RESUMEN
Emerging contaminants (EC) distributed on surfaces in the environment can be oxidized by gas phase species (top-down) or by oxidants generated by the underlying substrate (bottom-up). One class of EC is the neonicotinoid (NN) pesticides that are widely distributed in air, water, and on plant and soil surfaces as well as on airborne dust and building materials. This study investigates the OH oxidation of the systemic NN pesticide acetamiprid (ACM) at room temperature. ACM on particles and as thin films on solid substrates were oxidized by OH radicals either from the gas phase or from an underlying TiO2 or NaNO2 substrate, and for comparison, in the aqueous phase. The site of OH attack is both the secondary >CH2 group as well as the primary -CH3 group attached to the tertiary amine nitrogen, with the latter dominating. In the case of top-down oxidation of ACM by gas phase OH radicals, addition to the -CN group also occurs. Major products are carbonyls and alcohols, but in the presence of sufficient water, their hydrolyzed products dominate. Kinetics measurements show ACM is more reactive toward gas phase OH radicals than other NN nitroguanidines, with an atmospheric lifetime of a few days. Bottom-up oxidation of ACM on TiO2 exposed to sunlight outdoors (temperatures were above 30 °C) was also shown to occur and is likely to be competitive with top-down oxidation. These findings highlight the different potential oxidation processes for EC and provide key data for assessing their environmental fates and toxicologies.
RESUMEN
Hydroxyl radical (OH) is a key oxidant that triggers atmospheric oxidation chemistry in both gas and aqueous phases. The current understanding of its aqueous sources is mainly based on known bulk (photo)chemical processes, uptake from gaseous OH, or related to interfacial O3 and NO3 radical-driven chemistry. Here, we present experimental evidence that OH radicals are spontaneously produced at the air-water interface of aqueous droplets in the dark and the absence of known precursors, possibly due to the strong electric field that forms at such interfaces. The measured OH production rates in atmospherically relevant droplets are comparable to or significantly higher than those from known aqueous bulk sources, especially in the dark. As aqueous droplets are ubiquitous in the troposphere, this interfacial source of OH radicals should significantly impact atmospheric multiphase oxidation chemistry, with substantial implications on air quality, climate, and health.
RESUMEN
BACKGROUND: Several studies have demonstrated a strong correlation between impaired Succinate dehydrogenase (SDH) function and the advancement of tumors. As a subunit of SDH, succinate dehydrogenase complex subunit C (SDHC) has been revealed to play tumor suppressive roles in several cancers, while its specific role in colorectal cancer (CRC) still needs further investigation. METHODS: Online database were utilized to investigate the expression of SDHC in colorectal cancer and to assess its correlation with patient prognosis. Cell metastasis was assessed using transwell and wound healing assays, while tumor metastasis was studied in a nude mice model in vivo. Drug screening and RNA sequencing were carried out to reveal the tumor suppressor mechanism of SDHC. Triglycerides, neutral lipids and fatty acid oxidation were measured using the Triglyceride Assay Kit, BODIPY 493/503 and Colorimetric Fatty Acid Oxidation Rate Assay Kit, respectively. The expression levels of enzymes involved in fatty acid metabolism and the PI3K/AKT signaling pathway were determined by quantitative real-time PCR and western blot. RESULTS: Downregulation of SDHC was found to be closely associated with a poor prognosis in CRC. SDHC knockdown promoted CRC metastasis both in vitro and in vivo. Through drug screening and Gene set enrichment analysis, it was discovered that SDHC downregulation was positively associated with the fatty acid metabolism pathways significantly. The effects of SDHC silencing on metastasis were reversed when fatty acid synthesis was blocked. Subsequent experiments revealed that SDHC silencing activated the PI3K/AKT signaling axis, leading to lipid accumulation by upregulating the expression of aldehyde dehydrogenase 3 family member A2 (ALDH3A2) and reduction of fatty acid oxidation rate by suppressing the expression of acyl-coenzyme A oxidase 1 (ACOX1) and carnitine palmitoyltransferase 1A (CPT1A). CONCLUSIONS: SDHC deficiency could potentially enhance CRC metastasis by modulating the PI3K/AKT pathways and reprogramming lipid metabolism.
