Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Opt ; 52(13): 3039-47, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23669772

RESUMEN

The method of superimposing multiple phase patterns to generate and deflect multi Airy beams is proposed in this paper. A Dammann grating and an optimized splitting grating are superimposed, respectively, with an Airy cubic phase pattern to generate an array of 4×4 equal-space Airy beams. By adding a deflection grating to the superimposed phase patterns, the transverse self-accelerated Airy beams array can be deflected arbitrarily in two-dimensional plane. The impacts of superimposed phase patterns on the transverse acceleration and size of main lobe of Airy beams in array are discussed in this paper. Meanwhile, the accuracy of the steering method and the impact of the phase modulation depth on the size of the Airy beams are introduced.

2.
Appl Opt ; 51(28): 6726-31, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23033087

RESUMEN

To controllably deflect the Airy beam in a wide range dynamic, the method of combining the classical Airy cubic phase with a diffraction blazed grating phase was adopted in this paper. By dynamically adjusting the grating parameters, the transverse self-accelerating Airy beam allows arbitrary deflection, and the deflected position can be controlled precisely. The mathematical model of the Airy beam optical field distributions generated by the combined phase patterns were proposed to explain the feasibility. Its correctness was ultimately demonstrated by the experimental results. It is significant to use this method for the Airy beam deflection control in high-precision closed-loop aiming systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA