Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(39): e2316161121, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39298490

RESUMEN

Uveitis is a vision-threatening disease primarily driven by a dysregulated immune response, with retinal microglia playing a pivotal role in its progression. Although the transcription factor EGR2 is known to be closely associated with uveitis, including Vogt-Koyanagi-Harada disease and Behcet's disease, and is essential for maintaining the dynamic homeostasis of autoimmunity, its exact role in uveitis remains unclear. In this study, diminished EGR2 expression was observed in both retinal microglia from experimental autoimmune uveitis (EAU) mice and inflammation-induced human microglia cell line (HMC3). We constructed a mice model with conditional knockout of EGR2 in microglia and found that EGR2 deficiency resulted in increased intraocular inflammation. Meanwhile, EGR2 overexpression downregulated the expression of inflammatory cytokines as well as cell migration and proliferation in HMC3 cells. Next, RNA sequencing and ChIP-PCR results indicated that EGR2 directly bound to its downstream target growth differentiation factor 15 (GDF15) and further regulated GDF15 transcription. Furthermore, intravitreal injection of GDF15 recombinant protein was shown to ameliorate EAU progression in vivo. Meanwhile, knockdown of GDF15 reversed the phenotype of EGR2 overexpression-induced microglial inflammation in vitro. In summary, this study highlighted the protective role of the transcription factor EGR2 in AU by modulating the microglial phenotype. GFD15 was identified as a downstream target of EGR2, providing a unique target for uveitis treatment.


Asunto(s)
Enfermedades Autoinmunes , Proteína 2 de la Respuesta de Crecimiento Precoz , Factor 15 de Diferenciación de Crecimiento , Microglía , Uveítis , Animales , Humanos , Ratones , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/patología , Enfermedades Autoinmunes/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Proteína 2 de la Respuesta de Crecimiento Precoz/genética , Factor 15 de Diferenciación de Crecimiento/metabolismo , Factor 15 de Diferenciación de Crecimiento/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/metabolismo , Microglía/patología , Fenotipo , Retina/metabolismo , Retina/patología , Uveítis/inmunología , Uveítis/metabolismo , Uveítis/patología , Uveítis/genética
2.
Immunology ; 173(1): 141-151, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38804253

RESUMEN

Retinopathy of prematurity (ROP) is a retinal disease-causing retinal neovascularization that can lead to blindness. Oxygen-induced retinopathy (OIR) is a widely used ROP animal model. Icariin (ICA) has anti-oxidative and anti-inflammation properties; however, whether ICA has a regulatory effect on OIR remains unclear. In this study, ICA alleviated pathological neovascularization, microglial activation and blood-retina barrier (BRB) damage in vivo. Further results indicated that endothelial cell tube formation, migration and proliferation were restored by ICA treatment in vitro. Proteomic microarrays and molecular mimicry revealed that ICA can directly bind to hexokinase 2 (HK2) and decrease HK2 protein expression in vivo and in vitro. In addition, ICA inhibited the AKT/mTOR/HIF1α pathway activation. The effects of ICA on pathological neovascularization, microglial activation and BRB damage disappeared after HK2 overexpression in vivo. Similarly, the endothelial cell function was revised after HK2 overexpression. HK2 overexpression reversed ICA-induced AKT/mTOR/HIF1α pathway inhibition in vivo and in vitro. Therefore, ICA prevented pathological angiogenesis in OIR in an HK2-dependent manner, implicating ICA as a potential therapeutic agent for ROP.


Asunto(s)
Flavonoides , Hexoquinasa , Microglía , Oxígeno , Neovascularización Retiniana , Retinopatía de la Prematuridad , Transducción de Señal , Serina-Treonina Quinasas TOR , Animales , Humanos , Ratones , Movimiento Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Flavonoides/farmacología , Flavonoides/uso terapéutico , Hexoquinasa/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , Oxígeno/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neovascularización Retiniana/tratamiento farmacológico , Neovascularización Retiniana/metabolismo , Neovascularización Retiniana/patología , Retinopatía de la Prematuridad/tratamiento farmacológico , Retinopatía de la Prematuridad/metabolismo , Retinopatía de la Prematuridad/patología , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
3.
Clin Immunol ; 246: 109205, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36509389

RESUMEN

Vogt-Koyanagi-Harada (VKH) disease, a major blinding eye disease, is characterized by an autoimmune response against melanocytes in multiple organs throughout the body. Currently, the aetiology and pathogenesis of VKH disease are unclear, and the treatment strategy needs to be further optimized. The retinal pigment epithelium (RPE), a monolayer of pigmented cells of the fundus, is essential for maintaining normal visual function and is involved in both the acute and chronic stages of VKH disease. Therefore, the functions of the RPE may play a critical role in the aetiology and treatment of VKH disease. Herein, we established a human induced pluripotent stem cell (hiPSC) RPE model of VKH disease by reprogramming peripheral blood mononuclear cells (PBMCs) into iPSCs and then differentiating them into RPE cells. Patient-derived RPE cells exhibited barrier disruption, impaired phagocytosis, and depigmentation compared with those from normal controls, which was consistent with the features of VKH disease. Furthermore, a small molecular compound targeting EGR2 was found to rescue the barrier and phagocytic functions of the hiPSC-RPE cells through high-throughput virtual screening and functional studies, suggesting a promising strategy for the treatment of VKH disease.


Asunto(s)
Células Madre Pluripotentes Inducidas , Síndrome Uveomeningoencefálico , Humanos , Síndrome Uveomeningoencefálico/tratamiento farmacológico , Evaluación Preclínica de Medicamentos , Leucocitos Mononucleares , Epitelio Pigmentado de la Retina
4.
BMC Cancer ; 23(1): 162, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36800936

RESUMEN

BACKGROUND: Oral squamous cell carcinoma (OSCC) is a common malignant tumor associated with poor prognosis. MicroRNAs (miRNAs) play crucial regulatory roles in the cancer development. However, the role of miRNAs in OSCC development and progression is not well understood. METHODS: We sought to establish a dynamic Chinese hamster OSCC animal model, construct miRNA differential expression profiles of its occurrence and development, predict its targets, and perform functional analysis and validation in vitro. RESULTS: Using expression and functional analyses, the key candidate miRNA (miR-181a-5p) was selected for further functional research, and the expression of miR-181a-5p in OSCC tissues and cell lines was detected. Subsequently, transfection technology and a nude mouse tumorigenic model were used to explore potential molecular mechanisms. miR-181a-5p was significantly downregulated in human OSCC specimens and cell lines, and decreased miR-181a-5p expression was observed in multiple stages of the Chinese hamster OSCC animal model. Moreover, upregulated miR-181a-5p significantly inhibited OSCC cell proliferation, colony formation, invasion, and migration; blocked the cell cycle; and promoted apoptosis. BCL2 was identified as a target of miR-181a-5p. BCL2 may interact with apoptosis- (BAX), invasion- and migration- (TIMP1, MMP2, and MMP9), and cell cycle-related genes (KI67, E2F1, CYCLIND1, and CDK6) to further regulate biological behavior. Tumor xenograft analysis indicated that tumor growth was significantly inhibited in the high miR-181a-5p expression group. CONCLUSION: Our findings indicate that miR-181a-5p can be used as a potential biomarker and provide a novel animal model for mechanistic research on oral cancer.


Asunto(s)
MicroARNs , Neoplasias de la Boca , Carcinoma de Células Escamosas de Cabeza y Cuello , Animales , Cricetinae , Humanos , Ratones , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Cricetulus , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Boca/patología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo
5.
BMC Ophthalmol ; 23(1): 252, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37277716

RESUMEN

BACKGROUND: Primary Sjögren's syndrome (pSS) is a chronic autoimmune disorder defined by xerostomia and keratoconjunctivitis sicca, and its etiology remains unknown. N6-methyladenosine (m6A) is the predominant posttranscriptional modification in eukaryotic mRNAs and is dynamically regulated by m6A regulators. Dysregulation of m6A modification is closely associated with several autoimmune disorders, but the role of m6A modification in pSS remains unknown. This study investigated the potential role of m6A and m6A-related regulators in pSS patients with dry eye. METHODS: This cross-sectional study included forty-eight pSS patients with dry eye and forty healthy controls (HCs). Peripheral blood mononuclear cells (PBMCs) were isolated, and the level of m6A in total RNA was measured. The expression of m6A regulators was determined utilizing real-time PCR and western blotting. The serological indicators detected included autoantibodies, immunoglobulins (Igs), complement factors (Cs), and inflammatory indicators. Dry eye symptoms and signs were measured, including the ocular surface disease index, Schirmer's test (ST), corneal fluorescein staining score (CFS), and tear break-up time. Spearman's correlation coefficient was employed to assess the associations of m6A and m6A-related regulator expression with clinical characteristics. RESULTS: The expression level of m6A was markedly increased in the PBMCs of pSS patients with dry eye compared to HCs (P value<0.001). The relative mRNA and protein expression levels of the m6A regulators methyltransferase-like 3 (METTL3) and YT521-B homology domains 1 were markedly elevated in pSS patients with dry eye (both P value<0.01). The m6A RNA level was found to be positively related to METTL3 expression in pSS patients (r = 0.793, P value<0.001). Both the m6A RNA level and METTL3 mRNA expression correlated with the anti-SSB antibody, IgG, ST, and CFS (all P values < 0.05). The m6A RNA level was associated with C4 (r = -0.432, P value = 0.002), while METTL3 mRNA expression was associated with C3 (r = -0.313, P value = 0.030). CONCLUSIONS: Our work revealed that the upregulation of m6A and METTL3 was associated with the performance of serological indicators and dry eye signs in pSS patients with dry eye. METTL3 may contribute to the pathogenesis of dry eye related to pSS.


Asunto(s)
Síndromes de Ojo Seco , Síndrome de Sjögren , Humanos , Síndrome de Sjögren/complicaciones , Síndrome de Sjögren/genética , Metilación , Estudios Transversales , Leucocitos Mononucleares/patología , Síndromes de Ojo Seco/etiología , Síndromes de Ojo Seco/patología , ARN/genética , Metiltransferasas
6.
Fungal Genet Biol ; 161: 103716, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35691497

RESUMEN

White rot fungi, especially Trametes spp., respond to a wide range of aromatic compounds and dramatically enhance laccase activity, while the activation mechanisms remain to be elucidated. Here, we show that an Hsp70 homolog named ThhspA1 regulates the transcription of laccase LacA in Trametes hirsuta AH28-2 when confronted with o-toluidine. ThhspA1 is pulled down by lacA promoter sequence from the nuclear mixture extracted from T. hirsuta AH28-2 induced by 2 mM o-toluidine. Silencing of ThhspA1 results in a sharp decrease in lacA transcripts and laccase activity in vivo. By comparison, ThhspA1 overexpression does not affect lacA transcription, and laccase activity shows slight enhancement or remains unchanged upon induction with o-toluidine. Electrophoretic mobility shift assays suggest a direct interaction between ThhspA1 and the lacA promoter region. Further investigation shows that the integrity of ThhspA1 is critical since its substrate binding domain (SBD) and nucleotide-binding domain (NBD) are both necessary for DNA binding, with a higher affinity of SBD than NBD based on fluorescence polarization assay. Our results demonstrate that ThhspA1 functions as an aromatic-stress-related DNA binding transcriptional factor required for LacA expression.


Asunto(s)
Lacasa , Trametes , ADN/metabolismo , Lacasa/metabolismo , Polyporaceae , Toluidinas , Trametes/genética , Trametes/metabolismo
7.
Oral Dis ; 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36251494

RESUMEN

OBJECTIVE: microRNA-450b (miR-450b) plays an important role in cancer progression; however, its function in oral squamous cell carcinoma (OSCC) remains largely unknown. This study aimed to investigate the action mechanisms of miR-450b in OSCC. MATERIALS AND METHODS: OSCC animal model was established via continuous induction with single-drug 7, 12-dimethylbenzo[a]anthracene (DMBA). Animal tissue samples were pathologically typed using haematoxylin-eosin (HE) staining. The Cancer Genome Atlas (TCGA) database was used to predict miR-450b and SERPINB2 expression in head and neck squamous cell carcinoma (HNSCC). qRT-PCR and Western blotting were used to detect gene and protein expression in OSCC tissue and cells, respectively. OSCC cell proliferation, growth, migration and invasion were detected using CCK-8, colony formation, transwell migration and matrigel invasion assays, respectively. Bioinformatic tools were used to predict miR-450b target genes. Dual-luciferase reporter assay was used to verify targeting between miR-450b and SERPINB2. Finally, small interfering RNA (siRNA) was used to reduce SERPINB2 expression to detect its effect on tumourigenesis. RESULTS: Four stages of OSCC carcinogenesis (normal oral epithelium, simple epithelial hyperplasia, dysplasia and OSCC) were identified. miR-450b was found to be overexpressed in OSCC animal samples, HNSCC samples and human OSCC cells. Upregulation of miR-450b significantly promoted OSCC cell proliferation, colony formation, migration and invasion, while its downregulation had the opposite effect. SERPINB2 was found to be a miR-450b target gene, and its expression was negatively correlated with miR-450b expression. Altering SERPINB2 expression effectively inhibited OSCC cell invasion, metastasis and epithelial-mesenchymal transition (EMT). CONCLUSIONS: miR-450b plays a key role in OSCC tumourigenesis by regulating OSCC cell migration, invasion and EMT via SERPINB2.

8.
Nucleic Acids Res ; 48(20): e117, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33051689

RESUMEN

Here, we characterized a flap endonuclease 1 (FEN1) plus hairpin DNA probe (hpDNA) system, designated the HpSGN system, for both DNA and RNA editing without sequence limitation. The compact size of the HpSGN system make it an ideal candidate for in vivo delivery applications. In vitro biochemical studies showed that the HpSGN system required less nuclease to cleave ssDNA substrates than the SGN system we reported previously by a factor of ∼40. Also, we proved that the HpSGN system can efficiently cleave different RNA targets in vitro. The HpSGN system cleaved genomic DNA at an efficiency of ∼40% and ∼20% in bacterial and human cells, respectively, and knocked down specific mRNAs in human cells at a level of ∼25%. Furthermore, the HpSGN system was sensitive to the single base mismatch at the position next to the hairpin both in vitro and in vivo. Collectively, this study demonstrated the potential of developing the HpSGN system as a small, effective, and specific editing tool for manipulating both DNA and RNA without sequence limitation.


Asunto(s)
Archaeoglobus fulgidus/enzimología , Endonucleasas de ADN Solapado/metabolismo , Edición Génica/métodos , Secuencias Invertidas Repetidas , Edición de ARN , Archaeoglobus fulgidus/genética , Disparidad de Par Base , ADN/química , Sondas de ADN/química , Sondas de ADN/genética , ADN de Cadena Simple , Escherichia coli/genética , Endonucleasas de ADN Solapado/química , Endonucleasas de ADN Solapado/genética , Endonucleasas de ADN Solapado/aislamiento & purificación , Células HEK293 , Humanos , Técnicas In Vitro , Conformación de Ácido Nucleico , ARN/química , Especificidad por Sustrato
9.
J Craniofac Surg ; 32(1): 313-316, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33156166

RESUMEN

INTRODUCTION: Central retinal artery occlusion (CRAO), an ocular stroke, causes severe and permanent visual impairment. Thrombolytic therapy is currently the main treatment option for CRAO. Intravenous thrombolysis with recombinant tissue-type plasminogen activator (rt-PA) has been extensively applied in the treatment of CRAO with the proven advantages of effectiveness and safety. This meta-analysis aimed to assess the efficacy of intravenous rt-PA thrombolysis for the management of CRAO by evaluating the pooled evidence. METHODS: A comprehensive literature search of electronic databases including PubMed, OVID, and Cochrane Library was conducted up to and including March 2019. All studies reporting visual outcomes after CRAO with thrombolytic therapy were collected. Data on visual acuity and adverse events were recorded and assessed in this analysis. Data were inputted into the statistical software of STATA. The studies were weighed by the inverse of the variance and merged in a random-effects model. RESULTS: The systematic review process yielded 7 eligible studies including 121 patients with CRAO who received the intravenous rt-PA treatment. Sixty-two patients showed improvement in visual acuity (52.0%; 95% CI, 34.0%-70.0%) following rt-PA intravenous thrombolytic therapy. The observed improvement rate in the intravenous rt-PA treatment group was significantly higher than the conservative treatment group (40.4% vs. 13.0%; OR = 5.16; 95% CI, 1.90-14.05). The incidence rate of complications was relatively low (11 out of the 121 patients). Hemorrhage (9/11) was the major reported complication. Mortality was zero. DISCUSSION: This meta-analysis indicated that intravenous rt-PA thrombolysis could be an effective and safe strategy for the management of CRAO. However, a more detailed large-scale clinical trial is warranted to strengthen the evidence-based therapeutic guidance.


Asunto(s)
Oclusión de la Arteria Retiniana , Accidente Cerebrovascular , Fibrinolíticos/uso terapéutico , Humanos , Oclusión de la Arteria Retiniana/tratamiento farmacológico , Accidente Cerebrovascular/tratamiento farmacológico , Terapia Trombolítica , Activador de Tejido Plasminógeno/uso terapéutico
10.
Mol Carcinog ; 59(11): 1302-1316, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33006223

RESUMEN

Oral squamous cell carcinoma (OSCC) is a common malignant tumor of the head and neck. However, the molecular mechanism underlying its development and progression is yet unclear. Genes that are differentially expressed, that is, differentially expressed genes (DEGs), between normal and diseased tissues are believed to be involved in disease development and progression. To identify the DEGs in OSCC and explore their role in occurrence and progression, we established a Chinese hamster OSCC model, determined the DEG, screened the identified DEGs, and performed Gene Ontology (GO) and KEGG enrichment analyses. A protein-protein interaction (PPI) network was generated to screen potential candidate genes. We then analyzed the expression, tumor stage and prognosis of candidate genes using the Gene Expression Profiling Interactive Analysis (GEPIA) database. Finally, we verified the candidate DEGs by quantitative real-time PCR and Gene Expression Omnibus analysis. The results showed 194 significantly DEGs, 140 enriched GO terms, and 8 KEGG pathways, which suggested that OSCC was closely related to the immune system, cell migration, and extracellular matrix. GEPIA and PPI network analysis revealed that SPP1, TNC, and ACTA1 were significantly related to tumor staging; SPP1, tissue inhibitors of matrix metallopeptidases (MMPs) 1 (TIMP1), and ACTA1 were closely related to prognosis. The scores for the top five highest degree genes were close, and the TIMP1/MMP9 axis appeared to be at the center of the PPI network, indicating that expression changes in the TIMP1/MMP9 axis and related genes may be involved in tumor invasion and metastasis. These findings provide novel insights into the mechanism of oral cancer.


Asunto(s)
Antracenos/toxicidad , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas/patología , Biología Computacional/métodos , Modelos Animales de Enfermedad , Metaloproteinasa 9 de la Matriz/metabolismo , Neoplasias de la Boca/patología , Piperidinas/toxicidad , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Carcinoma de Células Escamosas/inducido químicamente , Carcinoma de Células Escamosas/metabolismo , Proliferación Celular , Cricetinae , Cricetulus , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Metaloproteinasa 9 de la Matriz/genética , Ratones , Neoplasias de la Boca/inducido químicamente , Neoplasias de la Boca/metabolismo , Pronóstico , Inhibidor Tisular de Metaloproteinasa-1/genética , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA