Hfe expression on proliferation and survival of intracranially implanted animals through genetic gain- and loss-of-function approaches in syngeneic mouse glioma models, along with in vivo immune assessments. We also determined the expression of iron-associated genes and their relationship to survival in GBM using public data sets and used transcriptional profiling to identify differentially expressed pathways in control compared to Hfe-knockdown cells. Results: Overexpression of Hfe accelerated GBM proliferation and reduced animal survival, whereas suppression of Hfe induced apoptotic cell death and extended survival, which was more pronounced in females and associated with attenuation of natural killer cells and CD8+ T cell activity. Analysis of iron gene signatures in Hfe-knockdown cells revealed alterations in the expression of several iron-associated genes, suggesting global disruption of intracellular iron homeostasis. Further analysis of differentially expressed pathways revealed oxidative stress as the top pathway upregulated following Hfe loss. Hfe knockdown indeed resulted in enhanced 55Fe uptake and generation of reactive oxygen species. Conclusions: These findings reveal an essential function for HFE in GBM cell growth and survival, as well as a sex-specific interaction with the immune response.

4.
Cancer Discov ; 13(9): 2090-2105, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37378557

RESUMEN

Sex differences in glioblastoma (GBM) incidence and outcome are well recognized, and emerging evidence suggests that these extend to genetic/epigenetic and cellular differences, including immune responses. However, the mechanisms driving immunologic sex differences are not fully understood. Here, we demonstrate that T cells play a critical role in driving GBM sex differences. Male mice exhibited accelerated tumor growth, with decreased frequency and increased exhaustion of CD8+ T cells in the tumor. Furthermore, a higher frequency of progenitor exhausted T cells was found in males, with improved responsiveness to anti-PD-1 treatment. Moreover, increased T-cell exhaustion was observed in male GBM patients. Bone marrow chimera and adoptive transfer models indicated that T cell-mediated tumor control was predominantly regulated in a cell-intrinsic manner, partially mediated by the X chromosome inactivation escape gene Kdm6a. These findings demonstrate that sex-biased predetermined behavior of T cells is critical for inducing sex differences in GBM progression and immunotherapy response. SIGNIFICANCE: Immunotherapies in patients with GBM have been unsuccessful due to a variety of factors, including the highly immunosuppressive tumor microenvironment in GBM. This study demonstrates that sex-biased T-cell behaviors are predominantly intrinsically regulated, further suggesting sex-specific approaches can be leveraged to potentially improve the therapeutic efficacy of immunotherapy in GBM. See related commentary by Alspach, p. 1966. This article is featured in Selected Articles from This Issue, p. 1949.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Masculino , Femenino , Ratones , Animales , Glioblastoma/genética , Agotamiento de Células T , Linfocitos T CD8-positivos , Inmunoterapia , Inmunidad , Neoplasias Encefálicas/patología , Microambiente Tumoral
5.
bioRxiv ; 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38014234

RESUMEN

The glioblastoma microenvironment is enriched in immunosuppressive factors that potently interfere with the function of cytotoxic T lymphocytes. Cancer cells can directly impact the immune system, but the mechanisms driving these interactions are not completely clear. Here we demonstrate that the polyamine metabolite spermidine is elevated in the glioblastoma tumor microenvironment. Exogenous administration of spermidine drives tumor aggressiveness in an immune-dependent manner in pre-clinical mouse models via reduction of CD8+ T cell frequency and phenotype. Knockdown of ornithine decarboxylase, the rate-limiting enzyme in spermidine synthesis, did not impact cancer cell growth in vitro but did result in extended survival. Furthermore, glioblastoma patients with a more favorable outcome had a significant reduction in spermidine compared to patients with a poor prognosis. Our results demonstrate that spermidine functions as a cancer cell-derived metabolite that drives tumor progression by reducing CD8+T cell number and function.

6.
Cell Death Dis ; 13(4): 410, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35484114

RESUMEN

Atypical teratoid/rhabdoid tumors (AT/RT) are the most common malignant brain tumors of infancy and have a dismal 4-year event-free survival (EFS) of 37%. We have previously shown that mTOR activation contributes to AT/RT's aggressive growth and poor survival. Targeting the mTOR pathway with the dual mTORC1/2 inhibitor TAK-228 slows tumor growth and extends survival in mice bearing orthotopic xenografts. However, responses are primarily cytostatic with limited durability. The aim of this study is to understand the impact of mTOR inhibitors on AT/RT signaling pathways and design a rational combination therapy to drive a more durable response to this promising therapy. We performed RNASeq, gene expression studies, and protein analyses to identify pathways disrupted by TAK-228. We find that TAK-228 decreases the expression of the transcription factor NRF2 and compromises AT/RT cellular defenses against oxidative stress and apoptosis. The BH3 mimetic, Obatoclax, is a potent inducer of oxidative stress and apoptosis in AT/RT. These complementary mechanisms of action drive extensive synergies between TAK-228 and Obatoclax slowing AT/RT cell growth and inducing apoptosis and cell death. Combination therapy activates the integrative stress response as determined by increased expression of phosphorylated EIF2α, ATF4, and CHOP, and disrupts the protective NOXA.MCL-1.BIM axis, forcing stressed cells to undergo apoptosis. Combination therapy is well tolerated in mice bearing orthotopic xenografts of AT/RT, slows tumor growth, and extends median overall survival. This novel combination therapy could be added to standard upfront therapies or used as a salvage therapy for relapsed disease to improve outcomes in AT/RT.


Asunto(s)
Tumor Rabdoide , Animales , Humanos , Indoles , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Pirroles/farmacología , Pirroles/uso terapéutico , Tumor Rabdoide/tratamiento farmacológico , Tumor Rabdoide/patología , Serina-Treonina Quinasas TOR
7.
J Clin Invest ; 2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34255747

RESUMEN

Glioblastoma (GBM) remains among the deadliest of human malignancies, and the emergence of the cancer stem cell (CSC) phenotype represents a major challenge to durable treatment response. Because the environmental and lifestyle factors that impact CSC populations are not clear, we sought to understand the consequences of diet on CSC enrichment. We evaluated disease progression in mice fed an obesity-inducing high-fat diet (HFD) versus a low-fat, control diet. HFD resulted in hyper-aggressive disease accompanied by CSC enrichment and shortened survival. HFD drove intracerebral accumulation of saturated fats, which inhibited the production of the cysteine metabolite and gasotransmitter, hydrogen sulfide (H2S). H2S functions principally through protein S-sulfhydration and regulates multiple programs including bioenergetics and metabolism. Inhibition of H2S increased proliferation and chemotherapy resistance, whereas treatment with H2S donors led to death of cultured GBM cells and stasis of GBM tumors in vivo. Syngeneic GBM models and GBM patient specimens present an overall reduction in protein S-sulfhydration, primarily associated with proteins regulating cellular metabolism. These findings provide clear evidence that diet modifiable H2S signaling serves to suppress GBM by restricting metabolic fitness, while its loss triggers CSC enrichment and disease acceleration. Interventions augmenting H2S bioavailability concurrent with GBM standard of care may improve outcomes for GBM patients.

8.
Transl Oncol ; 12(10): 1314-1322, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31340195

RESUMEN

A subset of poor-prognosis medulloblastoma has genomic amplification of MYC. MYC regulates glutamine metabolism in multiple cellular contexts. We modified the glutamine analog 6-diazo-5-oxo-l-norleucine (DON) to mask its carboxylate and amine functionalities, creating a prodrug termed JHU-083 with increased oral bioavailability. We hypothesized that this prodrug would kill MYC-expressing medulloblastoma. JHU-083 treatment caused decreased growth and increased apoptosis in human MYC-expressing medulloblastoma cell lines. We generated a mouse MYC-driven medulloblastoma model by transforming C57BL/6 mouse cerebellar stem and progenitor cells. When implanted into the brains of C57BL/6 mice, these cells formed large cell/anaplastic tumors that resembled aggressive medulloblastoma. A cell line derived from this model was sensitive to JHU-083 in vitro. Oral administration of JHU-038 led to the accumulation of micromolar concentrations of DON in the mouse brain. JHU-083 treatment significantly increased the survival of immune-competent animals bearing orthotopic tumors formed by the mouse cerebellar stem cell model as well as immune-deficient animals bearing orthotopic tumors formed by a human MYC-amplified medulloblastoma cell line. These data provide pre-clinical justification for the ongoing development and testing of orally bioavailable DON prodrugs for use in medulloblastoma patients.

9.
Clin Cancer Res ; 25(19): 5925-5936, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31300448

RESUMEN

PURPOSE: Atypical teratoid/rhabdoid tumors (AT/RT) are aggressive infantile brain tumors with poor survival. Recent advancements have highlighted significant molecular heterogeneity in AT/RT with an aggressive subgroup featuring overexpression of the MYC proto-oncogene. We perform the first comprehensive metabolic profiling of patient-derived AT/RT cell lines to identify therapeutic susceptibilities in high MYC-expressing AT/RT. EXPERIMENTAL DESIGN: Metabolites were extracted from AT/RT cell lines and separated in ultra-high performance liquid chromatography mass spectrometry. Glutamine metabolic inhibition with 6-diazo-5-oxo-L-norleucine (DON) was tested with growth and cell death assays and survival studies in orthotopic mouse models of AT/RT. Metabolic flux analysis was completed to identify combination therapies to act synergistically to improve survival in high MYC AT/RT. RESULTS: Unbiased metabolic profiling of AT/RT cell models identified a unique dependence of high MYC AT/RT on glutamine for survival. The glutamine analogue, DON, selectively targeted high MYC cell lines, slowing cell growth, inducing apoptosis, and extending survival in orthotopic mouse models of AT/RT. Metabolic flux experiments with isotopically labeled glutamine revealed DON inhibition of glutathione (GSH) synthesis. DON combined with carboplatin further slowed cell growth, induced apoptosis, and extended survival in orthotopic mouse models of high MYC AT/RT. CONCLUSIONS: Unbiased metabolic profiling of AT/RT identified susceptibility of high MYC AT/RT to glutamine metabolic inhibition with DON therapy. DON inhibited glutamine-dependent synthesis of GSH and synergized with carboplatin to extend survival in high MYC AT/RT. These findings can rapidly translate into new clinical trials to improve survival in high MYC AT/RT.


Asunto(s)
Diazooxonorleucina/farmacología , Glutamina/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-myc/metabolismo , Tumor Rabdoide/metabolismo , Teratoma/metabolismo , Animales , Antimetabolitos Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Femenino , Glutamina/metabolismo , Humanos , Metaboloma/efectos de los fármacos , Ratones , Ratones Desnudos , Proto-Oncogenes Mas , Tumor Rabdoide/tratamiento farmacológico , Tumor Rabdoide/patología , Teratoma/tratamiento farmacológico , Teratoma/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Neuro Oncol ; 19(10): 1361-1371, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28582547

RESUMEN

BACKGROUND: Atypical teratoid/rhabdoid tumors (AT/RTs) are deadly pediatric brain tumors driven by LIN28. Mammalian target of rapamycin (mTOR) is activated in many deadly, drug-resistant cancers and governs important cellular functions such as metabolism and survival. LIN28 regulates mTOR in normal cells. We therefore hypothesized that mTOR is activated downstream of LIN28 in AT/RT, and the brain-penetrating mTOR complex 1 and 2 (mTORC1/2) kinase inhibitor TAK228 would reduce AT/RT tumorigenicity. METHODS: Activation of mTOR in AT/RT was determined by measuring pS6 and pAKT (Ser473) by immunohistochemistry on tissue microarray of 18 primary AT/RT tumors. In vitro growth assays (BrdU and MTS), death assays (CC3, c-PARP by western blot), and survival curves of AT/RT orthotopic xenograft models were used to measure the efficacy of TAK228 alone and in combination with cisplatin. RESULTS: Lentiviral short hairpin RNA-mediated knockdown of LIN28A led to decreased mTOR activation. Primary human AT/RT had high levels of pS6 and pAKT (Ser473) in 21% and 87% of tumors by immunohistochemistry. TAK228 slowed cell growth, induced apoptosis in vitro, and nearly doubled median survival of orthotopic xenograft models of AT/RT. TAK228 combined with cisplatin synergistically slowed cell growth and enhanced cisplatin-induced apoptosis. Suppression of AKT sensitized cells to cisplatin-induced apoptosis and forced activation of AKT protected cells. Combined treatment with TAK228 and cisplatin significantly extended survival of orthotopic xenograft models of AT/RT compared with each drug alone. CONCLUSIONS: TAK228 has efficacy in AT/RT as a single agent and synergizes with conventional chemotherapies by sensitizing tumors to cisplatin-induced apoptosis. These results suggest TAK228 may be an effective new treatment for AT/RT.


Asunto(s)
Antineoplásicos/uso terapéutico , Benzoxazoles/farmacología , Proliferación Celular/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Tumor Rabdoide/tratamiento farmacológico , Teratoma/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Neoplasias Encefálicas/tratamiento farmacológico , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Cisplatino/farmacología , Humanos , Ratones , Serina-Treonina Quinasas TOR/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA