Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38396922

RESUMEN

Potato is an important food crop. After harvest, these tubers will undergo a period of dormancy. Brassinosteroids (BRs) are a new class of plant hormones that regulate plant growth and seed germination. In this study, 500 nM of BR was able to break the dormancy of tubers. Additionally, exogenous BR also upregulated BR signal transduction genes, except for StBIN2. StBIN2 is a negative regulator of BR, but its specific role in tuber dormancy remains unclear. Transgenic methods were used to regulate the expression level of StBIN2 in tubers. It was demonstrated that the overexpression of StBIN2 significantly prolonged tuber dormancy while silencing StBIN2 led to premature sprouting. To further investigate the effect of StBIN2 on tuber dormancy, RNA-Seq was used to analyze the differentially expressed genes in OE-StBIN2, RNAi-StBIN2, and WT tubers. The results showed that StBIN2 upregulated the expression of ABA signal transduction genes but inhibited the expression of lignin synthesis key genes. Meanwhile, it was also found that StBIN2 physically interacted with StSnRK2.2 and StCCJ9. These results indicate that StBIN2 maintains tuber dormancy by mediating ABA signal transduction and lignin synthesis. The findings of this study will help us better understand the molecular mechanisms underlying potato tuber dormancy and provide theoretical support for the development of new varieties using related genes.


Asunto(s)
Lignina , Solanum tuberosum , Lignina/metabolismo , Perfilación de la Expresión Génica , Reguladores del Crecimiento de las Plantas/metabolismo , Tubérculos de la Planta , Desarrollo de la Planta , Solanum tuberosum/genética , Regulación de la Expresión Génica de las Plantas , Latencia en las Plantas/genética
2.
Int J Mol Sci ; 25(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38791120

RESUMEN

The post-harvest phase of potato tuber dormancy and sprouting are essential in determining the economic value. The intricate transition from dormancy to active growth is influenced by multiple factors, including environmental factors, carbohydrate metabolism, and hormonal regulation. Well-established environmental factors such as temperature, humidity, and light play pivotal roles in these processes. However, recent research has expanded our understanding to encompass other novel influences such as magnetic fields, cold plasma treatment, and UV-C irradiation. Hormones like abscisic acid (ABA), gibberellic acid (GA), cytokinins (CK), auxin, and ethylene (ETH) act as crucial messengers, while brassinosteroids (BRs) have emerged as key modulators of potato tuber sprouting. In addition, jasmonates (JAs), strigolactones (SLs), and salicylic acid (SA) also regulate potato dormancy and sprouting. This review article delves into the intricate study of potato dormancy and sprouting, emphasizing the impact of environmental conditions, carbohydrate metabolism, and hormonal regulation. It explores how various environmental factors affect dormancy and sprouting processes. Additionally, it highlights the role of carbohydrates in potato tuber sprouting and the intricate hormonal interplay, particularly the role of BRs. This review underscores the complexity of these interactions and their importance in optimizing potato dormancy and sprouting for agricultural practices.


Asunto(s)
Latencia en las Plantas , Reguladores del Crecimiento de las Plantas , Tubérculos de la Planta , Solanum tuberosum , Solanum tuberosum/crecimiento & desarrollo , Solanum tuberosum/metabolismo , Solanum tuberosum/fisiología , Solanum tuberosum/genética , Tubérculos de la Planta/crecimiento & desarrollo , Tubérculos de la Planta/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Metabolismo de los Hidratos de Carbono
3.
Hum Reprod ; 38(5): 1003-1018, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36864708

RESUMEN

STUDY QUESTION: Can whole exome sequencing (WES) followed by trio bioinformatics analysis identify novel pathogenic genetic causes of first trimester euploid miscarriage? SUMMARY ANSWER: We identified genetic variants in six candidate genes that indicated plausible underlying causes of first-trimester euploid miscarriage. WHAT IS KNOWN ALREADY: Previous studies have identified several monogenic causes of Mendelian inheritance in euploid miscarriages. However, most of these studies are without trio analyses and lack cellular and animal models to validate the functional effect of putative pathogenic variants. STUDY DESIGN, SIZE, DURATION: Eight unexplained recurrent miscarriage (URM) couples and corresponding euploid miscarriages were included in our study for whole genome sequencing (WGS) and WES followed by trio bioinformatics analysis. Knock-in mice with Rry2 and Plxnb2 variants and immortalized human trophoblasts were utilized for functional study. Additional 113 unexplained miscarriages were included to identify the mutation prevalence of specific genes by multiplex PCR. PARTICIPANTS/MATERIALS, SETTING, METHODS: Whole blood from URM couples and their <13 weeks gestation miscarriage products were both collected for WES, and all variants in selected genes were verified by Sanger sequencing. Different stage C57BL/6J wild-type mouse embryos were collected for immunofluorescence. Ryr2N1552S/+, Ryr2R137W/+, Plxnb2D1577E/+, and Plxnb2R465Q/+ point mutation mice were generated and backcrossed. Matrigel-coated transwell invasion assays and wound-healing assays were performed using HTR-8/SVneo cells transfected with PLXNB2 small-interfering RNA and negative control. Multiplex PCR was performed focusing on RYR2 and PLXNB2. MAIN RESULTS AND THE ROLE OF CHANCE: Six novel candidate genes, including ATP2A2, NAP1L1, RYR2, NRK, PLXNB2, and SSPO, were identified. Immunofluorescence staining showed that ATP2A2, NAP1L1, RyR2, and PLXNB2 were widely expressed from the zygote to the blastocyst stage in mouse embryos. Although compound heterozygous mice with Rry2 and Plxnb2 variants did not show embryonic lethality, the number of pups per litter was significantly reduced when backcrossing Ryr2N1552S/+ ♂ with Ryr2R137W/+ ♀ or Plxnb2D1577E/+ ♂ with Plxnb2R465Q/+ ♀ (P < 0.05), which were in accordance with the sequencing results of Family 2 and Family 3, and the proportion of Ryr2N1552S/+ offspring was significantly lower when Ryr2N1552S/+ female mice were backcrossed with Ryr2R137W/+ male mice (P < 0.05). Moreover, siRNA-mediated PLXNB2 knockdown inhibited the migratory and invasive abilities of immortalized human trophoblasts. Besides, additional 10 variants of RYR2 and PLXNB2 were detected in 113 unexplained euploid miscarriages by multiplex PCR. LIMITATIONS, REASONS FOR CAUTION: The relatively small number of samples is a limitation of our study which may result in the identification of variants in unique candidate genes with no definitive although plausible causal effect. Larger cohorts are needed to replicate these findings and additional functional research is needed to confirm the pathogenic effects of these variants. Moreover, the sequencing coverage restricted the detection of low-level parental mosaic variants. WIDER IMPLICATIONS OF THE FINDINGS: For first-trimester euploid miscarriage, variants in unique genes may be underlying genetic etiologies and WES on trio could be an ideal model to identify potential genetic causes, which could facilitate individualized precise diagnostic and therapeutic regimens in the future. STUDY FUNDING/COMPETING INTERESTS: This study was supported by grants from the National Key Research and Development Program of China (2021YFC2700604), National Natural Science Foundation of China (31900492, 82101784, 82171648), Basic Science Center Program of the National Natural Science Foundation of China (31988101), Key Research and Development Program of Shandong Province (2021LCZX02), Natural Science Foundation of Shandong Province (ZR2020QH051), Natural Science Foundation of Jiangsu Province (BK20200223), Taishan Scholars Program for Young Experts of Shandong Province (tsqn201812154) and Young Scholars Program of Shandong University. The authors declare no conflicts of interest. TRIAL REGISTRATION NUMBER: N/A.


Asunto(s)
Aborto Habitual , Canal Liberador de Calcio Receptor de Rianodina , Embarazo , Humanos , Masculino , Femenino , Animales , Ratones , Secuenciación del Exoma , Canal Liberador de Calcio Receptor de Rianodina/genética , Ratones Endogámicos C57BL , Aborto Habitual/genética , Mutación , Proteína 1 de Ensamblaje de Nucleosomas/genética
4.
Reprod Biomed Online ; 47(3): 103229, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37296069

RESUMEN

RESEARCH QUESTION: Does thyroid autoimmunity (TAI) adversely affect pregnancy outcomes after IVF/intracytoplasmic sperm injection (ICSI) in euthyroid patients with recurrent implantation failure (RIF)? DESIGN: This retrospective cohort study was conducted at the Reproductive Hospital Affiliated with Shandong University from November 2016 to September 2021. A total of 1031 euthyroid patients diagnosed with RIF were enrolled. Based on serum thyroid autoantibody concentrations, the participants were divided into two groups: the TAI-positive group (219 women with RIF) and the TAI-negative group (812 women with RIF). The parameters were compared between the two groups. Additionally, logistic regression was used to adjust related confounders for primary outcomes, and subgroup and stratified analyses were performed according to different thyroid autoantibody types and TSH concentrations. RESULTS: There was no significant difference in ovarian reserve, ovarian response, embryo quality, pregnancy outcome or neonatal outcome between the two groups (P > 0.05). After adjustments for age, body mass index, thyroid-stimulating hormone and free thyroxine, the biochemical pregnancy rate in the TAI-positive group was significantly lower than that in the TAI-negative group (odds ratio 1.394, 95% CI 1.023-1.901, adjusted P = 0.036). Regarding the implantation rate, clinical pregnancy rate, pregnancy loss rate, stillbirth rate and live birth rate, no significant differences were observed even with subgroup and stratified analyses (P > 0.05). CONCLUSIONS: TAI had no impact on pregnancy outcomes in euthyroid RIF patients who underwent IVF/ICSI. In clinical practice, interventions targeting thyroid autoantibodies in these patients should be implemented with caution and additional evidence is needed.


Asunto(s)
Resultado del Embarazo , Glándula Tiroides , Recién Nacido , Embarazo , Humanos , Masculino , Femenino , Autoinmunidad , Estudios Retrospectivos , Semen , Índice de Embarazo , Autoanticuerpos , Fertilización In Vitro
5.
Int J Mol Sci ; 24(22)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38003283

RESUMEN

Potato is an important food crop worldwide. Brassinosteroids (BRs) are widely involved in plant growth and development, and BIN2 (brassinosteroid insensitive 2) is the negative regulator of their signal transduction. However, the function of BIN2 in the formation of potato tubers remains unclear. In this study, transgenic methods were used to regulate the expression level of StBIN2 in plants, and tuber related phenotypes were analyzed. The overexpression of StBIN2 significantly increased the number of potatoes formed per plant and the weight of potatoes in transgenic plants. In order to further explore the effect of StBIN2 on the formation of potato tubers, this study analyzed BRs, ABA hormone signal transduction, sucrose starch synthase activity, the expression levels of related genes, and interacting proteins. The results show that the overexpression of StBIN2 enhanced the downstream transmission of ABA signals. At the same time, the enzyme activity of the sugar transporter and the expression of synthetic genes were increased in potato plants overexpressing StBIN2, which also demonstrated the upregulation of sucrose and the expression of the starch synthesis gene. Apparently, StBIN2 affected the conversion and utilization of key substances such as glucose, sucrose, and starch in the process of potato formation so as to provide a material basis and energy preparation for forming potatoes. In addition, StBIN2 also promoted the expression of the tuber formation factors StSP6A and StS6K. Altogether, this investigation enriches the study on the mechanism through which StBIN2 regulates potato tuber formation and provides a theoretical basis for achieving a high and stable yield of potato.


Asunto(s)
Solanum tuberosum , Solanum tuberosum/metabolismo , Azúcares/metabolismo , Carbohidratos , Almidón/metabolismo , Sacarosa/metabolismo , Tubérculos de la Planta/metabolismo , Hormonas/metabolismo , Transducción de Señal , Plantas Modificadas Genéticamente/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Int J Mol Sci ; 22(5)2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33669030

RESUMEN

Potato tuber dormancy is critical for the post-harvest quality. Snakin/Gibberellic Acid Stimulated in Arabidopsis (GASA) family genes are involved in the plants' defense against pathogens and in growth and development, but the effect of Snakin-2 (SN2) on tuber dormancy and sprouting is largely unknown. In this study, a transgenic approach was applied to manipulate the expression level of SN2 in tubers, and it demonstrated that StSN2 significantly controlled tuber sprouting, and silencing StSN2 resulted in a release of dormancy and overexpressing tubers showed a longer dormant period than that of the control. Further analyses revealed that the decrease expression level accelerated skin cracking and water loss. Metabolite analyses revealed that StSN2 significantly down-regulated the accumulation of lignin precursors in the periderm, and the change of lignin content was documented, a finding which was consistent with the precursors' level. Subsequently, proteomics found that cinnamyl alcohol dehydrogenase (CAD), caffeic acid O-methyltransferase (COMT) and peroxidase (Prx), the key proteins for lignin synthesis, were significantly up-regulated in silencing lines, and gene expression and enzyme activity analyses also supported this effect. Interestingly, we found that StSN2 physically interacts with three peroxidases catalyzing the oxidation and polymerization of lignin. In addition, SN2 altered the hydrogen peroxide (H2O2) content and the activities of superoxide dismutase (SOD) and catalase (CAT). These results suggest that StSN2 negatively regulates lignin biosynthesis and H2O2 accumulation, and ultimately inhibits the sprouting of potato tubers.


Asunto(s)
Cisteína/metabolismo , Peróxido de Hidrógeno/metabolismo , Lignina/biosíntesis , Proteínas de Plantas/metabolismo , Tubérculos de la Planta/metabolismo , Solanum tuberosum/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Catalasa/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Silenciador del Gen , Lignina/metabolismo , Peroxidasa/metabolismo , Latencia en las Plantas/genética , Proteínas de Plantas/genética , Tallos de la Planta/citología , Tallos de la Planta/genética , Tallos de la Planta/metabolismo , Tubérculos de la Planta/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Unión Proteica , Proteína O-Metiltransferasa/metabolismo , Proteómica , Plantones/citología , Plantones/genética , Plantones/metabolismo , Solanum tuberosum/enzimología , Solanum tuberosum/genética , Superóxido Dismutasa-1/metabolismo
7.
J Cell Mol Med ; 24(12): 6690-6703, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32369873

RESUMEN

Despite the widespread use of antiplatelets and anticoagulants, women with antiphospholipid syndrome (APS) may face pregnancy complications associated with placental dysplasia. Neutrophil extracellular traps (NETs) are involved in the pathogenesis of many autoimmune diseases, including vascular APS; however, their role in obstetric APS is unclear. Herein, we investigated the role of NETs by quantifying cell-free DNA and NET marker levels. Live-cell imaging was used to visualize NET formation, and MAPK signalling pathway proteins were analysed. Cell migration, invasion and tube formation assays were performed to observe the effects of NETs on trophoblasts and human umbilical vein endothelial cells (HUVECs). The concentrations of cell-free DNA and NETs in sera of pregnant patients with APS were elevated compared with that of healthy controls (HCs) matched to gestational week. APS neutrophils were predisposed to spontaneous NET release and IgG purified from the patients (APS-IgG) induced neutrophils from HCs to release NETs. Additionally, APS-IgG NET induction was abolished with inhibitors of reactive oxygen species, AKT, p38 MAPK and ERK1/2. Moreover, NETs were detrimental to trophoblasts and HUVECs. In summary, APS-IgG-induced NET formation deserves further investigation as a potential novel therapeutic target in obstetrical APS.


Asunto(s)
Anticuerpos Antifosfolípidos/efectos adversos , Síndrome Antifosfolípido/inmunología , Síndrome Antifosfolípido/patología , Trampas Extracelulares/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Trofoblastos/patología , Adulto , Síndrome Antifosfolípido/sangre , Movimiento Celular/efectos de los fármacos , Ácidos Nucleicos Libres de Células/metabolismo , Inhibidores Enzimáticos/farmacología , Femenino , Humanos , Inmunoglobulina G/sangre , Neovascularización Fisiológica/efectos de los fármacos , Embarazo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Adulto Joven
8.
Int J Mol Sci ; 21(7)2020 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-32268484

RESUMEN

Alligator weed is reported to have a strong ability to adapt to potassium deficiency (LK) stress. Leaves are the primary organs responsible for photosynthesis of plants. However, quantitative proteomic changes in alligator weed leaves in response to LK stress are largely unknown. In this study, we investigated the physiological and proteomic changes in leaves of alligator weed under LK stress. We found that chloroplast and mesophyll cell contents in palisade tissue increased, and that the total chlorophyll content, superoxide dismutase (SOD) activity and net photosynthetic rate (PN) increased after 15 day of LK treatment, but the soluble protein content decreased. Quantitative proteomic analysis suggested that a total of 119 proteins were differentially abundant proteins (DAPs). KEGG analysis suggested that most represented DAPs were associated with secondary metabolism, the stress response, photosynthesis, protein synthesis, and degradation pathway. The proteomic results were verified using parallel reaction monitoring mass spectrometry (PRM-MS) analysis and quantitative real-time PCR (qRT-PCR)assays. Additional research suggested that overexpression of cationic peroxidase 1 of alligator weed (ApCPX1) in tobacco increased LK tolerance. The seed germination rate, peroxidase (POD) activity, and K+ content increased, and the hydrogen peroxide (H2O2) content decreased in the three transgenic tobacco lines after LK stress. The number of root hairs of the transgenic line was significantly higher than that of WT, and net K efflux rates were severely decreased in the transgenic line under LK stress. These results confirmed that ApCPX1 played positive roles in low-K+ signal sensing. These results provide valuable information on the adaptive mechanisms in leaves of alligator weed under LK stress and will help identify vital functional genes to apply to the molecular breeding of LK-tolerant plants in the future.


Asunto(s)
Peroxidasas/metabolismo , Hojas de la Planta/metabolismo , Malezas/metabolismo , Deficiencia de Potasio/metabolismo , Proteoma , Proteómica , Estrés Fisiológico , Animales , Cromatografía Líquida de Alta Presión , Biología Computacional/métodos , Ontología de Genes , Fenotipo , Proteómica/métodos , Espectrometría de Masas en Tándem
9.
Int J Mol Sci ; 20(1)2019 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-30626112

RESUMEN

The macronutrient potassium is essential to plant growth, development and stress response. Alligator weed (Alternanthera philoxeroides) has a high tolerance to potassium deficiency (LK) stress. The stem is the primary organ responsible for transporting molecules from the underground root system to the aboveground parts of the plant. However, proteomic changes in response to LK stress are largely unknown in alligator weed stems. In this study, we investigated the physiological and proteomic changes in alligator weed stems under LK stress. First, the chlorophyll and soluble protein content and SOD and POD activity were significantly altered after 15 days of LK treatment. The quantitative proteomic analysis suggested that a total of 296 proteins were differentially abundant proteins (DAPs). The functional annotation analysis revealed that LK stress elicited complex proteomic alterations that were involved in oxidative phosphorylation, plant-pathogen interactions, glycolysis/gluconeogenesis, sugar metabolism, and transport in stems. The subcellular locations analysis suggested 104 proteins showed chloroplastic localization, 81 proteins showed cytoplasmic localization and 40 showed nuclear localization. The protein⁻protein interaction analysis revealed that 56 proteins were involved in the interaction network, including 9 proteins involved in the ribosome network and 9 in the oxidative phosphorylation network. Additionally, the expressed changes of 5 DAPs were similar between the proteomic quantification analysis and the PRM-MS analysis, and the expression levels of eight genes that encode DAPs were further verified using an RT-qPCR analysis. These results provide valuable information on the adaptive mechanisms in alligator weed stems under LK stress and facilitate the development of efficient strategies for genetically engineering potassium-tolerant crops.


Asunto(s)
Amaranthaceae/fisiología , Tallos de la Planta/metabolismo , Malezas/metabolismo , Potasio/farmacología , Proteoma/metabolismo , Estrés Fisiológico/efectos de los fármacos , Amaranthaceae/efectos de los fármacos , Ontología de Genes , Modelos Biológicos , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Tallos de la Planta/efectos de los fármacos , Malezas/efectos de los fármacos , Dominios Proteicos , Mapas de Interacción de Proteínas , Proteómica , Fracciones Subcelulares/metabolismo
10.
Plant Mol Biol ; 97(3): 265-278, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29777486

RESUMEN

KEY MESSAGE: Physiological and iTRAQ based proteomic analysis provided new insights into potassium deficiency stress response in alligator weed root. Alligator weed (Alternanthera philoxeroides) has a strong ability to adapt to potassium deficiency (LK) stress. Proteomic changes in response to this stress are largely unknown in alligator weed. In this study, we investigated physiological and molecular mechanisms under LK using isobaric tags for relative and absolute quantitation to characterize proteome-level changes in this plant. First, root physiology, 2, 3, 5-Triphenyl-trazolium chloride (TTC) assay and peroxidase activity were significantly altered after 10 and 15 days of LK treatment. The comparative proteomic analysis suggested a total of 375 proteins were differential abundance proteins. The proteomic results were verified by western blot assays and quantitative real-time PCR. Correlation analysis of transcription and proteomics suggested protein processing in the endoplasmic reticulum, endocytosis, and spliceosome pathways were significantly enriched. The protein responsible for energy metabolism, signal sensing and transduction and protein degradation played crucial roles in this stress. Twelve ubiquitin pathway related proteins were identified in our study, among them 11 proteins were up-regulated. All protein ubiquitination of lysine using pan antibodies were also increased after LK treatment. Our study provide a valuable insights of molecular mechanism underlying LK stress response in alligator weed roots and afford a vital basis to further study potassium nutrition molecular breeding of other plant species.


Asunto(s)
Amaranthaceae/metabolismo , Raíces de Plantas/metabolismo , Deficiencia de Potasio/metabolismo , Amaranthaceae/fisiología , Western Blotting , Fenómenos Fisiológicos de las Plantas , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiología , Proteómica , Reacción en Cadena en Tiempo Real de la Polimerasa , Plantones/metabolismo , Estrés Fisiológico
11.
Exp Cell Res ; 347(1): 184-191, 2016 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-27502588

RESUMEN

Hyperhomocysteinemia induces the proliferation of vascular smooth muscle cells (VSMCs). Hydrogen sulfide (H2S) inhibits the phenotype switch of VSMCs and calcium-sensing receptor (CaSR) regulated the production of endogenous H2S. However, whether CaSR inhibits the proliferation of VSMCs by regulating the endogenous cystathionine-gamma-lyase (CSE, a major enzyme that produces H2S) pathway in high homocysteine (HHcy) has not been previously investigated. The intracellular calcium concentration, the concentration of H2S, the cell viability, the proliferation and the expression of proteins of cultured VSMCs from rat thoracic aortas were measured, respectively. The results showed that the [Ca(2+)]i and the expression of p-CaMK and CSE increased upon treatment with CaSR agonist. In HHcy, the H2S concentration decrease, the proliferation and migration rate increased, the expression of Cyclin D1, PCNA, Osteopontin and p-Erk1/2 increased while the α-SM actin, P21(Cip/WAK-1) and Calponin decreased. The CaSR agonist or exogenous H2S significantly reversed the changes of VSMCs caused by HHcy. In conclusion, our results demonstrated that CaSR regulate the endogenous CSE/H2S is related to the PLC-IP3 receptor and CaM signal pathways which inhibit the proliferation of VSMCs, and the latter is involved in the Erk1/2 dependent signal pathway in high homocysteine.


Asunto(s)
Homocisteína/farmacología , Sulfuro de Hidrógeno/farmacología , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/metabolismo , Receptores Sensibles al Calcio/metabolismo , Adolescente , Animales , Bromodesoxiuridina/metabolismo , Calcio/metabolismo , Calmodulina/metabolismo , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cistationina gamma-Liasa/metabolismo , Humanos , Indoles/farmacología , Inositol 1,4,5-Trifosfato/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Naftalenos/farmacología , Fenotipo , Ratas , Transducción de Señal/efectos de los fármacos , Fosfolipasas de Tipo C/metabolismo
12.
Int J Mol Sci ; 18(5)2017 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-28498313

RESUMEN

Phosphorus (P) is an important mineral nutrient for plant growth and development. Overexpressing AtWRKY6 (35S:WRKY6-9) was more sensitive and wrky6 (wrky6-1) was more resistant under low Pi conditions. To better understand the function of AtWRKY6 under low phosphate stress conditions, we applied two-dimensional gel electrophoresis (2-DE) to analyse differentially expressed proteins in the shoots and roots between wild type, 35S:WRKY6-9 and wrky6-1 after phosphorus deficiency treatment for three days. The results showed 88 differentially abundant protein spots, which were identified between the shoots and roots of 35S:WRKY6-9 and wrky6-1 plants. In addition, 59 differentially expressed proteins were identified in the leaves and roots of 35S:WRKY6-9 plants. After analysis, 9 genes with W-box elements in their promoter sequences were identified in the leaves, while 6 genes with W-box elements in their promoter sequences were identified in the roots. A total of 8 genes were identified as potential target genes according to the quantitative PCR (QPCR) and two dimension difference gel electrophoresis, (2D-DIGE) results, including ATP synthase, gln synthetase, nitrilase, 14-3-3 protein, carbonic anhydrases 2, and tryptophan synthase. These results provide important information concerning the AtWRKY6 regulation network and reveal potential vital target genes of AtWRKY6 under low phosphorus stress. two dimension difference gel electrophoresis, 2D-DIGE.


Asunto(s)
Proteínas de Arabidopsis/genética , Fósforo/deficiencia , Proteoma/genética , Factores de Transcripción/genética , Transcriptoma , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Regiones Promotoras Genéticas , Proteoma/metabolismo , Factores de Transcripción/metabolismo
13.
Int J Mol Sci ; 18(11)2017 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-29084178

RESUMEN

Sprouting regulation in potato tubers is important for improving commercial value and producing new plants. Camphor shows flexible inhibition of tuber sprouting and prolongs the storage period of potato, but its underlying mechanism remains unknown. The results of the present study suggest that camphor inhibition caused bud growth deformities and necrosis, but after moving to more ventilated conditions, new sprouts grew from the bud eye of the tuber. Subsequently, the sucrose and fructose contents as well as polyphenol oxidase (PPO) activity were assessed after camphor inhibition. Transcription and proteomics data from dormancy (D), sprouting (S), camphor inhibition (C), and recovery sprouting (R) samples showed changes in the expression levels of approximately 4000 transcripts, and 700 proteins showed different abundances. KEGG (Kyoto encyclopaedia of genes and genomes) pathway analysis of the transcription levels indicated that phytohormone synthesis and signal transduction play important roles in tuber sprouting. Camphor inhibited these processes, particularly for gibberellic acid, brassinosteroids, and ethylene, leading to dysregulation of physiological processes such as cutin, suberine and wax biosynthesis, fatty acid elongation, phenylpropanoid biosynthesis, and starch and sucrose metabolism, resulting in bud necrosis and prolonged storage periods. The KEGG pathway correlation between transcripts and proteins revealed that terpenoid backbone biosynthesis and plant-pathogen interaction pathways showed significant differences in D vs. S samples, but 13 pathways were remarkably different in the D vs. C groups, as camphor inhibition significantly increased both the transcription levels and protein abundance of pathogenesis-related protein PR-10a (or STH-2), the pathogenesis-related P2-like precursor protein, and the kirola-like protein as compared to sprouting. In recovery sprouting, these genes and proteins were decreased at both the transcriptional level and in protein abundance. It was important to find that the inhibitory effect of camphor on potato tuber sprout was reversible, revealing the action mechanism was similar to resistance to pathogen infection. The present study provides a theoretical basis for the application of camphor in prolonging seed potato storage.


Asunto(s)
Alcanfor/farmacología , Perfilación de la Expresión Génica , Tubérculos de la Planta/efectos de los fármacos , Tubérculos de la Planta/fisiología , Proteómica , Solanum tuberosum/efectos de los fármacos , Solanum tuberosum/fisiología , Biología Computacional/métodos , Fructosa/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Redes Reguladoras de Genes , Fenotipo , Proteoma , Proteómica/métodos , Transducción de Señal , Solanum tuberosum/citología , Sacarosa/metabolismo , Transcriptoma
14.
Artículo en Inglés | MEDLINE | ID: mdl-39255151

RESUMEN

Emotion is an important factor to consider when designing visualizations as it can impact the amount of trust viewers place in a visualization, how well they can retrieve information and understand the underlying data, and how much they engage with or connect to a visualization. We conducted five crowdsourced experiments to quantify the effects of color, chart type, data trend, data variability and data density on emotion (measured through self-reported arousal and valence). Results from our experiments show that there are multiple design elements which influence the emotion induced by a visualization and, more surprisingly, that certain data characteristics influence the emotion of viewers even when the data has no meaning. In light of these findings, we offer guidelines on how to use color, scale, and chart type to counterbalance and emphasize the emotional impact of immutable data characteristics.

15.
bioRxiv ; 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38559152

RESUMEN

As large-scale biobanks provide increasing access to deep phenotyping and genomic data, genome-wide association studies (GWAS) are rapidly uncovering the genetic architecture behind various complex traits and diseases. GWAS publications typically make their summary-level data (GWAS summary statistics) publicly available, enabling further exploration of genetic overlaps between phenotypes gathered from different studies and cohorts. However, systematically analyzing high-dimensional GWAS summary statistics for thousands of phenotypes can be both logistically challenging and computationally demanding. In this paper, we introduce BIGA (https://bigagwas.org/), a website that aims to offer unified data analysis pipelines and processed data resources for cross-trait genetic architecture analyses using GWAS summary statistics. We have developed a framework to implement statistical genetics tools on a cloud computing platform, combined with extensive curated GWAS data resources. Through BIGA, users can upload data, submit jobs, and share results, providing the research community with a convenient tool for consolidating GWAS data and generating new insights.

16.
Nat Commun ; 15(1): 6064, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39025851

RESUMEN

The retina, an anatomical extension of the brain, forms physiological connections with the visual cortex of the brain. Although retinal structures offer a unique opportunity to assess brain disorders, their relationship to brain structure and function is not well understood. In this study, we conducted a systematic cross-organ genetic architecture analysis of eye-brain connections using retinal and brain imaging endophenotypes. We identified novel phenotypic and genetic links between retinal imaging biomarkers and brain structure and function measures from multimodal magnetic resonance imaging (MRI), with many associations involving the primary visual cortex and visual pathways. Retinal imaging biomarkers shared genetic influences with brain diseases and complex traits in 65 genomic regions, with 18 showing genetic overlap with brain MRI traits. Mendelian randomization suggests bidirectional genetic causal links between retinal structures and neurological and neuropsychiatric disorders, such as Alzheimer's disease. Overall, our findings reveal the genetic basis for eye-brain connections, suggesting that retinal images can help uncover genetic risk factors for brain disorders and disease-related changes in intracranial structure and function.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Retina , Humanos , Imagen por Resonancia Magnética/métodos , Retina/diagnóstico por imagen , Masculino , Encéfalo/diagnóstico por imagen , Femenino , Corteza Visual/diagnóstico por imagen , Imagen Multimodal/métodos , Adulto , Vías Visuales/diagnóstico por imagen , Persona de Mediana Edad , Análisis de la Aleatorización Mendeliana , Endofenotipos , Anciano
17.
Heliyon ; 9(9): e19657, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37809829

RESUMEN

The KDR (karst development rate) of rocks and their PCR(porosity of carbonate rocks) are common research topics in Jinfo Mountain. The use of traditional carbonate research methods (TCRMs) for karst studies has been shown to be costly and time-consuming. Therefore, this study attempted to find a new, reliable, low-cost, and time-saving method for karst research. The Jinfo Mountain area is a typical carbonate rock area that is suitable for karst research. In this study, many images of rock samples from the Jinfo Mountain were obtained using rock-polarizing microscopes, which provided a good basis for the karst study of Jinfo Mountain. Furthermore, in this study, image analysis technology was used to find the karst development rate of rocks and their porosity. To ensure the accuracy of these research results, we compared the research results obtained using the image analysis techniques with those obtained using TCRM. The comparison showed that the image analysis technology is a feasible research techniques for studying karst in the Jinfo Mountain area. Furthermore, it has good reference significance for other karst study outside the Jinfo Mountain area.

18.
Ying Yong Sheng Tai Xue Bao ; 34(10): 2723-2729, 2023 Oct.
Artículo en Zh | MEDLINE | ID: mdl-37897279

RESUMEN

To explore the responses of vegetation growth to change in terrestrial water storage in Southwest China, we analyzed the change trend and relationship between vegetation and terrestrial water storage anomaly (TWSA) in Southwest China from January 2003 to December 2021 by using TWSA data of Gravity Recovery and Climate Experi-ment (GRACE) satellite and normalized differential vegetation index (NDVI) data. The results showed that NDVI in Southwest China during the study period showed an overall upward trend. Meanwhile, TWSA showed a significant downward trend in central and southern Tibet, and a significant upward trend in northwest Tibet and southeast region of Southwest China. Results of Pearson correlation analysis showed that there were significant spatial differences in responses of NDVI to TWSA changes in Southwest China. NDVI had a significant negative response to TWSA changes in most regions of Tibet, but a significant positive response to TWSA changes in most regions of southeast region of Southwest China. Such differences were driven by climate change and topography.


Asunto(s)
Cambio Climático , Ecosistema , China , Tibet , Temperatura
19.
Medicine (Baltimore) ; 102(2): e32507, 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36637956

RESUMEN

RATIONALE: Because of the complicated anatomy and considerable change in size and morphology with age in teenagers, the appropriate internal fixator of coronal shear fracture of distal humerus is difficult to choose, and therefore, the fixation of this kind of fracture is difficult and controversial. Furthermore, distal humeral fractures in teenagers often involve the epiphysis, the rigid fixation of fracture and the simultaneous minimally invasive and protection of the epiphysis are contradictory. Coronal shear fractures of the distal humerus in teenagers are great challenge for orthopedic surgeons. Three-dimensional (3D) printing designed customized plate in the treatment of coronal fracture of distal humerus in teenager is a potential satisfactory choice in the treatment of the complex fractures. PATIENT CONCERNS: A teenager suffered from an elbow joint injury due to a fall while running, resulting in pain, swelling and limited movement of the elbow joint. The epiphyseal has not closed in this patient, conventional surgical procedures have great traumatic and invasive, and to some extent affect bone growth in children. DIAGNOSES: Coronal shear fracture of right distal humerus according to computed tomography scan. INTERVENTIONS: We used 3D printing technology to design an internal fixation device for this patient, which was to treat the distal humeral coronal shear fracture in a teenager via an anterior approach to the elbow joint, and finally the child was instructed to perform immediate postoperative functional exercises and rehabilitation. OUTCOMES: Radiographic reexamination performed 1 day and 2 month after the operation showed that the internal fixation was in good position, no fracture displacement. the patient was instructed to perform active flexion and extension internal and external rotation of the right elbow 6 weeks postoperatively. The Mayo elbow function score was excellent 5 months postoperatively. The range of motion of the elbow was (15°-130°). LESSONS: The treatment of coronal shear fractures of the distal humerus in teenager is controversial at present. This report 3D printing technology designed customized plate in treatment of such fractures showed satisfactory results, which provides a feasible method for the treatment of fractures without suitable internal fixation devices in the future.


Asunto(s)
Articulación del Codo , Fracturas Humerales Distales , Fracturas del Húmero , Fracturas Craneales , Niño , Humanos , Adolescente , Articulación del Codo/cirugía , Fracturas del Húmero/diagnóstico por imagen , Fracturas del Húmero/cirugía , Húmero/diagnóstico por imagen , Húmero/cirugía , Fijación Interna de Fracturas/métodos , Placas Óseas , Impresión Tridimensional , Epífisis , Resultado del Tratamiento , Rango del Movimiento Articular , Estudios Retrospectivos
20.
Hortic Res ; 10(12): uhad228, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38156286

RESUMEN

After harvest, potato tubers undergo an important period of dormancy, which significantly impacts potato quality and seed vigor. StSN2 has been reported as a key gene for maintaining tuber dormancy; in this study, we explored the molecular mechanism by which StSN2 maintains dormancy. StBIN2 was first identified as a candidate protein that interacts with StSN2 by co-immunoprecipitation/mass spectrometry, and both qPCR and enzyme activity experiments showed that StSN2 can promote the StBIN2 expression and activity. In addition, the interaction between StSN2 and StBIN2 was verified by yeast two-hybrid, luciferase complementation experiments and co-immunoprecipitation. Bioinformatics analysis and site-directed mutagenesis confirmed the critical role of cysteine residues of StBIN2 in its binding to StSN2. Similar to that of StSN2, overexpression of StBIN2 extended the dormancy of potato tuber. Interaction between StSN2 and StBIN2 increased the activity of the StBIN2 enzyme, inhibited the expression of StBZR1, and suppressed BR signaling. On the contrary, this interaction promoted the expression of StSnRK2.2/2.3/2.4/2.6 and StABI5, key genes of ABA signaling, and the phosphorylation of StSnRK2.3, thereby promoting ABA signaling. Altogether, our results indicate that StSN2 interacts with StBIN2 through key cysteine residues and StBIN2 maintains tuber dormancy by affecting ABA and BR signaling. Findings of this research offer new insights into the molecular mechanism by which StSN2 maintains potato tuber dormancy through interaction with StSIN2 and provide guidance for potato improvement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA