Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(22): 15130-15142, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38795041

RESUMEN

Investigating the structure-property correlation in porous materials is a fundamental and consistent focus in various scientific domains, especially within sorption research. Metal oxide clusters with capping ligands, characterized by intrinsic cavities formed through specific solid-state packing, demonstrate significant potential as versatile platforms for sorption investigations due to their precisely tunable atomic structures and inherent long-range order. This study presents a series of Ti8Ce2-oxo clusters with subtle variations in coordinated linkers and explores their sorption behavior. Notably, Ti8Ce2-BA (BA denotes benzoic acid) manifests a distinctive two-step profile during the CO2 adsorption, accompanied by a hysteresis loop. This observation marks a new instance within the metal oxide cluster field. Of intrigue, the presence of unsaturated Ce(IV) sites was found to be correlated with the stepped sorption property. Moreover, the introduction of an electrophilic fluorine atom, positioned ortho or para to the benzoic acid, facilitated precise control over gate pressure and stepped sorption quantities. Advanced in situ techniques systematically unraveled the underlying mechanism behind this unique sorption behavior. The findings elucidate that robust Lewis base-acid interactions are established between the CO2 molecules and Ce ions, consequently altering the conformation of coordinated linkers. Conversely, the F atoms primarily contribute to gate pressure variation by influencing the Lewis acidity of the Ce sites. This research advances the understanding in fabricating metal-oxo clusters with structural flexibility and provides profound insights into their host-guest interaction motifs. These insights hold substantial promise across diverse fields and offer valuable guidance for future adsorbent designs grounded in fundamental theories of structure-property relationships.

2.
J Enzyme Inhib Med Chem ; 39(1): 2409771, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39377432

RESUMEN

A series of triazolopyridine-based dual JAK/HDAC inhibitors were rationally designed and synthesised by merging different pharmacophores into one molecule. All triazolopyridine derivatives exhibited potent inhibitory activities against both targets and the best compound 4-(((5-(benzo[d][1, 3]dioxol-5-yl)-[1, 2, 4]triazolo[1, 5-a]pyridin-2-yl)amino)methyl)-N-hydroxybenzamide (19) was dug out. 19 was proved to be a pan-HDAC and JAK1/2 dual inhibitor and displayed high cytotoxicity against two cancer cell lines MDA-MB-231 and RPMI-8226 with IC50 values in submicromolar range. Docking simulation revealed that 19 fitted well into the active sites of HDAC and JAK proteins. Moreover, 19 exhibited better metabolic stability in vitro than SAHA. Our study demonstrated that compound 19 was a promising candidate for further preclinical studies.


Asunto(s)
Antineoplásicos , Proliferación Celular , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores de Histona Desacetilasas , Histona Desacetilasas , Piridinas , Triazoles , Humanos , Proliferación Celular/efectos de los fármacos , Relación Estructura-Actividad , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Piridinas/farmacología , Piridinas/química , Piridinas/síntesis química , Estructura Molecular , Triazoles/farmacología , Triazoles/química , Triazoles/síntesis química , Línea Celular Tumoral , Histona Desacetilasas/metabolismo , Simulación del Acoplamiento Molecular , Inhibidores de las Cinasas Janus/farmacología , Inhibidores de las Cinasas Janus/síntesis química , Inhibidores de las Cinasas Janus/química , Janus Quinasa 1/antagonistas & inhibidores , Janus Quinasa 1/metabolismo , Janus Quinasa 2/antagonistas & inhibidores , Janus Quinasa 2/metabolismo
3.
J Am Chem Soc ; 145(5): 3055-3063, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36696577

RESUMEN

Reticular chemistry allows for the rational assembly of metal-organic frameworks (MOFs) with designed structures and desirable functionalities for advanced applications. However, it remains challenging to construct multi-component MOFs with unprecedented complexity and control through insertion of secondary or ternary linkers. Herein, we demonstrate that a Zr-based MOF, NU-600 with a (4,6)-connected she topology, has been judiciously selected to employ a linker installation strategy to precisely insert two linear linkers with different lengths into two crystallographically distinct pockets in a one-pot, de novo reaction. We reveal that the hydrolytic stability of these linker-inserted MOFs can be remarkably reinforced by increasing the Zr6 node connectivity, while maintaining comparable water uptake capacity and pore-filling pressure as the pristine NU-600. Furthermore, introducing hydrophilic -OH groups into the linear linker backbones to construct multivariate MOFs can effectively shift the pore-filling step to lower partial pressures. This methodology demonstrates a powerful strategy to reinforce the structural stability of other MOF frameworks by increasing the connectivity of metal nodes, capable of encouraging developments in fundamental sciences and practical applications.

4.
J Am Chem Soc ; 145(30): 16383-16390, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37463331

RESUMEN

Proteins play important roles in the therapeutic, medical diagnostic, and chemical catalysis industries. However, their potential is often limited by their fragile and dynamic nature outside cellular environments. The encapsulation of proteins in solid materials has been widely pursued as a route to enhance their stability and ease of handling. Nevertheless, the experimental investigation of protein interactions with rationally designed synthetic hosts still represents an area in need of improvement. In this work, we leveraged the tunability and crystallinity of metal-organic frameworks (MOFs) and developed a series of crystallographically defined protein hosts with varying chemical properties. Through systematic studies, we identified the dominating mechanisms for protein encapsulation and developed a host material with well-tailored properties to effectively encapsulate the protein ubiquitin. Specifically, in our mesoporous hosts, we found that ubiquitin encapsulation is thermodynamically favored. A more hydrophilic encapsulation environment with favorable electrostatic interactions induces enthalpically favored ubiquitin-MOF interactions, and a higher pH condition reduces the intraparticle diffusion barrier, both leading to a higher protein loading. Our findings provide a fundamental understanding of host-guest interactions between proteins and solid matrices and offer new insights to guide the design of future protein host materials to achieve optimal protein loading. The MOF modification technique used in this work also demonstrates a facile method to develop materials easily customizable for encapsulating proteins with different surface properties.


Asunto(s)
Estructuras Metalorgánicas , Ubiquitina , Catálisis , Difusión , Electricidad Estática
5.
J Am Chem Soc ; 145(4): 2679-2689, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36652593

RESUMEN

Efficient separation of xenon (Xe) and krypton (Kr) mixtures through vacuum swing adsorption (VSA) is considered the most attractive route to reduce energy consumption, but discriminating between these two gases is difficult due to their similar properties. In this work, we report a cubic zirconium-based MOF (Zr-MOF) platform, denoted as NU-1107, capable of achieving selective separation of Xe/Kr by post-synthetically engineering framework polarizability in a programmable manner. Specifically, the tetratopic linkers in NU-1107 feature tetradentate cyclen cores that are capable of chelating a variety of transition-metal ions, affording a sequence of metal-docked cationic isostructural Zr-MOFs. NU-1107-Ag(I), which features the strongest framework polarizability among this series, achieves the best performance for a 20:80 v/v Xe/Kr mixture at 298 K and 1.0 bar with an ideal adsorbed solution theory (IAST) predicted selectivity of 13.4, placing it among the highest performing MOF materials reported to date. Notably, the Xe/Kr separation performance for NU-1107-Ag(I) is significantly better than that of the isoreticular, porphyrin-based MOF-525-Ag(II), highlighting how the cyclen core can generate relatively stronger framework polarizability through the formation of low-valent Ag(I) species and polarizable counteranions. Density functional theory (DFT) calculations corroborate these experimental results and suggest strong interactions between Xe and exposed Ag(I) sites in NU-1107-Ag(I). Finally, we validated this framework polarizability regulation approach by demonstrating the effectiveness of NU-1107-Ag(I) toward C3H6/C3H8 separation, indicating that this generalizable strategy can facilitate the bespoke synthesis of polarized porous materials for targeted separations.

6.
J Am Chem Soc ; 145(13): 7435-7445, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36919617

RESUMEN

Organophosphorus nerve agents are among the most toxic chemicals known and remain threats to humans due to their continued use despite international bans. Metal-organic frameworks (MOFs) have emerged as a class of heterogeneous catalysts with tunable structures that are capable of rapidly detoxifying these chemicals via hydrolysis at Lewis acidic active sites on the metal nodes. To date, the majority of studies in this field have focused on zirconium-based MOFs (Zr-MOFs) that contain hexanuclear Zr(IV) clusters, despite the large toolbox of Lewis acidic transition metal ions that are available to construct MOFs with similar catalytic properties. In particular, very few reports have disclosed the use of a Ti-based MOF (Ti-MOF) as a catalyst for this transformation even though Ti(IV) is a stronger Lewis acid than Zr(IV). In this work, we explored five Ti-MOFs (Ti-MFU-4l, NU-1012-NDC, MIL-125, Ti-MIL-101, MIL-177(LT), and MIL-177(HT)) that each contains Ti(IV) ions in unique coordination environments, including monometallic, bimetallic, octanuclear, triangular clusters, and extended chains, as catalysts to explore how both different node structures and different linkers (e.g., azolate and carboxylate) influence the binding and subsequent hydrolysis of an organophosphorus nerve agent simulant at Ti(IV)-based active sites in basic aqueous solutions. Experimental and theoretical studies confirm that Ti-MFU-4l, which contains monometallic Ti(IV)-OH species, exhibits the best catalytic performance among this series with a half-life of roughly 2 min. This places Ti-MFU-4l as one of the best nerve agent hydrolysis catalysts of any MOF reported to date.

7.
J Am Chem Soc ; 145(37): 20492-20502, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37672758

RESUMEN

Metal-organic frameworks (MOFs) that contain open metal sites have the potential for storing hydrogen (H2) at ambient temperatures. In particular, Cu(I)-based MOFs demonstrate very high isosteric heats of adsorption for hydrogen relative to other reported MOFs with open metal sites. However, most of these Cu(I)-based MOFs are not stable in ambient conditions since the Cu(I) species display sensitivity toward moisture and can rapidly oxidize in air. As a result, researchers have focused on the synthesis of new air-stable Cu(I)-based materials for H2 storage. Here, we have developed a de novo synthetic strategy to generate a robust Cu(I)-based MOF, denoted as NU-2100, using a mixture of Cu/Zn precursors in which zinc acts as a catalyst to transform an intermediate MOF into NU-2100 without getting incorporated into the final MOF structure. NU-2100 is air-stable and displays one of the initial highest isosteric heats of adsorption (32 kJ/mol) with good hydrogen storage capability under ambient conditions (10.4 g/L, 233 K/100 bar to 296 K/5 bar). We further elucidated the H2 storage performance of NU-2100 using a combination of spectroscopic analysis and computational modeling studies. Overall, this new synthetic route may enable the design of additional stable Cu(I)-MOFs for next-generation hydrogen storage adsorbents at ambient temperatures.

