RESUMEN
Organic peroxides (POs) are organic molecules with one or more peroxide (-O-O-) functional groups. POs are commonly regarded as chemically labile termination products from gas-phase radical chemistry and therefore serve as temporary reservoirs for oxidative radicals (HOx and ROx) in the atmosphere. Owing to their ubiquity, active gas-particle partitioning behavior, and reactivity, POs are key reactive intermediates in atmospheric multiphase processes determining the life cycle (formation, growth, and aging), climate, and health impacts of aerosol. However, there remain substantial gaps in the origin, molecular diversity, and fate of POs due to their complex nature and dynamic behavior. Here, we summarize the current understanding on atmospheric POs, with a focus on their identification and quantification, state-of-the-art analytical developments, molecular-level formation mechanisms, multiphase chemical transformation pathways, as well as environmental and health impacts. We find that interactions with SO2 and transition metal ions are generally the fast PO transformation pathways in atmospheric liquid water, with lifetimes estimated to be minutes to hours, while hydrolysis is particularly important for α-substituted hydroperoxides. Meanwhile, photolysis and thermolysis are likely minor sinks for POs. These multiphase PO transformation pathways are distinctly different from their gas-phase fates, such as photolysis and reaction with OH radicals, which highlights the need to understand the multiphase partitioning of POs. By summarizing the current advances and remaining challenges for the investigation of POs, we propose future research priorities regarding their origin, fate, and impacts in the atmosphere.
RESUMEN
BACKGROUND: The absence of heterozygosity (AOH) is a kind of genomic change characterized by a long contiguous region of homozygous alleles in a chromosome, which may cause human genetic disorders. However, no method of low-pass whole genome sequencing (LP-WGS) has been reported for the detection of AOH in a low-pass setting of less than onefold. We developed a method, termed CNVseq-AOH, for predicting the absence of heterozygosity using LP-WGS with ultra-low sequencing data, which overcomes the sparse nature of typical LP-WGS data by combing population-based haplotype information, adjustable sliding windows, and recurrent neural network (RNN). We tested the feasibility of CNVseq-AOH for the detection of AOH in 409 cases (11 AOH regions for model training and 863 AOH regions for validation) from the 1000 Genomes Project (1KGP). AOH detection using CNVseq-AOH was also performed on 6 clinical cases with previously ascertained AOHs by whole exome sequencing (WES). RESULTS: Using SNP-based microarray results as reference (AOHs detected by CNVseq-AOH with at least a 50% overlap with the AOHs detected by chromosomal microarray analysis), 409 samples (863 AOH regions) in the 1KGP were used for concordant analysis. For 784 AOHs on autosomes and 79 AOHs on the X chromosome, CNVseq-AOH can predict AOHs with a concordant rate of 96.23% and 59.49% respectively based on the analysis of 0.1-fold LP-WGS data, which is far lower than the current standard in the field. Using 0.1-fold LP-WGS data, CNVseq-AOH revealed 5 additional AOHs (larger than 10 Mb in size) in the 409 samples. We further analyzed AOHs larger than 10 Mb, which is recommended for reporting the possibility of UPD. For the 291 AOH regions larger than 10 Mb, CNVseq-AOH can predict AOHs with a concordant rate of 99.66% with only 0.1-fold LP-WGS data. In the 6 clinical cases, CNVseq-AOH revealed all 15 known AOH regions. CONCLUSIONS: Here we reported a method for analyzing LP-WGS data to accurately identify regions of AOH, which possesses great potential to improve genetic testing of AOH.
Asunto(s)
Pérdida de Heterocigocidad , Redes Neurales de la Computación , Secuenciación Completa del Genoma , Humanos , Secuenciación Completa del Genoma/métodos , Polimorfismo de Nucleótido Simple , Genoma HumanoRESUMEN
Organic peroxides (POs) are ubiquitous in the atmosphere and particularly reactive toward dissolved sulfur dioxide (SO2), yet the reaction kinetics between POs and SO2, especially in complex inorganic-organic mixed particles, remain poorly constrained. Here, we report the first investigation of the multiphase reactions between SO2 and POs in monoterpene-derived secondary organic aerosol internally mixed with different inorganic salts (ammonium sulfate, ammonium bisulfate, or sodium nitrate). We find that when the particles are phase-separated, the PO-S(IV) reactivity is consistent with that measured in pure SOA and depends markedly on the water content in the organic shell. However, when the organic and inorganic phases are miscible, the PO-S(IV) reactivity varies substantially among different aerosol systems, mainly driven by their distinct acidities (not by ionic strength). The second-order PO-S(IV) rate constant decreases monotonically from 5 × 105 to 75 M-1 s-1 in the pH range of 0.1-5.6. Both proton catalysis and general acid catalysis contribute to S(IV) oxidation, with their corresponding third-order rate constants determined to be (6.4 ± 0.7) × 106 and (6.9 ± 4.6) × 104 M-2 s-1 at pH 2-6, respectively. The measured kinetics imply that the PO-S(IV) reaction in aerosol is an important sulfate formation pathway, with the reaction kinetics dominated by general acid catalysis at pH > 3 under typical continental atmospheric conditions.
Asunto(s)
Peróxidos , Dióxido de Azufre , Sulfatos/química , Atmósfera/química , AerosolesRESUMEN
Wildfires are a major source of biomass burning aerosol to the atmosphere, with their incidence and intensity expected to increase in a warmer future climate. However, the toxicity evolution of biomass burning organic aerosol (BBOA) during atmospheric aging remains poorly understood. In this study, we report a unique set of chemical and toxicological metrics of BBOA from pine wood smoldering during multiphase aging by gas-phase hydroxyl radicals (OH). Both the fresh and OH-aged BBOA show activity relevant to adverse health outcomes. The results from two acellular assays (DTT and DCFH) show significant oxidative potential (OP) and reactive oxygen species (ROS) formation in OH-aged BBOA. Also, radical concentrations in the aerosol assessed by electron paramagnetic resonance (EPR) spectroscopy increased by 50% following heterogeneous aging. This enhancement was accompanied by a transition from predominantly carbon-centered radicals (85%) in the fresh aerosol to predominantly oxygen-centered radicals (76%) following aging. Both the fresh and aged biomass burning aerosols trigger prominent antioxidant defense during the in vitro exposure, indicating the induction of oxidative stress by BBOA in the atmosphere. By connecting chemical composition and toxicity using an integrated approach, we show that short-term aging initiated by OH radicals can produce biomass burning particles with a higher particle-bound ROS generation capacity, which are therefore a more relevant exposure hazard for residents in large population centers close to wildfire regions than previously studied fresh biomass burning emissions.
RESUMEN
Exposure to air pollution causes adverse health outcomes, but the toxicity mechanisms remain unclear. Here, we investigated the dynamic toxicities of naphthalene-derived secondary organic aerosol (NSOA) in a human bronchial epithelial cell line (BEAS-2B) and identified the chemical components responsible for toxicities. The chemical composition of NSOA was found to vary with six simulated atmospheric aging conditions (C1-C6), as characterized by high-resolution mass spectrometry and ion mobility mass spectrometry. Global proteome profiling reveals dynamic evolution in toxicity: Stronger proteome-wide impacts were detected in fresh NSOA, but the effects declined along with atmospheric aging. While Nrf2-regulated proteins (e.g., NQO1) were significantly up-regulated, the majority (78 to 97%) of proteins from inflammation and other pathways were down-regulated by NSOA exposure (e.g., Rho GTPases). This pattern is distinct from the reactive oxygen species (ROS)-mediated toxicity pathway, and an alternative cysteine reaction pathway was revealed by the decreased abundance of proteins (e.g., MT1X) prone to posttranslational thiol modification. This pathway was further validated by observing decreased Nrf2 response in reporter cells, after preincubating NSOA with cysteine. Ethynyl-naphthalene probe was employed to confirm the alkylation of cellular proteome thiols on the proteome-wide level by fresh NSOA via in-gel fluorescence imaging. Nontarget analysis identified several unsaturated carbonyls, including naphthoquinones and hydroxylated naphthoquinones, as the toxic components responsible for cysteine reactivity. Our study provides insights into the dynamic toxicities of NSOA during atmospheric aging and identifies short-lived unsaturated carbonyls as the predominant toxic components at the posttranslational level.
Asunto(s)
Aerosoles/toxicidad , Naftalenos/química , Naftalenos/toxicidad , Proteoma/efectos de los fármacos , Línea Celular , Regulación hacia Abajo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Estructura Molecular , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Procesamiento Proteico-Postraduccional , Proteómica , Regulación hacia ArribaRESUMEN
High molecular weight dimeric compounds constitute a significant fraction of secondary organic aerosol (SOA) and have profound impacts on the properties and lifecycle of particles in the atmosphere. Although different formation mechanisms involving reactive intermediates and/or closed-shell monomeric species have been proposed for the particle-phase dimers, their relative importance remains in debate. Here, we report unambiguous experimental evidence of the important role of acyl organic peroxy radicals (RO2) and a small but non-negligible contribution from stabilized Criegee intermediates (SCIs) in the formation of particle-phase dimers during ozonolysis of α-pinene, one of the most important precursors for biogenic SOA. Specifically, we find that acyl RO2-involved reactions explain 50-80% of total oxygenated dimer signals (C15-C20, O/C ≥ 0.4) and 20-30% of the total less oxygenated (O/C < 0.4) dimer signals. In particular, they contribute to 70% of C15-C19 dimer ester formation, likely mainly via the decarboxylation of diacyl peroxides arising from acyl RO2 cross-reactions. In comparison, SCIs play a minor role in the formation of C15-C19 dimer esters but react noticeably with the most abundant C9 and C10 carboxylic acids and/or carbonyl products to form C19 and C20 dimeric peroxides, which are prone to particle-phase transformation to form more stable dimers without the peroxide functionality. This work provides a clearer view of the formation pathways of particle-phase dimers from α-pinene oxidation and would help reduce the uncertainties in future atmospheric modeling of the budget, properties, and health and climate impacts of SOA.
Asunto(s)
Contaminantes Atmosféricos , Ozono , Aerosoles , Monoterpenos Bicíclicos , Ácidos Carboxílicos , Ésteres , Monoterpenos , PeróxidosRESUMEN
Organic peroxides play a vital role in the formation, evolution, and health impacts of atmospheric aerosols, yet their molecular composition and fate in the particle phase remain poorly understood. Here, we identified, using iodometry-assisted liquid chromatography mass spectrometry, a large suite of isomer-resolved peroxide monomers (C8-10H12-18O5-8) and dimers (C15-20H22-34O5-14) in secondary organic aerosol formed from ozonolysis of the most abundant monoterpene (α-pinene). Combining aerosol isothermal evaporation experiments and multilayer kinetic modeling, bulk peroxides were found to undergo rapid particle-phase chemical transformation with an average lifetime of several hours under humid conditions, while the individual peroxides decompose on timescales of half an hour to a few days. Meanwhile, the majority of isomeric peroxides exhibit distinct particle-phase behaviors, highlighting the importance of the characterization of isomer-resolved peroxide reactivity. Furthermore, the reactivity of most peroxides increases with aerosol water content faster in a low relative humidity (RH) range than in a high RH range. Such non-uniform water effects imply a more important role of water as a plasticizer than as a reactant in influencing the peroxide reactivity. The high particle-phase reactivity of organic peroxides and its striking dependence on RH should be considered in atmospheric modeling of their fate and impacts on aerosol chemistry and health effects.
Asunto(s)
Monoterpenos , Ozono , Aerosoles/química , Monoterpenos/química , Ozono/química , Peróxidos/química , AguaRESUMEN
The ongoing development of high-throughput sequencing technology and continuous decline of sequencing cost have made it possible to carry out large-scale screening for genetic diseases, which are the main component of birth defects. The screening of genetic diseases is expected to significantly reduce the rate of birth defects and the burden of genetic diseases to the affected families and the society. Taking Down syndrome as an example, through the analysis of the cost-benefit ratio of relevant screening programs, this article has summarized the socio-economic indicators to be considered during the design and development of genetic disease screening.
Asunto(s)
Síndrome de Down , Análisis Costo-Beneficio , Síndrome de Down/diagnóstico , Síndrome de Down/genética , Pruebas Genéticas , HumanosRESUMEN
OBJECTIVE: To estimate the social and economic burden of Downs syndrome for patients and their families residing in Changsha, China. METHODS: An 160-item self-administered questionnaire was designed and distributed to the primary caregivers of the patients in March 2020. A total of 81 eligible participants had completed the questionnaire, among which 20 were excluded for incomplete data. A patient perspective was taken to estimate the economic burden of the disease. The social impact of the disease on the patient's family was evaluated through questions adapted from the Stanford Psychological Wellbeing (PWB) Scale. RESULTS: The estimated life-course cost of a Downs syndrome patient in Changsha is 4 985 659 RMB, with the patient and caregiver's loss of income taking the greater proportion. In addition, as the majority of the patients' primary caregivers, female caregivers experienced not only considerable financial hardship caused by the care provision, but also a significant amount of psychological pressure and social discrimination. CONCLUSION: Increased level of social welfare for the patients and social support for their female caregivers are essential for reducing economic burden and improving their quality of life in the area. In addition, prenatal screening and diagnosis for Downs syndrome are important for reducing both the social and economic burden of the disease by preventing its occurrence.
Asunto(s)
Cuidadores , Síndrome de Down , China , Femenino , Estrés Financiero , Humanos , Calidad de Vida , Discriminación Social , Encuestas y CuestionariosRESUMEN
OBJECTIVE: To compare the clinical application and health economic values of non-invasive prenatal testing (NIPT) and second trimester serum screening (STSS). METHODS: A retrospective analysis was carried out on 54 026 singleton pregnant women undergoing NIPT and STSS from March 1, 2018 to December 31, 2019 in Changsha Maternal and Child Health Care Hospital. For pregnant women with high-risk results of NIPT, prenatal diagnosis and follow-up of pregnancy outcomes were conducted. The data was grouped to 4 screening models, and their cost-benefit was analyzed. RESULTS: The sensitivity, specificity and positive predictive value of NIPT were all higher than STSS. Screening models 1 to 4 have prevented the birth of 71, 29, 52 and 54 patients with Down syndrome, respectively. The safety index of screening models 1 to 4 were 0.0036, 0.3944, 02215 and 0.1281, respectively. When the price of NIPT was decreased to 600 RMB, the cost-benefit of the screening models 1 to 4 was 0.46, 0.65, 0.44 and 0.40 million RMB, respectively. CONCLUSION: NIPT has a better detection performance than STSS. When the price of NIPT is 600 RMB, screening model 1 has the best screening effect and the highest accuracy, safety index and health economical value.
Asunto(s)
Síndrome de Down , Niño , China , Análisis Costo-Beneficio , Síndrome de Down/diagnóstico , Femenino , Humanos , Embarazo , Diagnóstico Prenatal/métodos , Estudios RetrospectivosRESUMEN
RATIONALE: Secreted and membrane-bound proteins, which account for 1/3 of all proteins, play critical roles in heart health and disease. The endoplasmic reticulum (ER) is the site for synthesis, folding, and quality control of these proteins. Loss of ER homeostasis and function underlies the pathogenesis of many forms of heart disease. OBJECTIVE: To investigate mechanisms responsible for regulating cardiac ER function, and to explore therapeutic potentials of strengthening ER function to treat heart disease. METHODS AND RESULTS: Screening a range of signaling molecules led to the discovery that Pak (p21-activated kinase)2 is a stress-responsive kinase localized in close proximity to the ER membrane in cardiomyocytes. We found that Pak2 cardiac deleted mice (Pak2-CKO) under tunicamycin stress or pressure overload manifested a defective ER response, cardiac dysfunction, and profound cell death. Small chemical chaperone tauroursodeoxycholic acid treatment of Pak2-CKO mice substantiated that Pak2 loss-induced cardiac damage is an ER-dependent pathology. Gene array analysis prompted a detailed mechanistic study, which revealed that Pak2 regulation of protective ER function was via the IRE (inositol-requiring enzyme)-1/XBP (X-box-binding protein)-1-dependent pathway. We further discovered that this regulation was conferred by Pak2 inhibition of PP2A (protein phosphatase 2A) activity. Moreover, IRE-1 activator, Quercetin, and adeno-associated virus serotype-9-delivered XBP-1s were able to relieve ER dysfunction in Pak2-CKO hearts. This provides functional evidence, which supports the mechanism underlying Pak2 regulation of IRE-1/XBP-1s signaling. Therapeutically, inducing Pak2 activation by genetic overexpression or adeno-associated virus serotype-9-based gene delivery was capable of strengthening ER function, improving cardiac performance, and diminishing apoptosis, thus protecting the heart from failure. CONCLUSIONS: Our findings uncover a new cardioprotective mechanism, which promotes a protective ER stress response via the modulation of Pak2. This novel therapeutic strategy may present as a promising option for treating cardiac disease and heart failure.
Asunto(s)
Estrés del Retículo Endoplásmico , Insuficiencia Cardíaca/enzimología , Miocitos Cardíacos/enzimología , Quinasas p21 Activadas/metabolismo , Animales , Apoptosis , Línea Celular , Modelos Animales de Enfermedad , Terapia Genética , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/terapia , Células Madre Pluripotentes Inducidas/enzimología , Macaca mulatta , Masculino , Proteínas de la Membrana/metabolismo , Ratones Noqueados , Miocitos Cardíacos/patología , Proteína Fosfatasa 2/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Transducción de Señal , Proteína 1 de Unión a la X-Box/metabolismo , Quinasas p21 Activadas/deficiencia , Quinasas p21 Activadas/genéticaRESUMEN
Sulfur oxides (SOx) are important atmospheric trace species in both gas and particulate phases, and sulfate is a major component of atmospheric aerosol. One potentially important source of particulate sulfate formation is the oxidation of dissolved SO2 by organic peroxides, which comprises a major fraction of secondary organic aerosol (SOA). In this study, we investigated the reaction kinetics and mechanisms between SO2 and condensed-phase peroxides. pH-dependent aqueous phase reaction rate constants between S(IV) and organic peroxide standards were measured. Highly oxygenated organic peroxides with O/C > 0.6 in α-pinene SOA react rapidly with S(IV) species in the aqueous phase. The reactions between organic peroxides and S(IV) yield both inorganic sulfate and organosulfates (OS), as observed by electrospray ionization ion mobility mass spectrometry. For the first time, 34S-labeling experiments in this study revealed that dissolved SO2 forms OS via direct reactions without forming inorganic sulfate as a reactive intermediate. Kinetics of OS formation was estimated semiquantitatively, and such reaction was found to account for 30-60% of sulfur reacted. The photochemical box model GAMMA was applied to assess the implications of the measured SO2 consumption and OS formation rates. Our findings indicate that this novel pathway of SO2-peroxide reaction is important for sulfate formation in submicron aerosol.
Asunto(s)
Contaminantes Atmosféricos , Dióxido de Azufre , Aerosoles , Oxidación-Reducción , Peróxidos , SulfatosRESUMEN
BACKGROUND: Ventricular arrhythmia is a leading cause of cardiac mortality. Most antiarrhythmics present paradoxical proarrhythmic side effects, culminating in a greater risk of sudden death. METHODS: We describe a new regulatory mechanism linking mitogen-activated kinase kinase-7 deficiency with increased arrhythmia vulnerability in hypertrophied and failing hearts using mouse models harboring mitogen-activated kinase kinase-7 knockout or overexpression. The human relevance of this arrhythmogenic mechanism is evaluated in human-induced pluripotent stem cell-derived cardiomyocytes. Therapeutic potentials by targeting this mechanism are explored in the mouse models and human-induced pluripotent stem cell-derived cardiomyocytes. RESULTS: Mechanistically, hypertrophic stress dampens expression and phosphorylation of mitogen-activated kinase kinase-7. Such mitogen-activated kinase kinase-7 deficiency leaves histone deacetylase-2 unphosphorylated and filamin-A accumulated in the nucleus to form a complex with Krüppel-like factor-4. This complex leads to Krüppel-like factor-4 disassociation from the promoter regions of multiple key potassium channel genes (Kv4.2, KChIP2, Kv1.5, ERG1, and Kir6.2) and reduction of their transcript levels. Consequent repolarization delays result in ventricular arrhythmias. Therapeutically, targeting the repressive function of the Krüppel-like factor-4/histone deacetylase-2/filamin-A complex with the histone deacetylase-2 inhibitor valproic acid restores K+ channel expression and alleviates ventricular arrhythmias in pathologically remodeled hearts. CONCLUSIONS: Our findings unveil this new gene regulatory avenue as a new antiarrhythmic target where repurposing of the antiepileptic drug valproic acid as an antiarrhythmic is supported.
Asunto(s)
Arritmias Cardíacas/prevención & control , MAP Quinasa Quinasa 7/metabolismo , Animales , Arritmias Cardíacas/fisiopatología , Epigénesis Genética , Humanos , Factor 4 Similar a Kruppel , Ratones , Miocitos Cardíacos/metabolismo , RatasRESUMEN
Housefly larvae (Musca domestica) composting has been increasingly adopted as an efficient practice to achieve value-added swine manure bioconversion, but few researches have evaluated the features of compost maturity by examining the biochemical compositions of dissolved organic matter (DOM) in compost. Here, we adopted spectrum fingerprint technologies to explore the related transformation mechanisms of DOM in compost by conducting field investigations in a full-scale housefly larvae composting farm. The 1-week composting with larvae significantly decreased DOM concentrations from 192.9 to 77.1 g kg(-1) The hydrolysis of proteins and lipids were enhanced during composting, as well as a build-up of aromatic substances, while contents of fulvic- and humic-like substances were augmented on Day 5 and Day 6 (ranged from 0.04 to 0.65 and 0.11 to 0.59 for Fmax, respectively). Compared with traditional composting without the aid of larvae, the stronger biodegradation of DOM and the subsequent formation of humus in compost, led to a higher level of aromaticity and humification under housefly larvae bioconversion, generating a more stable bio-product for downstream utilisation.
Asunto(s)
Moscas Domésticas , Larva , Estiércol , Suelo/química , Animales , Biodegradación Ambiental , Reactores Biológicos , China , Hidrólisis , Espectroscopía de Resonancia Magnética , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , PorcinosRESUMEN
Ecological stoichiometry provides a powerful tool for integrating microbial biomass stoichiometry with ecosystem processes, opening far-reaching possibilities for linking microbial dynamics to soil carbon (C) metabolism in response to agricultural nutrient management. Despite its importance to crop yield, the role of phosphorus (P) with respect to ecological stoichiometry and soil C sequestration in paddy fields remains poorly understood, which limits our ability to predict nutrient-related soil C cycling. Here, we collected soil samples from a paddy field experiment after seven years of superphosphate application along a gradient of 0, 30, 60, and 90 (P-0 through P-90, respectively) kg.ha-1.yr-1 in order to evaluate the role of exogenous P on soil C sequestration through regulating microbial stoichiometry. P fertilization increased soil total organic C and labile organic C by 1-14% and 4-96%, respectively, while rice yield is a function of the activities of soil ß-1,4-glucosidase (BG), acid phosphatase (AP), and the level of available soil P through a stepwise linear regression model. P input induced C limitation, as reflected by decreases in the ratios of C:P in soil and microbial biomass. An eco-enzymatic ratio indicating microbial investment in C vs. P acquisition, i.e., ln(BG): ln(AP), changed the ecological function of microbial C acquisition, and was stoichiometrically related to P input. This mechanism drove a shift in soil resource availability by increasing bacterial community richness and diversity, and stimulated soil C sequestration in the paddy field by enhancing C-degradation-related bacteria for the breakdown of plant-derived carbon sources. Therefore, the decline in the C:P stoichiometric ratio of soil microorganism biomass under P input was beneficial for soil C sequestration, which offered a "win-win" relationship for the maximum balance point between C sequestration and P availability for rice production in the face of climate change.
Asunto(s)
Ciclo del Carbono , Carbono/química , Fósforo/metabolismo , Microbiología del Suelo , Suelo/química , Agricultura/métodos , Animales , Fertilizantes , Oryza , Fósforo/químicaRESUMEN
The variation of dynamic accuracy for press systems is the nonlinear phenomenon that results from the consideration of contact and impact on the deformation of transmission mechanism, usually revolute joint and translation joint. The influence is especially obvious in the ultra-precision mechanism, which can cause the vibration and unstabitily of position and machining accuracy would be failure. As usual, the dynamic accuracy is used to evaluate the ability of press systems, which is also the important design object. Due to the stronger nonlinear of dynamic accuracy, especially for the effect of coupling factors, the mathematical analysis method plays an important role in the study of dynamic behavior for press systems. This work proposes the new approach to conduct the simplified dynamic accuracy analysis based on the orthogonal design method, which optimize the reasonability of sample collection. The proposed method is compared with the traditional approach, which illustrates the advantage and efficiency for the dynamic accuracy analysis of press systems.â¢Developed dynamic accuracy analysis is observed to be effective for the stability evaluation of press systems.â¢The simplified model of coupling effect analysis is established based on orthogonal design method.â¢No need to collect a large amount of data for comparison and the reliable nonlinear analysis is conducted with simplified model.
RESUMEN
To better understand the potential adverse health effects of atmospheric fine particles in the Southeast Asian developing countries, PM2.5 samples were collected at two urban sites in Yangon and Mandalay, representing coastal and inland cities in Myanmar, in winter and summer during 2016 and 2017. The concentrations of 21 polycyclic aromatic hydrocarbons (PAHs) in PM2.5 were determined using a gas chromatography-mass spectrometry (GC-MS). The concentrations of PAHs in PM2.5 in Yangon and Mandalay ranged from 7.6 to 180 ng m-3, with an average of 72 ng m-3. The PAHs were significantly higher in winter than in summer, and significantly higher in Mandalay than in Yangon. The health risk analysis of PAHs, based on the toxic equivalent quantity (TEQ) calculation, and the incremental lifetime cancer risk (ILCR) assessment indicated that PM2.5 in Myanmar has significant health risks with higher health risks in Mandalay compared to Yangon. Diagnostic ratios of PAHs, correlation of PAHs with other species in PM2.5 and the positive matrix factorization (PMF) analysis showed that TEQ is strongly affected by biomass burning and vehicular emissions in Myanmar. Additionally, it was found that the aging degree of aerosols and air mass trajectories had great influences on the concentration and composition of PAHs in PM2.5 in Myanmar, thereby affecting the toxicity of PM2.5.
Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Mianmar , Monitoreo del Ambiente/métodos , Medición de Riesgo , Estaciones del Año , ChinaRESUMEN
There is growing evidence that the interactions between sulfur dioxide (SO2) and organic peroxides (POs) in aerosol and clouds play an important role in atmospheric sulfate formation and aerosol aging, yet the reactivity of POs arising from anthropogenic precursors toward SO2 remains unknown. In this study, we investigate the multiphase reactions of SO2 with secondary organic aerosol (SOA) formed from the photooxidation of toluene, a major type of anthropogenic SOA in the atmosphere. The reactive uptake coefficient of SO2 on toluene SOA was determined to be on the order of 10-4, depending strikingly on aerosol water content. POs contribute significantly to the multiphase reactivity of toluene SOA, but they can only explain a portion of the measured SO2 uptake, suggesting the presence of other reactive species in SOA that also contribute to the particle reactivity toward SO2. The second-order reaction rate constant (kII) between S(IV) and toluene-derived POs was estimated to be in the range of the kII values previously reported for commercially available POs (e.g., 2-butanone peroxide and 2-tert-butyl hydroperoxide) and the smallest (C1-C2) and biogenic POs. In addition, unlike commercial POs that can efficiently convert S(IV) into both inorganic sulfate and organosulfates, toluene-derived POs appear to mainly oxidize S(IV) to inorganic sulfate. Our study reveals the multiphase reactivity of typical anthropogenic SOA and POs toward SO2 and will help to develop a better understanding of the formation and evolution of atmospheric secondary aerosol.
RESUMEN
HBV infection is a key risk factor for the development and progression of hepatocellular carcinoma (HCC), a highly invasive tumor, and is characterized by its persistent immunosuppressive microenvironment. This review provides an in-depth analysis of HBV-related HCC and explores the interactions between neutrophils, natural killer cells, and dendritic cells, examining their roles in regulating tumor-associated macrophages and CD8+ T cells and shaping the tumor microenvironment. Two critical players in the immunosuppressive milieu of HBV-related HCC are CD8+ T cells and tumor-associated macrophages (TAMs). The study explores how TAMs, initially recruited to combat infection, transform, adopting a tumor-promoting phenotype, turning against the body, promoting tumor cell proliferation, suppressing anti-tumor immunity, and assisting in the spread of cancer. Meanwhile, CD8+ T cells, crucial for controlling HBV infection, become dysfunctional and exhausted in response to persistent chronic viral inflammation. The review then dissects how TAMs manipulate this immune response, further depleting CD8+ T cell functions through mechanisms like arginine deprivation and creating hypoxic environments that lead to exhaustion. Finally, it explores the challenges and promising therapeutic avenues that target TAMs and CD8+ T cells, either separately or in combination with antiviral therapy and personalized medicine approaches, offering hope for improved outcomes in HBV-related HCC.
Asunto(s)
Linfocitos T CD8-positivos , Carcinoma Hepatocelular , Virus de la Hepatitis B , Neoplasias Hepáticas , Microambiente Tumoral , Macrófagos Asociados a Tumores , Humanos , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/virología , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/virología , Neoplasias Hepáticas/etiología , Linfocitos T CD8-positivos/inmunología , Microambiente Tumoral/inmunología , Virus de la Hepatitis B/inmunología , Macrófagos Asociados a Tumores/inmunología , Animales , Hepatitis B/inmunología , Hepatitis B/virología , Hepatitis B/complicacionesRESUMEN
Rapidly increasing urbanization in recent decades has elevated the subway as the primary public transportation mode in metropolitan areas. Indoor air quality (IAQ) inside subways is an important factor that influences the health of commuters and subway workers. This review discusses the subway IAQ in different cities worldwide by comparing the sources and abundance of particulate matter (PM2.5 and PM10) in these environments. Factors that affect PM concentration and chemical composition were found to be associated with the subway internal structure, train frequency, passenger volume, and geographical location. Special attention was paid to air pollutants, such as transition metals, volatile/semi-volatile organic compounds (VOCs and SVOCs), and bioaerosols, due to their potential roles in indoor chemistry and causing adverse health impacts. In addition, given that the IAQ of subway systems is a public health issue worldwide, we calculated the Gini coefficient of urban subway exposure via meta-analysis. A value of 0.56 showed a significant inequity among different cities. Developed regions with higher per capita income tend to have higher exposure. By reviewing the current advances and challenges in subway IAQ with a focus on indoor chemistry and health impacts, future research is proposed toward a sustainable urban transportation systems.