Asunto(s)
Neoplasias Colorrectales , Ácidos Grasos , Ratones Desnudos , Metástasis de la Neoplasia , Proteínas Proto-Oncogénicas c-akt , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/genética , Humanos , Ácidos Grasos/metabolismo , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Fosfatidilinositol 3-Quinasas/metabolismo , Pronóstico , Transducción de Señal , Masculino , Femenino , Regulación hacia Abajo/genética , Técnicas de Silenciamiento del Gen , Ratones , Metabolismo de los Lípidos/genética , Ratones Endogámicos BALB CRESUMEN
In subarctic regions, rising temperature and permafrost thaw lead to the formation of thermokarst ponds, where organics from eroding permafrost accumulate. Despite its environmental significance, limited knowledge exists regarding the photosensitivity of permafrost-derived carbon in these ponds. In this study, laboratory experiments were conducted to explore the photochemical transformations of organic matter in surface water samples from thermokarst ponds from different environments in northern Quebec, Canada. One pond near Kuujjuarapik is characterized by the presence of a collapsing palsa and is therefore organically rich, while the other pond near Umiujaq is adjacent to a collapsing lithalsa and thus contains fewer organic matters. Photobleaching occurred in the Umiujaq sample upon irradiation, whereas the Kuujjuarapik sample exhibited an increase in light absorbance at wavelength related to aromatic functionalities, indicating different photochemical aging processes. Ultrahigh-resolution mass spectrometry analysis reveals that the Kuujjuarapik sample preferentially photoproduced highly unsaturated CHO compounds with great aromaticity, while the irradiated Umiujaq sample produced a higher proportion of CHON aromatics with reduced nitrogen functionalities. Overall, this study illustrates that the photochemical reactivity of thermokarst pond water varies with the source of organic matter. The observed differences in reactivity contribute to an improved understanding of the photochemical emission of volatile organic compounds discovered earlier. Further insights into the photoinduced evolutions in thermokarst ponds may require the classification of permafrost-derived carbon therein.
Asunto(s)
Carbono , Hielos Perennes , Estanques , Hielos Perennes/química , Quebec , Procesos Fotoquímicos , Regiones ÁrticasRESUMEN
Reduced nitrogen-containing organic compounds (NOCs) in aerosols play a crucial role in altering their light-absorption properties, thereby impacting regional haze and climate. Due to the low concentration levels of individual NOCs in the air, the utilization of accurate detection and quantification technologies becomes essential. For the first time, this study investigated the diurnal variation, chemical characteristics, and potential formation pathways of NOCs in urban ambient aerosols in Shanghai using a versatile aerosol concentration enrichment system (VACES) coupled with HPLC-Q-TOF-MS. The results showed that NOCs accounted over 60% of identified components of urban organic aerosols, with O/N < 3 compounds being the major contributors (>70%). The predominance of the positive ionization mode suggested the prevalence of reduced NOCs. Higher relative intensities and number fractions of NOCs were observed during nighttime, while CHO compounds showed an opposite trend. Notably, a positive correlation between the intensity of NOCs and ammonium during the nighttime was observed, suggesting that the reaction of ammonium to form imines may be a potential pathway for the formation of reduced NOCs during the nighttime. Seven prevalent types of reduced NOCs in autumn and winter were identified and characterized by an enrichment of CH2 long-chain homologues. These NOCs included alkyl, cyclic, and aromatic amides in CHON compounds, as well as heterocyclic or cyclic amines and aniline homologue series in CHN compounds, which were associated with anthropogenic activities and may be capable of forming light-absorbing chromophores or posing harm to human health. The findings highlight the significant contributions of both primary emissions and ammonium chemistry, particularly amination processes, to the pollution of reduced NOCs in Shanghai's atmosphere.
Asunto(s)
Aerosoles , Contaminantes Atmosféricos , Atmósfera , China , Atmósfera/química , Contaminantes Atmosféricos/análisis , Compuestos Orgánicos/análisis , Monitoreo del Ambiente , Nitrógeno/análisisRESUMEN
Highly oxygenated organic molecules (HOMs) are a major source of new particles that affect the Earth's climate. HOM production from the oxidation of volatile organic compounds (VOCs) occurs during both the day and night and can lead to new particle formation (NPF). However, NPF involving organic vapors has been reported much more often during the daytime than during nighttime. Here, we show that the nitrate radicals (NO3), which arise predominantly at night, inhibit NPF during the oxidation of monoterpenes based on three lines of observational evidence: NPF experiments in the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN (European Organization for Nuclear Research), radical chemistry experiments using an oxidation flow reactor, and field observations in a wetland that occasionally exhibits nocturnal NPF. Nitrooxy-peroxy radicals formed from NO3 chemistry suppress the production of ultralow-volatility organic compounds (ULVOCs) responsible for biogenic NPF, which are covalently bound peroxy radical (RO2) dimer association products. The ULVOC yield of α-pinene in the presence of NO3 is one-fifth of that resulting from ozone chemistry alone. Even trace amounts of NO3 radicals, at sub-parts per trillion level, suppress the NPF rate by a factor of 4. Ambient observations further confirm that when NO3 chemistry is involved, monoterpene NPF is completely turned off. Our results explain the frequent absence of nocturnal biogenic NPF in monoterpene (α-pinene)-rich environments.
Asunto(s)
Contaminantes Atmosféricos , Monoterpenos Bicíclicos , Ozono , Compuestos Orgánicos Volátiles , Monoterpenos/química , Nitratos/química , Aerosoles/análisis , Compuestos Orgánicos Volátiles/químicaRESUMEN
A recently proposed method is upgraded to convert two amplitude phase modulation systems (APMSs) to pure phase elements (PPEs), for generating the stable propagation Bessel beam and the axial multifoci beam, respectively. Phase functions of the PPEs are presented analytically. Numerical simulations by the complete Rayleigh-Sommerfeld method demonstrate that the converted PPE has implemented the same optical functionalities as the corresponding APMS, in either the longitudinal or the transverse direction. Compared with the traditional APMS, the converted PPE possesses many advantages such as fabrication process simplification, system complexity reduction, production cost conservation, alignment error avoidance, and experimental precision enhancement. These inherent advantages position the PPE as an ideal choice and driving force behind further advancements in optical system technology.
RESUMEN
Purpose: Matrix metalloproteinase-11 (MMP11), which belongs to the stromelysin subgroup, has been reported to play a role in the progression of colorectal cancer (CRC). However, the significance of MMP11 in the tumor microenvironment, immune/stromal cells, and its mechanism in CRC remain unclear. Methods: The impact of MMP11 knockdown using specific short hairpin RNAs (shRNAs) on the metastasis and invasion of colorectal cancer RKO and SW480 cells was investigated using western blot, quantitative real-time polymerase chain reaction (qRT-PCR), transwell assays, and immunohistochemistry. Results: MMP11 mRNA expression was significantly higher in CRC cells than in normal cells, and its expression was stimulated in CCD-18Co fibroblasts. Additionally, MMP11 expression was found to be higher in individuals aged ≤ 65 years, the T4/T3 group, and Stage III/IV patients. Overall survival (OS) and disease-free survival rates were significantly different between the high and low MMP11 groups. Furthermore, the receiver operating characteristic (ROC) curves for MMP11 at 1-, 3-, and 5-years were 0.450, 0.552, and 0.560, respectively. Moreover, MMP11 promoted the migration and invasion of CRC cells by elevating the expression of Slug protein. Most importantly, MMP11 was positively associated with M0-macrophages and negatively associated with M1-macrophages, NK cells activated, NK cells resting, T cells CD4 memory activated, and T cells follicular helper, indicating the remarkable interactions of MMP11 with tumor immunology. Conclusions: MMP11 plays an important role in colorectal cancer development, and its mechanism in CRC needs to be further explored in the future.
Asunto(s)
Movimiento Celular , Neoplasias Colorrectales , Regulación Neoplásica de la Expresión Génica , Metaloproteinasa 11 de la Matriz , Invasividad Neoplásica , Factores de Transcripción de la Familia Snail , Humanos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/mortalidad , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción de la Familia Snail/genética , Metaloproteinasa 11 de la Matriz/genética , Metaloproteinasa 11 de la Matriz/metabolismo , Invasividad Neoplásica/genética , Movimiento Celular/genética , Masculino , Línea Celular Tumoral , Femenino , Persona de Mediana Edad , Anciano , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Supervivencia sin EnfermedadRESUMEN
BACKGROUND: Inhalation is a major pathway for phthalates (PAEs), an endocrine disruptor, to enter the human body. The actual internal exposure amount that participates in metabolism cannot be estimated by calculating total inhalation intake. OBJECTIVE: To estimate the accumulation in each region of the respiratory tract after long-term exposure to PAEs in different populations. METHODS: A mass transfer model was developed to simulate the long-term accumulation of PAEs in respiratory tract through inhalation. The model considered (1) mass transfer of PAEs in three phases across seven regions, (2) the effect of temperature differences on the mass transfer process. Based on this model, we simulated adult exposure to PAEs in a laboratory, identified key model parameters, and further simulated various scenarios for children, adults, and elders. RESULTS: PAEs are not completely cleared from the respiratory tract after 16â¯hours, following 8â¯hours of daily exposure. Under regular laboratory environment, accumulation after 30 days is 3.8 times higher than that after the first day. The distribution of PAEs between the gas and mucus phases has a greater impact on the results than between the gas and particle phases. Children are at the highest risk to Diethyl phthalate (DEP) exposure compared with adults and elders. Nearly 80â¯% of DEP is exhaled, with 14â¯% accumulating in the alveolar region after an hour. CONCLUSION: This model links indoor air PAEs to human internal exposure, showing that most PAEs are exhaled, while the remainder accumulates in the respiratory tract and may participate in human metabolism.
RESUMEN
BACKGROUND & AIMS: Most patients with gastric cancer (GCa) are diagnosed at an advanced stage. We aimed to investigate novel fecal signatures for clinical application in early diagnosis of GCa. METHODS: This was an observational study that included 1043 patients from 10 hospitals in China. In the discovery cohort, 16S ribosomal RNA gene analysis was performed in paired samples (tissues and feces) from patients with GCa and chronic gastritis (ChG) to determine differential abundant microbes. Their relative abundances were detected using quantitative real-time polymerase chain reaction to test them as bacterial candidates in the training cohort. Their diagnostic efficacy was validated in the validation cohort. RESULTS: Significant enrichments of Streptococcus anginosus (Sa) and Streptococcus constellatus (Sc) in GCa tumor tissues (P < .05) and feces (P < .0001) were observed in patients with intraepithelial neoplasia, early and advanced GCa. Either the signature parallel test SaâªSc or single signature Sa/Sc demonstrated superior sensitivity (Sa: 75.6% vs 72.1%, P < .05; Sc: 84.4% vs 64.0%, P < .001; and SaâªSc: 91.1% vs 81.4%, P < .01) in detecting early GCa compared with advanced GCa (specificity: Sa: 84.0% vs 83.9%, Sc: 70.4% vs 82.3%, and SaâªSc: 64.0% vs 73.4%). Fecal signature SaâªSc outperformed SaâªCEA/ScâªCEA in the discrimination of advanced GCa (sensitivity: 81.4% vs 74.2% and 81.4% vs 72.3%, P < .01; specificity: 73.4% vs 81.0 % and 73.4% vs 81.0%). The performance of SaâªSc in the diagnosis of both early and advanced GCa was verified in the validation cohort. CONCLUSION: Fecal Sa and Sc are noninvasive, accurate, and sensitive signatures for early warning in GCa. (ClinicalTrials.gov, Number: NCT04638959).
Asunto(s)
Neoplasias Gástricas , Streptococcus constellatus , Detección Precoz del Cáncer , Heces , Humanos , Neoplasias Gástricas/diagnóstico , Streptococcus anginosus/genética , Streptococcus constellatus/genéticaRESUMEN
An optically rewritable and electrically erasable terahertz (THz) wavefront modulator based on indium oxide (In2O3) and DMSO-doped PEDOT:PSS is proposed. The modulator has a three-layer structure of In2O3/PEDOT:PSS/quartz, which can weaken the THz transmission under the action of light excitation. Optically written THz Fresnel plates, which can focus the input Gaussian beam into a point, were realized. After optical excitation, the function of the device reduces slowly if it is stored in the room environment. However, the function can be stored for a long time if it is encapsulated in the nitrogen environment. If a bias voltage of 22â V is applied on the device, the function of the device can be erased in 10 seconds. The new function can be written into the device after wiping. Experiments on THz rewritable holographic devices are carried out to show the validity of this approach. This method can provide new devices for THz wavefront modulation and develop tunable optical imaging elements.
RESUMEN
We propose what we believe to be a new kind of diffractive phase element, i.e., vortex phase plate (VPP) with phase singularities along the azimuth direction. Phase function of the proposed VPP is given analytically. Axial intensity oscillations of propagating Bessel beams are ideally suppressed by using the proposed VPP. Compared with the traditional amplitude mask, the proposed VPP takes such advantages as a simpler fabrication procedure and a lower cost.
RESUMEN
The binary amplitude filter (BAF) is employed to generate stable propagation Bessel beams and axial multifoci beams, rather than the traditional continuous amplitude filter (CAF). We introduce a parameter along the azimuth direction, i.e., angular order of the BAF, to weaken transverse intensity asymmetry. Numerical simulations reveal that the BAF implements the same optical functionalities as the CAF. The BAF holds advantages over the traditional CAF: a simpler fabrication process, a lower cost, and a higher experimental accuracy. It is believed that the BAF should have many practical applications in future optical systems.
RESUMEN
The rapid identification and antibiotic susceptibility testing (AST) of bacteria would help us to accurately identify the infectious sources as well as guide the use of antibiotics, which are crucial for improving the survival rate and antimicrobial resistance. Herein, a colorimetric sensor array for bacteria fingerprinting was constructed with d-amino acid (d-AA)-modified gold nanoparticles (AuNPs) as probes (Au/d-AA). Bacteria can metabolize the d-AA, triggering the aggregation of AuNPs. Making use of different metabolic capabilities of bacteria toward different d-AA, eight kinds of bacteria including antibiotic-resistant bacteria and strains of the same bacterial species are successfully differentiated via learning the response patterns. Meanwhile, the sensor array also performs well in quantitative analysis of single bacterium and differentiation of bacteria mixtures. More interestingly, a rapid colorimetric AST approach has been developed based on the Au/d-AA nanoprobes by monitoring the d-AA metabolic activity of bacteria toward various antibiotic treatments. In this regard, the outlined work here would promote clinical practicability and facilitate antibiotic stewardship.
Asunto(s)
Colorimetría , Nanopartículas del Metal , Aminoácidos , Antibacterianos/farmacología , Bacterias , Oro/química , Nanopartículas del Metal/química , Pruebas de Sensibilidad MicrobianaRESUMEN
The potential of whispering-gallery-modes (WGMs) microcavities in sensing applications has been being released continuously with improvements from various aspects. Introducing smart materials and structures into the WGMs microcavities based sensing systems are an effective approach to promote their applications in real world. Here, we propose a smart grating as the coupling setup to a WGMs microcavity of polystyrene microsphere to enhance the responses to chemical and thermal stimulations. The changes of the coupling distance due to the deformation of the smart grating induce additional increments to the intrinsic wavelength shifts of the WGMs of the microcavity, which is proved to be the mechanism of the response enhancements. We use two-photon lithography based "lab on fiber" technology to realize the device and the demonstration of the response enhancements. Our results may be of great significance to the design of the WGMs microcavity based chemical and temperature sensors.
RESUMEN
Secondary organic aerosol, formed through atmospheric oxidation processes, plays an important role in affecting climate and human health. In this study, we conducted a comprehensive campaign in the megacity of Shanghai during the 2019 International Import Expo (EXPO), with the first deployment of a chemical ionizationâOrbitrap mass spectrometer for ambient measurements. With the ultrahigh mass resolving power of the Orbitrap mass analyzer (up to 140,000 Th/Th) and capability in dealing with massive spectral data sets by positive matrix factorization, we were able to identify the major gas-phase oxidation processes leading to the formation of oxygenated organic molecules (OOM) in Shanghai. Nine main factors from three independent sub-range analysis were identified. More than 90% of OOM are of anthropogenic origin and >60% are nitrogen-containing molecules, mainly dominated by the RO2 + NO and/or NO3 chemistry. The emission control during the EXPO showed that even though the restriction was effectual in significantly lowering the primary pollutants (20-70% decrease), the secondary oxidation products responded less effectively (14% decrease), or even increased (50 to >200%) due to the enhancement of ozone and the lowered condensation sink, indicating the importance of a stricter multi-pollutant coordinated strategy in primary and secondary pollution mitigation.
Asunto(s)
Contaminantes Atmosféricos , Ozono , Aerosoles/química , Contaminantes Atmosféricos/análisis , China , Humanos , Ozono/análisis , Material Particulado/análisisRESUMEN
Emerging contaminants are of concern due to their rapidly increasing numbers and potential ecological and human health effects. In this study, the synergistic effects of the presence of multifunctional nitro, amino and carbon-carbon double bond (CâC) groups on the gas phase ozonolysis in O2 or at the air/solid interface were investigated using five simple model compounds. The gas phase ozonolysis rate constants at 296 K were (3.5 ± 0.9) × 10-20 cm3 molecule-1 s-1 for 2-methyl-1-nitroprop-1-ene and (6.8 ± 0.8) × 10-19 cm3 molecule-1 s-1 for 4-methyl-4-nitro-1-pentene, with lifetimes of 134 and 7 days in the presence of 100 ppb ozone in the atmosphere, respectively. The rate constants for gas phase E-N,N-dimethyl-1-propenylamine and N,N-dimethylallylamine reactions with ozone were too fast (>10-18 cm3 molecule-1 s-1) to be measured, implying lifetimes of less than 5 days. A multiphase kinetics model (KM-GAP) was used to probe the gas-solid kinetics of 1-dimethylamino-2-nitroethylene, yielding a rate constant for the surface reaction of 1.8 × 10-9 cm2 molecule-1 s-1 and in the bulk 1× 10-16 cm3 molecule-1 s-1. These results show that a nitro group attached to the CâC lowers the gas phase rate constant by 2-3 orders of magnitude compared to the simple alkenes, while amino groups have the opposite effect. The presence of both groups provides counterbalancing effects. Products with deleterious health effects including dimethylformamide and formaldehyde were identified by FTIR. The identified products differentiate whether the initial site of ozone attack is CâC and/or the amino group. This study provides a basis for predicting the environmental fates of emerging contaminants and shows that both the toxicity of both the parent compounds and the products should be taken into account in assessing their environmental impacts.
Asunto(s)
Alquenos , Ozono , Alquenos/química , Carbono , Humanos , Cinética , Nitrógeno , Ozono/químicaRESUMEN
Phthalate and alternative plasticizers are semivolatile organic compounds (SVOCs) and among the most abundant indoor pollutants. Although ingestion of dust is one of the major exposure pathways to them, migration knowledge from source products to indoor dust is still limited. Systematic chamber measurements were conducted to investigate the direct transfer of these SVOCs between source products and dust in contact with the source. Substantial direct source-to-dust transfer of SVOCs was observed for all tests. The concentration of bis(2-ethylhexyl)phthalate in dust was 12 times higher than the pre-experimental level after only two days of source-dust contact. A mechanistic model was developed to predict the direct transfer process, and a reasonable agreement between model predictions and measurements was achieved. The octanol/air partition coefficient (Koa) of SVOCs, the emission parameter of the source product (y0), and the characteristics of the dust layer (i.e., porosity and thickness) control the transfer, affecting the SVOC concentration in dust, the kinetics of direct transfer, or both. Dust mass loading has a significant influence on the transfer, while relative humidity only has a limited effect. The findings suggest that minimizing the use of SVOC-containing products and house vacuuming are effective intervention strategies to reduce young children's exposure to SVOCs.
Asunto(s)
Contaminación del Aire Interior , Ácidos Ftálicos , Compuestos Orgánicos Volátiles , Contaminación del Aire Interior/análisis , Niño , Preescolar , Polvo , Humanos , Laboratorios , Ácidos Ftálicos/análisis , Plastificantes , Compuestos Orgánicos Volátiles/análisisRESUMEN
Mixing of anthropogenic gaseous pollutants and biogenic volatile organic compounds impacts the formation of secondary aerosols, but still in an unclear manner. The present study explores secondary aerosol formation via the interactions between ß-pinene, O3, NO2, SO2, and NH3 under dark conditions. Results showed that aerosol yield can be largely enhanced by more than 330% by NO2 or SO2 but slightly enhanced by NH3 by 39% when the ratio of inorganic gases to ß-pinene ranged from 0 to 1.3. Joint effects of NO2 and SO2 and SO2 and NH3 existed as aerosol yields increased with NO2 but decreased with NH3 when SO2 was kept constant. Infrared spectra showed nitrogen-containing aerosol components derived from NO2 and NH3 and sulfur-containing species derived from SO2. Several particulate organic nitrates (MW 215, 229, 231, 245), organosulfates (MW 250, 264, 280, 282, 284), and nitrooxy organosulfates (MW 295, 311, 325, 327, and 343) were identified using high-resolution orbitrap mass spectrometry in NO2 and SO2 experiments, and their formation mechanism is discussed. Most of these nitrogen- and sulfur-containing species have been reported in ambient particles. Our results suggest that the complex interactions among ß-pinene, O3, NO2, SO2, and NH3 during the night might serve as a potential pathway for the formation of particulate nitrogen- and sulfur-containing organics, especially in polluted regions with both anthropogenic and biogenic influences.
Asunto(s)
Contaminantes Atmosféricos , Aerosoles , Contaminantes Atmosféricos/análisis , Monoterpenos Bicíclicos , Nitrógeno , AzufreRESUMEN
Particulate nitrite is a critical source of hydroxyl radicals; however, it lacks high-resolution methods due to its low abundance and stability to explore its formation mechanism. In this study, a modified versatile aerosol concentration enrichment system (VACES) coupled with ion chromatography (IC) was used to measure particulate NO2- hourly online and achieve a lowered detection limit of 10-3 µg m-3. VACES-IC was used to observe a high- and low-concentration events of PM1.0-NO2- in Shanghai, corresponding to the ambient-level concentrations of 0.34 and 0.05 µg m-3, respectively. The morning peak concentrations of NO2- even exceeded 3σ (standard deviation) in the high-concentration event due to the reduction of NO2 by aerosol SO32- based on kinetics and regression analysis. This implies that controlling SO2 emissions would be an effective strategy to decrease morning NO2- concentrations, correspondingly reducing the kinetic formation of SO42- by 20.8-34.8%. However, after sunrise, NO2- formation was primarily attributed to NO2 hydrolysis at pH 4.97-6.14. In the low-concentration event, NO2 hydrolysis also accounted for an overwhelming proportion (â¼90%) of NO2- formation. This work estimates the contribution of different paths to particulate NO2- formation based on newly established high-resolution measurements.