8.
Mol Med ; 29(1): 137, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37858064

RESUMEN

BACKGROUND: Intestinal ischemia-reperfusion injury occurs in acute intestinal obstruction, intussusception, acute mesenteric artery embolism, and other diseases and can lead to local intestinal necrosis, distant organ involvement, or systemic reactions, with high morbidity and mortality. Ferroptosis plays a crucial role in intestinal ischemia-reperfusion injury, and inhibition of ferroptosis may provide new approaches for treating the disease. SIRT3 protects cells from oxidative stress and may be involved in the process of ferroptosis. We hypothesized that resveratrol, an agonist of SIRT3, could ameliorate intestinal ischemia-reperfusion injury by compensating the GSH/GPX4 pathway. METHODS: Intestinal ischemia-reperfusion (I/R) and Caco-2 hypoxia-reoxygenation models were established. Transmission electron microscopy was used to assess mitochondrial function; the Chiu's score was used to evaluate the degree of intestinal mucosal injury based on HE staining; and Western blot was used to detect the SIRT3/FoxO3a pathway, tight junction proteins and ferroptosis-related protein expression. Sirt3-/- C57, shSIRT3-Caco-2 cells and siFoxO3a-Caco-2 cells were established. C11-BODIPY was used to detect lipid peroxide in cells; FD4 and IFABP were used to detect intestinal permeability; MitoSOX was used to detect ROS levels; and MitoTracker and immunofluorescence colocalization were used to detect SIRT3 levels. RESULTS: In the intestinal I/R model, I/R injury occurs mainly during the reperfusion period and leads to ferroptosis through the GSH/GPX4 pathway. Resveratrol could reduce ferroptosis and ameliorate I/R injury by activating SIRT3. In Sirt3-/- mice, more intestinal mucosal cells underwent ferroptosis, I/R injury was more severe, and resveratrol lost the ability to ameliorate I/R injury. In addition, hypoxia-reoxygenation increased RSL3-induced ferroptosis sensitivity in Caco-2 cells in vitro. In the presence of shSIRT3 or RSL3 alone, resveratrol could ameliorate Caco-2 ferroptosis, but not RSL3-induced shSIRT3-Caco-2 ferroptosis. Furthermore, resveratrol might activate the SIRT3/FoxO3a pathway, increase the expression of SOD2 and catalase, and inhibit ROS generation, thus reducing lipid peroxidation and ferroptosis. CONCLUSION: To date, this is the first study to show that resveratrol ameliorates intestinal ischemia-reperfusion injury by activating SIRT3 and reducing ferroptosis. Resveratrol can reduce intestinal ischemia-reperfusion injury by activating the SIRT3/FoxO3a pathway, increasing the expression of SOD2 and catalase, reducing ROS and LPO production, compensating for the GSH/GPX4 pathway and inhibiting ferroptosis. Resveratrol increases the expression of SOD2 and catalase, reduces the production of ROS and LPO, compensates for the GSH/GPX4 pathway and inhibits ferroptosis by activating the SIRT3/FoxO3a pathway.


Asunto(s)
Ferroptosis , Daño por Reperfusión , Sirtuina 3 , Humanos , Ratones , Animales , Resveratrol/farmacología , Especies Reactivas de Oxígeno/metabolismo , Catalasa , Sirtuina 3/genética , Sirtuina 3/metabolismo , Células CACO-2 , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Hipoxia
9.
Inorg Chem ; 62(14): 5479-5486, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-36961751

RESUMEN

Acid modulator has been the most widely employed ingredient for highly crystalline metal-organic framework (MOF) synthesis. However, the mechanistic understanding of thorium (Th)-based MOF crystallization remains a great challenge due to the intrinsic properties of fast olation and oxolation reactions of Th species in solution. Here, we constructed a series of Th-based MOFs by adding different modulators (formic acid, acetic acid, trifluoroacetic acid, and benzoic acid) to a synthetic solution along with tetratopic 1,3,5,7-adamantane tetracarboxylic acid (H4ATC), a three-dimensional (3D) ligand with a rigid aliphatic backbone. This work presents an in-depth study of the structure-modulator relationship between the H4ATC ligand and coordinating modulators in the Th-based MOF crystallization process. Crystal structures of these Th-based MOFs reveal that formic acid and acetic acid modulators can compete with the H4ATC ligand to form NU-52 and NU-54; these MOFs possess Th nodes linked by the corresponding modulator. Alternatively, usage of trifluoroacetic acid and benzoic acid modulators results in NU-53 and NU-55; these MOFs possess Th nodes coordinated by only the H4ATC ligand, regardless of the modulator amount. This work highlights that both the identity and amount of modulator play a crucial role in determining the resulting Th-based MOF structures when H4ATC is selected as the coordinated ligand.

10.
Appl Microbiol Biotechnol ; 107(22): 6985-6998, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37702791

RESUMEN

The presence of cypermethrin in the environment and food poses a significant threat to human health. Lactic acid bacteria have shown promise as effective absorbents for xenobiotics and well behaved in wide range of applications. This study aimed to characterize the biosorption behavior of cypermethrin by Lactiplantibacillus plantarum RS60, focusing on cellular components, functional groups, kinetics, and isotherms. Results indicated that RS60 exopolysaccharides played a crucial role removing cypermethrin, with the cell wall and protoplast contributing 71.50% and 30.29% to the overall removal, respectively. Notably, peptidoglycans exhibited a high affinity for cypermethrin binding. The presence of various cellular surface groups including -OH, -NH, -CH3, -CH2, -CH, -P = O, and -CO was responsible for the efficient removal of pollutants. Additionally, the biosorption process demonstrated a good fit with pseudo-second-order and Langmuir-Freundlich isotherm. The biosorption of cypermethrin by L. plantarum RS60 involved complex chemical and physical interactions, as well as intraparticle diffusion and film diffusion. RS60 also effectively reduced cypermethrin residues in a fecal fermentation model, highlighting its potential in mitigating cypermethrin exposure in humans and animals. These findings provided valuable insights into the mechanisms underlying cypermethrin biosorption by lactic acid bacteria and supported the advancement of their application in environmental and health-related contexts. KEY POINTS: • Cypermethrin adsorption by L. plantarum was clarified. • Cell wall and protoplast showed cypermethrin binding ability. • L. plantarum can reduce cypermethrin in a fecal fermentation model.

11.
Altern Ther Health Med ; 29(1): 191-197, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36112793

RESUMEN

Background: Gastric cancer is a common malignant tumor of the human digestive system. Currently, the treatment of gastric cancer is still dominated by radiotherapy, chemotherapy and surgery. Although the treatment is very effective, we are also trying to find new treatment methods. Traditional Chinese Medicine (TCM) may play an important role in the treatment of gastric cancer. Study Objective: The aim of this study is to explore the effects of naringin on the proliferation, migration, invasion and apoptosis of gastric cancer and its potential mechanisms. Methods: MGC803 and MKN45 viability were detected by MTT assay. The effects of naringin on cell cloning, migration and invasion were determined by colony formation assay, cell scratch test and transwell assay (ThermoFisher Scientific™, Waltham, Massachusetts USA), respectively. Cell cycle and apoptosis were assayed by flow cytometry. Associated proteins were measured using Western blot and immunohistochemistry (IHC). The experimental results were further verified in nude mice. Setting: This study was carried out in Department of Experimental Animal Center of Xi'an Jiaotong University and the Translation Medicine Center of the First Affiliated Hospital of Xi'an Jiaotong University in China. Results: Cells remained mainly in G0/G1 phase and apoptosis was increased. The nude mouse model showed that naringin treatment could inhibit the growth of tumors in nude mice. Cell scratch tests and transwell assay showed that the invasion and migration abilities of the gastric cancer cell line were significantly reduced after naringin treatment. Western blot showed that the expression of Vimentin, Zeb1 and P-AKT was downregulated and that E-cadherin was upregulated after naringin treatment. Conclusion: Naringin can block the cell-cycle, induce cancer cell apoptosis, and inhibit the epithelial mesenchymal transition (EMT) process by inhibiting the PI3K-AKT/Zeb1 pathway in gastric cancer cells. Therefore, naringin can inhibit the development of gastric cancer.


Asunto(s)
Neoplasias Gástricas , Animales , Ratones , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/farmacología , Ratones Desnudos , Transición Epitelial-Mesenquimal , Línea Celular Tumoral , Transducción de Señal , Apoptosis , Proliferación Celular
12.
Sensors (Basel) ; 23(24)2023 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-38139731

RESUMEN

Traditional low earth orbit (LEO) satellite networks are typically independent of terrestrial networks, which develop relatively slowly due to the on-board capacity limitation. By integrating emerging mobile edge computing (MEC) with LEO satellite networks to form the business-oriented "end-edge-cloud" multi-level computing architecture, some computing-sensitive tasks can be offloaded by ground terminals to satellites, thereby satisfying more tasks in the network. How to make computation offloading and resource allocation decisions in LEO satellite edge networks, nevertheless, indeed poses challenges in tracking network dynamics and handling sophisticated actions. For the discrete-continuous hybrid action space and time-varying networks, this work aims to use the parameterized deep Q-network (P-DQN) for the joint computation offloading and resource allocation. First, the characteristics of time-varying channels are modeled, and then both communication and computation models under three different offloading decisions are constructed. Second, the constraints on task offloading decisions, on remaining available computing resources, and on the power control of LEO satellites as well as the cloud server are formulated, followed by the maximization problem of satisfied task number over the long run. Third, using the parameterized action Markov decision process (PAMDP) and P-DQN, the joint computing offloading, resource allocation, and power control are made in real time, to accommodate dynamics in LEO satellite edge networks and dispose of the discrete-continuous hybrid action space. Simulation results show that the proposed P-DQN method could approach the optimal control, and outperforms other reinforcement learning (RL) methods for merely either discrete or continuous action space, in terms of the long-term rate of satisfied tasks.

13.
Angew Chem Int Ed Engl ; 62(29): e202305526, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37208812

RESUMEN

The interactions between uranium and non-innocent organic species are an essential component of fundamental uranium redox chemistry. However, they have seldom been explored in the context of multidimensional, porous materials. Uranium-based metal-organic frameworks (MOFs) offer a new angle to study these interactions, as these self-assembled species stabilize uranium species through immobilization by organic linkers within a crystalline framework, while potentially providing a method for adjusting metal oxidation state through coordination of non-innocent linkers. We report the synthesis of the MOF NU-1700, assembled from U4+ -paddlewheel nodes and catecholate-based linkers. We propose this highly unusual structure, which contains two U4+ ions in a paddlewheel built from four linkers-a first among uranium materials-as a result of extensive characterization via powder X-ray diffraction (PXRD), sorption, transmission electron microscopy (TEM), and thermogravimetric analysis (TGA), in addition to density functional theory (DFT) calculations.

14.
J Cell Physiol ; 237(3): 1923-1935, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35023144

RESUMEN

The sterile inflammation (SI) of the urinary tract is a common problem requiring serious consideration after prostatectomy. This study mainly focuses on the role of the reactive oxygen species-NLR family, pyrin domain-containing 3 (ROS-NLRP3) signaling pathway in SI after thulium laser resection of the prostate (TmLRP). Urinary cytokines were determined in patients who received TmLRP, and heat shock protein 70 (HSP70) was detected in the resected tissues. The involvement of ROS signaling in HSP70-induced inflammation was explored in THP-1 cells with or without N-acetyl- l-cysteine (NAC) pretreatment. The function of NLRP3 and Caspase-1 was determined by Western blot analysis, enzyme-linked immunosorbent assay (ELISA), and polymerase chain reaction. These phenomena and mechanisms were verified by the beagle models that received TmLRP. Clinical urine samples after TmLRP showed high expression of inflammatory factors and peaked 3-5 days after surgery. The high expression of HSP70 in the resected tissues was observed. After HSP70 stimulation, the expression of ROS, NLRP3, Caspase-1, and interleukin-18 (IL-18) increased significantly and could be reduced by ROS inhibitor NAC. The expression of IL-1ß and IL-18 could be inhibited by NLRP3 or Caspase-1 inhibitors. In beagle models that received TmLRP, HSP70, NLRP3, Caspase-1, IL-1ß, and IL-18 were highly expressed in the wound tissue or urine, and could also be reduced by NAC pretreatment. Activation of the ROS-NLRP3 signaling pathway induces SI in the wound after prostatectomy. Inhibition of this pathway may be effective for clinical prevention and treatment of SI and related complications after prostatectomy.


Asunto(s)
Inflamación , Proteína con Dominio Pirina 3 de la Familia NLR , Próstata , Especies Reactivas de Oxígeno , Acetilcisteína/farmacología , Animales , Caspasa 1/genética , Caspasa 1/metabolismo , Perros , Humanos , Inflamasomas/metabolismo , Interleucina-18 , Interleucina-1beta/metabolismo , Rayos Láser , Masculino , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Próstata/metabolismo , Próstata/cirugía , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Tulio
15.
J Am Chem Soc ; 144(15): 6674-6680, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35385280

RESUMEN

Metal-organic frameworks (MOFs) constructed from Zr6 nodes and tetratopic carboxylate linkers display high structural diversity and complexity in which various crystal topologies can result from identical building units. To determine correlations between MOF topologies and experimental parameters, such as solvent choice or modulator identity and concentration, we demonstrate the rapid generation of phase diagrams for Zr6-MOFs with 1,4-dibromo-2,3,5,6-tetrakis(4-carboxyphenyl)benzene linkers under a variety of conditions. We have developed a full set of methods for high-throughput transmission electron microscopy (TEM), including automated sample preparation and data acquisition, to accelerate MOF characterization. The use of acetic acid as a modulator yields amorphous, NU-906, NU-600, and mixed-phase structures depending on the ratio of N,N-dimethylformamide to N,N-diethylformamide solvent and the quantity of the modulator. Notably, the use of formic acid as a modulator enables direct control of crystal growth along the c direction through variation of the modulator quantity, thus realizing aspect ratio control of NU-1008 crystals with different catalytic hydrolysis performance toward a nerve agent simulant.


Asunto(s)
Estructuras Metalorgánicas , Agentes Nerviosos , Catálisis , Estructuras Metalorgánicas/química , Microscopía Electrónica de Transmisión , Agentes Nerviosos/química , Solventes
16.
J Am Chem Soc ; 144(8): 3554-3563, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35179900

RESUMEN

Solid supports are crucial in heterogeneous catalysis due to their profound effects on catalytic activity and selectivity. However, elucidating the specific effects arising from such supports remains challenging. We selected a series of metal-organic frameworks (MOFs) with 8-connected Zr6 nodes as supports to deposit molybdenum(VI) onto to study the effects of pore environment and topology on the resulting Mo-supported catalysts. As characterized by X-ray absorption spectroscopy (XAS) and single-crystal X-ray diffraction (SCXRD), we modulated the chemical environments of the deposited Mo species. For Mo-NU-1000, the Mo species monodentately bound to the Zr6 nodes were anchored in the microporous c-pore, but for Mo-NU-1008 they were bound in the mesopore of Mo-NU-1008. Both monodentate and bidentate modes were found in the mesopore of Mo-NU-1200. Cyclohexene epoxidation with H2O2 was probed to evaluate the support effect on catalytic activity and to unveil the resulting structure-activity relationships. SCXRD and XAS studies demonstrated the atomically precise structural differences of the Mo binding motifs over the course of cyclohexene epoxidation. No apparent structural change was observed for Mo-NU-1000, whereas the monodentate mode of Mo species in Mo-NU-1008 and the monodentate and bidentate Mo species in Mo-NU-1200 evolved to a new bidentate mode bound between two adjacent oxygen atoms from the Zr6 node. This work demonstrates the great advantage of using MOF supports for constructing heterogeneous catalysts with modulated chemical environments of an active species and elucidating structure-activity relationships in the resulting reactions.


Asunto(s)
Estructuras Metalorgánicas , Molibdeno , Catálisis , Ciclohexenos , Peróxido de Hidrógeno , Estructuras Metalorgánicas/química , Molibdeno/química , Relación Estructura-Actividad
17.
J Am Chem Soc ; 144(27): 12212-12218, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35786875

RESUMEN

Industrial-scale thermal separation processes have contributed greatly to the rise in carbon dioxide emissions. Porous materials, such as metal-organic frameworks (MOFs), can potentially reduce these emissions by achieving nonthermal chemical separations through the physical adsorption of targeted species with high selectivity. Here, we report the synthesis of the channel-based MOFs NU-2000 and NU-2001, which are constructed from three-dimensional (3D) linkers, to separate the industrially relevant xylene isomers under ambient conditions by leveraging sub-Ångstrom differences in the sizes of each isomer. While the rotation of two-dimensional (2D) linkers in MOFs often affords changes in pore apertures and pore sizes that are substantial enough to hinder separation efficiency, increasing the linker dimensionality from 2D to three-dimensional (3D) enables precise control of the MOF pore size and aperture regardless of the linker orientation, establishing this design principle as a broadly applicable strategy.


Asunto(s)
Estructuras Metalorgánicas , Adsorción , Isomerismo , Porosidad , Xilenos
18.
J Am Chem Soc ; 144(27): 12192-12201, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35786901

RESUMEN

The world is currently suffering socially, economically, and politically from the recent pandemic outbreak due to the coronavirus disease 2019 (COVID-19), and those in hospitals, schools, and elderly nursing homes face enhanced threats. Healthcare textiles, such as masks and medical staff gowns, are susceptible to contamination of various pathogenic microorganisms, including bacteria and viruses. Metal-organic frameworks (MOFs) can potentially address these challenges due to their tunable reactivity and ability to be incorporated as porous coatings on textile materials. Here, we report how incorporating titanium into the zirconium-pyrene-based MOF NU-1000, denoted as NU-1012, generates a highly reactive biocidal photocatalyst. This MOF features a rare ligand migration phenomenon, and both the Ti/Zr center and the pyrene linker act synergistically as dual active centers and widen the absorption band for this material, which results in enhanced reactive oxygen species generation upon visible light irradiation. Additionally, we found that the ligand migration process is generally applicable to other csq topology Zr-MOFs. Importantly, NU-1012 can be easily incorporated onto cotton textile cloths as a coating, and the resulting composite material demonstrates fast and potent biocidal activity against Gram-negative bacteria (Escherichia coli), Gram-positive bacteria (Staphylococcus epidermidis), and T7 bacteriophage virus with up to a 7-log(99.99999%) reduction within 1 h under simulated daylight.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , Estructuras Metalorgánicas , Anciano , COVID-19/prevención & control , Escherichia coli , Humanos , Ligandos , Estructuras Metalorgánicas/farmacología , Pirenos , Titanio/farmacología
19.
J Am Chem Soc ; 144(37): 16883-16897, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-36089745

RESUMEN

Understanding heterogeneous catalysts is a challenging pursuit due to surface site nonuniformity and aperiodicity in traditionally used materials. One example is sulfated metal oxides, which function as highly active catalysts and as supports for organometallic complexes. These applications are due to traits such as acidity, ability to act as a weakly coordinating ligand, and aptitude for promoting transformations via radical cation intermediates. Research is ongoing about the structural features of sulfated metal oxides that imbue the aforementioned properties, such as sulfate geometry and coordination. To better understand these materials, metal-organic frameworks (MOFs) have been targeted as structurally defined analogues. Composed of inorganic nodes and organic linkers, MOFs possess features such as high porosity and crystallinity, which make them attractive for mechanistic studies of heterogeneous catalysts. In this work, Zr6-based MOF NU-1000 is sulfated and characterized using techniques such as single crystal X-ray diffraction in addition to diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The dynamic nature of the sulfate binding motif is found to transition from monodentate, to bidentate, to tridentate depending on the degree of hydration, as supported by density functional theory (DFT) calculations. Heightened Brønsted acidity compared to the parent MOF was observed upon sulfation and probed through trimethylphosphine oxide physisorption, ammonia sorption, in situ ammonia DRIFTS, and DFT studies. With the support structure benchmarked, an organoiridium complex was chemisorbed onto the sulfated MOF node, and the efficacy of this supported catalyst was demonstrated for stoichiometric and catalytic activation of benzene-d6 and toluene with structure-activity relationships derived.


Asunto(s)
Estructuras Metalorgánicas , Amoníaco , Benceno , Catálisis , Ligandos , Estructuras Metalorgánicas/química , Óxidos/química , Sulfatos , Óxidos de Azufre , Tolueno , Circonio/química
20.
J Am Chem Soc ; 144(27): 12092-12101, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35786950

RESUMEN

Ceria-based materials have been highly desired in photocatalytic reactions due to their redox properties and strong oxygen storage and transfer ability. Herein, we report the structures of one CeCe70 oxysulfate cluster and four MCe70 clusters (M = Cu, Ni, Co, and Fe) with the same Ce70 core. As noted, single-crystal X-ray diffraction confirmed the structures of CeCe70 and the MCe70 series, while Raman spectroscopy indicated an increase in oxygen defects upon the introduction of Cu and Fe ions. The clusters catalyzed the oxidation of 4-methoxybenzyl alcohol under ultraviolet light. CuCe70 and FeCe70 exhibited enhanced reactivity compared to CeCe70 and improved aldehyde selectivity compared to control experiments. In comparison with their homogeneous congeners, the CeCe70/MCe70 clusters altered the location of radical generation from the bulk solution to the clusters' surfaces. Mechanistic studies highlight the role of oxygen defects and specific transition metal introduction for efficient photocatalysis. The mechanistic pathway in this study provides insight into how to select or design a highly selective catalyst for photocatalysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA