Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
RSC Adv ; 14(24): 17170-17177, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38808231

RESUMEN

Employing all-atom molecular dynamics simulations, we examined the temperature-dependent behavior of bending elasticity in double-stranded RNA (dsRNA). Specifically, we focused on the bending persistence length and its constituent components, namely, the tilt and roll stiffness. Our results revealed a near-linear decrease in these stiffness components as a function of temperature, thereby highlighting the increased flexibility of dsRNA at elevated temperatures. Furthermore, our data revealed a significant anisotropy in dsRNA bending elasticity, which diminished with increasing temperature, attributable to marked disparities in tilt and roll stiffness components. We delineated the underlying biophysical mechanisms and corroborated our findings with extant literature. These observations offer salient implications for advancing our understanding of nucleic acid elasticity, and are pertinent to potential medical applications.

2.
Curr Med Sci ; 44(3): 475-484, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38748372

RESUMEN

Proton-activated G protein-coupled receptors (GPCRs), initially discovered by Ludwig in 2003, are widely distributed in various tissues. These receptors have been found to modulate the immune system in several inflammatory diseases, including inflammatory bowel disease, atopic dermatitis, and asthma. Proton-activated GPCRs belong to the G protein-coupled receptor family and can detect alternations in extracellular pH. This detection triggers downstream signaling pathways within the cells, ultimately influencing the function of immune cells. In this review, we specifically focused on investigating the immune response of proton-activated GPCRs under inflammatory conditions.


Asunto(s)
Inmunomodulación , Inflamación , Receptores Acoplados a Proteínas G , Transducción de Señal , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/inmunología , Humanos , Inflamación/metabolismo , Inflamación/inmunología , Animales , Protones , Asma/inmunología , Asma/metabolismo , Dermatitis Atópica/inmunología , Dermatitis Atópica/metabolismo , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/metabolismo , Concentración de Iones de Hidrógeno
3.
Foods ; 13(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38540878

RESUMEN

A bacteria capable of degrading aflatoxin M1 (AFM1) was isolated from African elephant manure. It was identified as Bacillus pumilus by 16s rDNA sequencing and named B. pumilusE-1-1-1. Compared with physical and chemical methods, biological methods have attracted much attention due to their advantages, such as thorough detoxification, high specificity, and environmental friendliness. This work aimed to study the effects of a recombinant catalase (rCAT) from B. pumilusE-1-1-1 on the degradation of AFM1 in pattern solution. The degradation mechanism was further explored and applied to milk and beer. Kinetic Momentum and Virtual Machine Maximum values for rCAT toward AFM1 were 4.1 µg/mL and 2.5 µg/mL/min, respectively. The rCAT-mediated AFM1 degradation product was identified as C15H14O3. Molecular docking simulations suggested that hydrogen and pi bonds played major roles in the steadiness of AFM1-rCAT. In other work, compared with identical density of AFM1, survival rates of Hep-G2 cells incubated with catalase-produced AFM1 degradation products increased by about 3 times. In addition, degradation rates in lager beer and milk were 31.3% and 47.2%, respectively. Therefore, CAT may be a prospective substitute to decrease AFM1 contamination in pattern solution, milk, and beer, thereby minimizing its influence on human health.

4.
Talanta ; 271: 125580, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38219317

RESUMEN

Ceftiofur (CEF) is an antimicrobial agent with high efficiency and low toxicity, desfuroylceftiofur is its main metabolite, but they are also have potential harm to human health. In this study, ceftiofur was combined with carrier proteins to get artificial antigens. A specific antibody (pAb) against CEF and desfuroylceftiofur was prepared. A sensitive and rapid paper-based sensor relying on time-resolved fluorescent microspheres (TRFMs) immune probes was developed, which were time-resolved fluorescent immunochromatographic strips (TRFMs-LFIA). The concentrations of T line and C line, activated pH, antibody volume and probe volume were optimized. Quantitative limits of detection (qLODs) of TRFMs-LFIA for CEF and desfuroylceftiofur were 0.97 ng/mL and 0.41 ng/mL, respectively. And 50 % inhibiting concentrations (IC50) were 12.92 ng/mL and 12.58 ng/mL, respectively. Pretreatment procedures of real samples were simple and rapid. Detection time of TRFMs-LFIA strip was 15 min. Qualitative analysis of CEF and desfuroylceftiofur was achieved under a UV light, quantitative analysis was implemented with a fluorescent immunoassay analyzer. The average recovery rates ranged from 91.4 % to 107.7 % and corresponding coefficients of variation (CV) was 1.5%-9.7 %. Concentration levels of artificially-spiked samples were measured by TRFMs-LFIA and compared with detection results of High performance liquid chromatography (HPLC), which showed a good accordance. These results indicated that the proposed assay can provide an effective strategy for on-site detection of CEF and desfuroylceftiofur simultaneously.


Asunto(s)
Anticuerpos , Cefalosporinas , Colorantes Fluorescentes , Humanos , Microesferas , Inmunoensayo
5.
Food Chem ; 457: 140197, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38941907

RESUMEN

The purpose of this study is to investigate the mechanism by which 6-shogaol ameliorates hepatic steatosis via miRNA-mRNA interaction analysis. C57BL/6 J mice were fed a high-fat diet (HFD) for 12 weeks, during which 6-shogaol was administered orally. The liver lipid level, liver function and oxidative damage in mice were evaluated. mRNA sequencing, miRNA sequencing, and RT-qPCR were employed to compare the expression profiles between the HFD group and the 6-shogaol-treated group. High-throughput sequencing was used to construct the mRNA and miRNA libraries. Target prediction and integration analysis identified eight potential miRNA-mRNA pairs involved in hepatic steatosis, which were subsequently validated in liver tissues and AML12 cells. The findings revealed that 6-shogaol modulates the miR-3066-5p/Grem2 pathway, thereby improving hepatic steatosis. This study provides new insights into the mechanisms through which 6-shogaol alleviates hepatic steatosis, establishing a foundation for future research on natural active compounds for the treatment of metabolic diseases.


Asunto(s)
Catecoles , Dieta Alta en Grasa , Ratones Endogámicos C57BL , MicroARNs , Animales , MicroARNs/genética , MicroARNs/metabolismo , Ratones , Dieta Alta en Grasa/efectos adversos , Masculino , Catecoles/farmacología , Catecoles/administración & dosificación , Humanos , Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado Graso/genética , Hígado Graso/metabolismo , Hígado Graso/tratamiento farmacológico , Hígado Graso/prevención & control , Hígado Graso/etiología
6.
Int J Biol Macromol ; 269(Pt 1): 132080, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705314

RESUMEN

Theranostic antibacterial wound dressing is highly recommended in practical applications. The conventional methods of integrating diagnostic and therapeutic functions have the disadvantages of complicated preparation, mutual interference, inability to effectively broad spectrum antibacterial property, and easy to induce drug-resistant bacteria. Herein, a pH and light-responsive theranostic antibacterial hydrogel is developed by biopolymers polyvinyl alcohol (PVA) and polyaniline (PANI), and cross-linking with phytic acid (PA), which is widely present in rice bran. The biological polymer-based conductive hydrogel enables timely diagnosis and photothermal sterilization in-situ for wound healing. Because PANI is highly sensitive to pH changes in the bacterial microenvironment, the hydrogel can detect bacterial infections at concentrations as low as 103 CFU/mL. Subsequently, PANI absorbs near-infrared light to achieve on-demand exothermic sterilization (under 808 nm irradiation for 20 min, the killing ratios for Staphylococcus aureus and Escherichia coli reached almost 100 %). In addition, the hydrogel can monitor the intensity of joint movement to avoid wound re-tearing sensitively. In vitro cytotoxicity and hemocompatibility experiments and in vivo full-thickness infected wound model indicate that the hydrogel has good biocompatibility, antibacterial ability, and can accelerate the wound healing effectively. This work will promote the development of wearable electronic devices and precision medicine.


Asunto(s)
Antibacterianos , Escherichia coli , Hidrogeles , Oryza , Ácido Fítico , Staphylococcus aureus , Cicatrización de Heridas , Ácido Fítico/química , Ácido Fítico/farmacología , Cicatrización de Heridas/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Hidrogeles/química , Hidrogeles/farmacología , Oryza/química , Staphylococcus aureus/efectos de los fármacos , Animales , Escherichia coli/efectos de los fármacos , Biopolímeros/química , Biopolímeros/farmacología , Nanomedicina Teranóstica , Ratones , Humanos , Alcohol Polivinílico/química , Compuestos de Anilina/química , Compuestos de Anilina/farmacología
7.
Mater Horiz ; 11(10): 2483-2493, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38477135

RESUMEN

Liquid crystal elastomers (LCEs) blended with photothermal nanofillers can reversibly and rapidly deform their shapes under external optical stimuli. However, nanointerfacial slipping inevitably occurs between the LCE molecules and the nanofillers due to their weak physical interactions, eventually resulting in cyclic instability. This work presents a versatile strategy to fabricate nanointerfacial-slipping-restricted photoactuation elastomers by chemically bonding the nanofillers into a thermally actuatable liquid crystal network. We experimentally and theoretically investigated three types of metal-based nanofillers, including zero-dimensional (0D) nanoparticles, one-dimensional (1D) nanowires, and two-dimensional (2D) nanosheets. The toughly crosslinked nanointerface allows for remarkably promoted interfacial thermal conductivity and stress transfer. Therefore, the resultant actuators enable the realization of long-term-cyclic-stability 4D-printed flexible intelligent systems such as the optical gripper, crawling robot, light-powered self-sustained windmill, butterflies with fluttering wings, and intelligent solar energy collection system.

8.
Food Chem ; 450: 139311, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38636377

RESUMEN

Gold nanoparticles (AuNPs)-based immunochromatographic assay has gained popularity as a rapid detection method for food hazards. Synthesizing highly stable AuNPs in a rapid, simple and environmentally friendly manner is a key focus in this field. Here, we present a green microfluidic strategy for the rapid, automated, and size-controllable synthesis of pepsin-doped AuNPs (AuNPs@Pep) by employing glucose-pepsin as a versatile reducing agent and stabilizer. Through combining the colorimetric and photothermal (PoT) properties of AuNPs@Pep, both "signal-off" and "signal-on" formats of microfluidic paper analytical devices (PADs) were developed for detection of a small molecule antibiotic, florfenicol, and an egg allergen, ovalbumin. Compared to the colorimetric mode, a 4-fold and 3-fold improvement in limit of detection was observed in the "signal-off" detection of florfenicol and the "signal-on" detection of ovalbumin, respectively. The results demonstrated the practicality of AuNPs@Pep as a colorimetric/PoT dual-readout probe for immunochromatographic detection of food hazards at different molecular scales.


Asunto(s)
Colorimetría , Contaminación de Alimentos , Oro , Tecnología Química Verde , Nanopartículas del Metal , Colorimetría/métodos , Contaminación de Alimentos/análisis , Oro/química , Límite de Detección , Nanopartículas del Metal/química , Ovalbúmina/química , Pepsina A/química , Tianfenicol/análogos & derivados
9.
Anal Chim Acta ; 1293: 342283, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331551

RESUMEN

Recombinant antibody-based immunoassays have emerged as crucial techniques for detecting antibiotic residues in food samples. Developing a stable recombinant antibody production system and enhancing detection sensitivity are crucial for their biosensing applications. Here, we bioengineered a single-chain fragment variable (scFv) antibody to target chloramphenicol (CAP) using both Bacillus subtilis and HEK 293 systems, with the HEK 293-derived scFv demonstrating superior sensitivity. Computational chemistry analyses indicated that ASP-99 and ASN-102 residues in the scFv play key roles in antibody recognition, and the hydroxyl group near the benzene ring of the target molecule is critical for in antibody binding. Furthermore, we enhanced the scFv's biosensing sensitivity using an HCR-CRISPR/Cas12a amplification strategy in a streptavidin-based immunoassay. In the dual-step amplification process, detection limits for CAP in the HCR and HCR-CRISPR/Cas12a stages were significantly reduced to 55.23 pg/mL and 3.31 pg/mL, respectively. These findings introduce an effective method for developing CAP-specific scFv antibodies and also propose a multi-amplification strategy to increase immunoassay sensitivity. Additionally, theoretical studies also offer valuable guidance in CAP hapten design and genetic engineering for antibody modification.


Asunto(s)
Técnicas Biosensibles , Cloranfenicol , Humanos , Sistemas CRISPR-Cas , Células HEK293 , Hibridación de Ácido Nucleico , Fluoroinmunoensayo , Anticuerpos
10.
Adv Healthc Mater ; 13(11): e2303876, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38217457

RESUMEN

Wounds at joints are difficult to treat and tend to recover more slowly due to the frequent motions. When using traditional hydrogel dressings, they are easy to crack and undergo bacterial infection, difficult to match and monitor the irregular wounds. Integrating multiple functions within a hydrogel dressing to achieve intelligent wound monitoring and healing remains a significant challenge. In this research, a multifunctional hydrogel is developed based on polysaccharide biopolymer, poly(vinyl alcohol), and hydroxylated graphene through dynamic borate ester bonding and supramolecular interaction. The prepared hydrogel not only exhibits rapid self-healing (within 60 s), injectable, conductive and motion monitoring properties, but also realizes in situ bacterial sensing and killing functions. It shows excellent bacterial sensitivity (within 15 min) and killing ability via the changes of electrical signals and photothermal therapy, avoiding the emergence of drug-resistant bacteria. In vivo experiments prove that the hydrogel can promote wound healing effectively. In addition, it displays great electromechanical performance to achieve real-time monitoring and prevent re-tearing of the wound at human joints. The injectable pH-responsive hydrogel with good biocompatibility demonstrates considerable potential as multifunctional bioelectronic dressing for the detection, treatment, management, and healing of infected joint wounds.


Asunto(s)
Vendajes , Hidrogeles , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Animales , Ratones , Humanos , Grafito/química , Alcohol Polivinílico/química , Nanomedicina Teranóstica/métodos , Conductividad Eléctrica , Antibacterianos/química , Antibacterianos/farmacología , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos
11.
Biosens Bioelectron ; 252: 116139, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38412686

RESUMEN

Micro/nanomaterials display considerable potential for increasing the sensitivity of lateral flow immunoassay (LFIA) by acting as 3D carriers for both antibodies and signals. The key to achieving high detection sensitivity depends on the probe's orientation on the material surface and its multivalent biomolecular interactions with targets. Here, we engineer Lactococcus lactis as the bacterial microcarrier (BMC) for a multivalent immunorecognition probe that was genetically programmed to display multifunctional components including a phage-screened single-chain variable fragment (scFv), an enhanced green fluorescent protein (eGFP), and a C-terminal peptidoglycan-binding domain (AcmA) anchored on BMC through the cell wall peptidoglycan. The innovative design of this biocarrier system, which incorporates a lab-on-a-chip microfluidic device, allows for the rapid and non-destructive self-assembly of the multivalent scFv-eGFP-AcmA@BMC probe, in which the 3D structure of BMC with a large peptidoglycan surface area facilitates the precisely orientated attachment and immobilization of scFv-eGFP-AcmA. This leads to a remarkable fluorescence aggregation amplification effect in LFIA, outperforming a monovalent 2D scFv-eGFP-AcmA probe for florfenicol detection. By designing a portable sensing device, we achieved an exceptionally low detection limit of 0.28 pg/mL and 0.21 pg/mL for florfenicol in lake water and milk sample, respectively. The successful microfabrication of this biocarrier holds potential to inspire innovative biohybrid designs for environment and food safety biosensing applications.


Asunto(s)
Técnicas Biosensibles , Lactococcus lactis , Tianfenicol/análogos & derivados , Animales , Antibacterianos/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/química , Peptidoglicano/metabolismo , Microtecnología , Leche , Lagos , Inmunoensayo , Agua
12.
Comput Biol Med ; 171: 108145, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38442553

RESUMEN

Four-dimensional conebeam computed tomography (4D CBCT) is an efficient technique to overcome motion artifacts caused by organ motion during breathing. 4D CBCT reconstruction in a single scan usually divides projections into different groups of sparsely sampled data based on the respiratory phases. The reconstructed images within each group present poor image quality due to the limited number of projections. To improve the image quality of 4D CBCT in a single scan, we propose a novel reconstruction scheme that combines prior knowledge with motion compensation. We apply the reconstructed images of the full projections within a single routine as prior knowledge, providing structural information for the network to enhance the restoration structure. The prior network (PN-Net) is proposed to extract features of prior knowledge and fuse them with the sparsely sampled data using an attention mechanism. The prior knowledge guides the reconstruction process to restore the approximate organ structure and alleviates severe streaking artifacts. The deformation vector field (DVF) extracted using deformable image registration among different phases is then applied in the motion-compensated ordered-subset simultaneous algebraic reconstruction algorithm to generate 4D CBCT images. Proposed method has been evaluated using simulated and clinical datasets and has shown promising results by comparative experiment. Compared with previous methods, our approach exhibits significant improvements across various evaluation metrics.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Tomografía Computarizada Cuatridimensional , Tomografía Computarizada de Haz Cónico/métodos , Tomografía Computarizada Cuatridimensional/métodos , Respiración , Fantasmas de Imagen , Algoritmos , Artefactos , Procesamiento de Imagen Asistido por Computador/métodos , Movimiento (Física)
13.
Food Chem ; 448: 139089, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38518446

RESUMEN

Self-assembled Eu-dipeptide (tryptophan-phenylalanine) microparticles with multi-emission fluorescence was prepared and modified with a single-stranded DNA corresponding to the sulfamethazine (SMZ) adapter (Eu-PMPs@cDNA). Aptamer-functionalized magnetic Fe3O4 (MNPs@aptamer) was used to specifically bind the target SMZ. Using Eu-PMPs@cDNA as fluorescent signal probe and MNPs@aptamer as catcher, a noncompetitive fluorescence sensing strategy was developed for determination of SMZ with good sensitivity, accuracy, selectivity, and stability. Under the optimized conditions, fluorescence increases linearly in the 0-20 ng/mL SMZ concentration range, and the detection limit is 0.014 ng/mL. The fluorescence sensing method was applied to analysis of water and fish muscle samples, and recoveries ranged from 81.78 to 119.46 % with relative standard deviations below 4.2 %. This study offered a reliable and sensitive fluorescence sensing strategy for SMZ determination in food samples, which owns great potential for wide-ranging application in harmful compounds assay by simply changing the type of aptamer and its complementary single-stranded DNA.

14.
mLife ; 1(4): 428-442, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38818489

RESUMEN

Antibiotic resistance in gram-negative pathogens has become one of the most serious global public health threats. The role of the N-acyl homoserine lactone (AHL)-mediated signaling pathway, which is widespread in gram-negative bacteria, in the bacterial resistance process should be studied in depth. Here, we report a degrading enzyme of AHLs, MomL, that inhibits the antibiotic resistance of Pseudomonas aeruginosa through a novel mechanism. The MomL-mediated reactivation of kanamycin is highly associated with the relA-mediated starvation stringent response. The degradation of AHLs by MomL results in the inability of LasR to activate relA, which, in turn, stops the activation of downstream rpoS. Further results show that rpoS directly regulates the type VI secretion system H2-T6SS. Under MomL treatment, inactivated RpoS fails to regulate H2-T6SS; therefore, the expression of effector phospholipase A is reduced, and the adaptability of bacteria to antibiotics is weakened. MomL in combination with kanamycin is effective against a wide range of gram-negative pathogenic bacteria. Therefore, this study reports a MomL-antibiotic treatment strategy on antibiotic-resistant bacteria and reveals its mechanism of action.

15.
An. acad. bras. ciênc ; 89(1): 175-189, Jan,-Mar. 2017. graf
Artículo en Inglés | LILACS | ID: biblio-886635

RESUMEN

ABSTRACT Gracilariopsis lemaneiformis is a type of red alga that contains seaweed polysaccharide agar. In this study, a novel non-agar seaweed polysaccharide fraction named GCP (short of crude polysaccharide obtained from Gracilariopsis lemaneiformis) was isolated from Gracilariopsis lemaneiformis. Structural analysis showed that GCP shows triple helical chain conformation when dissolved in water and has many branches and long side chains. Also, 1→3 linkage is the major linkage and the sugar structures are galactopyranose configurations linked by β-type glycosidic linkages. Two macromolecular substance fractions (GCP-1 and GCP-2) were purified by DEAE Sepharose Fast Flow column chromatography. Moreover, a splenocyte damage assay and splenocyte proliferation assay were used to analyse the bioactivities of GCP, GCP-1 and GCP-2. It was demonstrated that polysaccharides could protect splenocyte damaged by H2O2; GCP-2 shows a greatest protection rate, that is, 92.8%, which significantly enhanced the splenocyte proliferation, and GCP showed the highest proliferation rate, 9.30%. The results suggested that this type of novel non-agar polysaccharide displayed remarkable antioxidant and immunomodulatory activities and early alkali treatment could decrease the activities. It may represent a potential material for health food and clinical medicines.


Asunto(s)
Animales , Ratas , Polisacáridos/química , Algas Marinas/química , Rhodophyta/química , Polisacáridos/aislamiento & purificación , Valores de Referencia , Ensayo de Inmunoadsorción Enzimática , Linfocitos/efectos de los fármacos , Microscopía Electrónica de Rastreo , Espectroscopía de Resonancia Magnética , Estructura Molecular , Cromatografía Líquida de Alta Presión , Espectroscopía Infrarroja por Transformada de Fourier , Ácido Peryódico/química , Proliferación Celular/efectos de los fármacos , Peso Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA