Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 20(3): e1011196, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38466721

RESUMEN

Hematophagous mosquitoes require vertebrate blood for their reproductive cycles, making them effective vectors for transmitting dangerous human diseases. Thus, high-intensity metabolism is needed to support reproductive events of female mosquitoes. However, the regulatory mechanism linking metabolism and reproduction in mosquitoes remains largely unclear. In this study, we found that the expression of estrogen-related receptor (ERR), a nuclear receptor, is activated by the direct binding of 20-hydroxyecdysone (20E) and ecdysone receptor (EcR) to the ecdysone response element (EcRE) in the ERR promoter region during the gonadotropic cycle of Aedes aegypti (named AaERR). RNA interference (RNAi) of AaERR in female mosquitoes led to delayed development of ovaries. mRNA abundance of genes encoding key enzymes involved in carbohydrate metabolism (CM)-glucose-6-phosphate isomerase (GPI) and pyruvate kinase (PYK)-was significantly decreased in AaERR knockdown mosquitoes, while the levels of metabolites, such as glycogen, glucose, and trehalose, were elevated. The expression of fatty acid synthase (FAS) was notably downregulated, and lipid accumulation was reduced in response to AaERR depletion. Dual luciferase reporter assays and electrophoretic mobility shift assays (EMSA) determined that AaERR directly activated the expression of metabolic genes, such as GPI, PYK, and FAS, by binding to the corresponding AaERR-responsive motif in the promoter region of these genes. Our results have revealed an important role of AaERR in the regulation of metabolism during mosquito reproduction and offer a novel target for mosquito control.


Asunto(s)
Aedes , Receptores de Esteroides , Animales , Femenino , Humanos , Aedes/genética , Aedes/metabolismo , Ecdisona/metabolismo , Mosquitos Vectores/genética , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Homeostasis/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo
2.
J Immunol ; 210(1): 72-81, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36426999

RESUMEN

Fish possess a powerful IFN system to defend against aquatic virus infections. Nevertheless, spring viremia of carp virus (SVCV) causes large-scale mortality in common carp and significant economic losses to aquaculture. Therefore, it is necessary to investigate the strategies used by SVCV to escape the IFN response. In this study, we show that the SVCV nucleoprotein (N protein) negatively regulates cellular IFN production by degrading stimulator of IFN genes (STING) via the autophagy-lysosome-dependent pathway. First, overexpression of N protein inhibited the IFN promoter activation induced by polyinosinic-polycytidylic acid and STING. Second, the N protein associated with STING and experiments using a dominant-negative STING mutant demonstrated that the N-terminal transmembrane domains of STING were indispensable for this interaction. Then, the N protein degraded STING in a dose-dependent and autophagy-lysosome-dependent manner. Intriguingly, in the absence of STING, individual N proteins could not elicit host autophagic flow. Furthermore, the autophagy factor Beclin1 was found to interact with the N protein to attenuate N protein-mediated STING degradation after beclin1 knockdown. Finally, the N protein remarkably weakened STING-enhanced cellular antiviral responses. These findings reveal that SVCV uses the host autophagic process to achieve immune escape, thus broadening our understanding of aquatic virus pathogenesis.


Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Rhabdoviridae , Rhabdoviridae , Animales , Proteínas de la Nucleocápside , Viremia , Beclina-1 , Rhabdoviridae/fisiología , Lisosomas , Autofagia
3.
J Virol ; 97(7): e0053223, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37367226

RESUMEN

During viral infection, host defensive proteins either enhance the host immune response or antagonize viral components directly. In this study, we report on the following two mechanisms employed by zebrafish mitogen-activated protein kinase kinase 7 (MAP2K7) to protect the host during spring viremia of carp virus (SVCV) infection: stabilization of host IRF7 and degradation of SVCV P protein. In vivo, map2k7+/- (map2k7-/- is a lethal mutation) zebrafish showed a higher lethality, more pronounced tissue damage, and more viral proteins in major immune organs than the controls. At the cellular level, overexpression of map2k7 significantly enhanced host cell antiviral capacity, and viral replication and proliferation were significantly suppressed. Additionally, MAP2K7 interacted with the C terminus of IRF7 and stabilized IRF7 by increasing K63-linked polyubiquitination. On the other hand, during MAP2K7 overexpression, SVCV P proteins were significantly decreased. Further analysis demonstrated that SVCV P protein was degraded by the ubiquitin-proteasome pathway, as the attenuation of K63-linked polyubiquitination was mediated by MAP2K7. Furthermore, the deubiquitinase USP7 was indispensable in P protein degradation. These results confirm the dual functions of MAP2K7 during viral infection. IMPORTANCE Normally, during viral infection, host antiviral factors individually modulate the host immune response or antagonize viral components to defense infection. In the present study, we report that zebrafish MAP2K7 plays a crucial positive role in the host antiviral process. According to the weaker antiviral capacity of map2k7+/- zebrafish than that of the control, we find that MAP2K7 reduces host lethality through two pathways, as follows: enhancing K63-linked polyubiquitination to promote host IRF7 stability and attenuating K63-mediated polyubiquitination to degrade the SVCV P protein. These two mechanisms of MAP2K7 reveal a special antiviral response in lower vertebrates.


Asunto(s)
Enfermedades de los Peces , Factores Reguladores del Interferón , Proteínas Quinasas Activadas por Mitógenos , Infecciones por Rhabdoviridae , Ubiquitinación , Proteínas Estructurales Virales , Animales , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Rhabdoviridae/genética , Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/virología , Pez Cebra/genética , Pez Cebra/inmunología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Estabilidad Proteica , Proteolisis , Proteínas Estructurales Virales/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Regulación hacia Arriba
4.
J Virol ; 97(11): e0143423, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37882518

RESUMEN

IMPORTANCE: Mitochondrial antiviral signaling protein (MAVS) and stimulator of interferon (IFN) genes (STING) are key adaptor proteins required for innate immune responses to RNA and DNA virus infection. Here, we show that zebrafish transmembrane protein 47 (TMEM47) plays a critical role in regulating MAVS- and STING-triggered IFN production in a negative feedback manner. TMEM47 interacted with MAVS and STING for autophagic degradation, and ATG5 was essential for this process. These findings suggest the inhibitory function of TMEM47 on MAVS- and STING-mediated signaling responses during RNA and DNA virus infection.


Asunto(s)
Infecciones por Virus ADN , Inmunidad Innata , Interferones , Infecciones por Virus ARN , Proteínas de Pez Cebra , Pez Cebra , Animales , Infecciones por Virus ADN/inmunología , Infecciones por Virus ADN/virología , Interferones/antagonistas & inhibidores , Interferones/biosíntesis , Transducción de Señal , Pez Cebra/inmunología , Pez Cebra/metabolismo , Pez Cebra/virología , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/virología , Retroalimentación Fisiológica , Proteínas de Pez Cebra/inmunología , Proteínas de Pez Cebra/metabolismo
5.
PLoS Pathog ; 18(6): e1010626, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35727817

RESUMEN

From insects to mammals, both innate and adaptive immune response are usually higher in females than in males, with the sex chromosome and hormonal differences considered the main reasons. Here, we report that zebrafish cyp19a1a (cytochrome P450, family 19, subfamily A, polypeptide 1a), an autosomal gene with female-biased expression, causes female fish to exhibit a lower antiviral response. First, we successfully constructed an infection model by intraperitoneal injection of spring viremia of carp virus (SVCV) into zebrafish (Danio rerio) and Carassius auratus herpesvirus (CaHV) in gibel carp (Carassius gibelio). Specifically, female fish were more vulnerable to viral infection than males, accompanied by a significantly weaker interferon (IFN) expression. After screening several candidates, cyp19a1a, which was highly expressed in female fish tissues, was selected for further analysis. The IFN expression and antiviral response were significantly higher in cyp19a1a-/- than in cyp19a1a+/+. Further investigation of the molecular mechanism revealed that Cyp19a1a targets mediator of IRF3 activation (MITA) for autophagic degradation. Interestingly, in the absence of MITA, Cyp19a1a alone could not elicit an autophagic response. Furthermore, the autophagy factor ATG14 (autophagy-related 14) was found interacted with Cyp19a1a to either promote or attenuate Cyp19a1a-mediated MITA degradation by either being overexpressed or knocked down, respectively. At the cellular level, both the normal and MITA-enhanced cellular antiviral responses were diminished by Cyp19a1a. These findings demonstrated a sex difference in the antiviral response based on a regulation mechanism controlled by a female-biased gene besides sex chromosome and hormonal differences, supplying the current understanding of sex differences in fish.


Asunto(s)
Carpas , Enfermedades de los Peces , Herpesviridae , Animales , Antivirales/farmacología , Autofagia , Femenino , Inmunidad Innata/genética , Masculino , Mamíferos , Pez Cebra/genética
6.
J Immunol ; 208(9): 2196-2206, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35418468

RESUMEN

In the viral infection process, host gene function is usually reported as either defending the host or assaulting the virus. In this study, we demonstrated that zebrafish ceramide kinase-like (CERKL) mediates protection against viral infection via two distinct mechanisms: stabilization of TANK-binding kinase 1 (TBK1) through impairing K48-linked ubiquitination and degradation of spring viremia of carp virus (SVCV) P protein by dampening K63-linked ubiquitination, resulting in an improvement of the host immune response and a decline in viral activity in epithelioma papulosum cyprini (EPC) cells. On SVCV infection, ifnφ1 expression was increased or blunted by CERKL overexpression or knockdown, respectively. Subsequently, we found that CERKL localized in the cytoplasm, where it interacted with TBK1 and enhanced its stability by impeding the K48-linked polyubiquitination; meanwhile, the antiviral capacity of TBK1 was significantly potentiated by CERKL. In contrast, CERKL also interacted with and degraded SVCV P protein to disrupt its function in viral proliferation. Further mechanism analysis revealed K63-linked deubiquitination is the primary means of CERKL-mediated SVCV P protein degradation. Taken together, our study reveals a novel mechanism of fish defense against viral infection: the single gene cerkl is both a shield for the host and a spear against the virus, which strengthens resistance.


Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Rhabdoviridae , Animales , Virus ADN , Fosfotransferasas (Aceptor de Grupo Alcohol) , Rhabdoviridae , Ubiquitinación , Proteínas Virales , Viremia , Pez Cebra , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/metabolismo
7.
Biol Pharm Bull ; 47(2): 486-498, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38199251

RESUMEN

Resina Draconis is a traditional Chinese medicine, with the in-depth research, its medicinal value in anti-tumor has been revealed. Loureirin A is extracted from Resina Draconis, however, research on the anti-tumor efficacy of Loureirin A is rare. Herein, we investigated the function of Loureirin A in melanoma. Our research demonstrated that Loureirin A inhibited the proliferation of and caused G0/G1 cell cycle arrest in melanoma cells in a concentration-dependent manner. Further study showed that the melanin content and tyrosinase activity was enhanced after Loureirin A treatment, demonstrated that Loureirin A promoted melanoma cell differentiation, which was accompanied with the reduce of WNT signaling pathway. Meanwhile, we found that Loureirin A suppressed the migration and invasion of melanoma cells through the protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway. Taken together, this study demonstrated for the first time the anti-tumor effects of Loureirin A in melanoma cells, which provided a novel therapeutic strategy against melanoma.


Asunto(s)
Chalconas , Melanoma , Proteínas Proto-Oncogénicas c-akt , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Melanoma/metabolismo , Diferenciación Celular , Vía de Señalización Wnt , Serina-Treonina Quinasas TOR/metabolismo , Proliferación Celular , Movimiento Celular , Línea Celular Tumoral
8.
Aging Clin Exp Res ; 36(1): 30, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38334839

RESUMEN

BACKGROUND: Widespread attention has been given to the detrimental effects of obesity on cognitive function. However, there is no evidence on the connection between low cognitive performance and the WWI (weight-adjusted waist index). This study looked into the connection between poor cognitive performance and the WWI in senior Americans. METHODS: A cross-sectional research study was carried out with information from the NHANES 2011-2014. With multivariate linear regression models, the pertinence between the WWI and low cognitive function in persons older than 60 years was examined. The nonlinear link was described using threshold effect analyses and fitted smoothed curves. Interaction tests and subgroup analysis were also conducted. RESULTS: The study had 2762 individuals in all, and subjects with higher WWI values were at greater risk for low cognitive function. In the completely adjusted model, the WWI was positively connected with low cognitive performance assessed by CERAD W-L (OR = 1.22, 95% CI 1.03-1.45, p = 0.0239), AFT (OR = 1.30, 95% CI 1.09-1.54, p = 0.0029), and DSST (OR = 1.59, 95% CI 1.30-1.94, p < 0.0001). The effect of each subgroup on the positive correlation between the WWI and low cognitive performance was not significant. The WWI and low cognitive performance as determined by CERAD W-L and AFT had a nonlinear connection (log-likelihood ratio < 0.05). CONCLUSION: Among older adults in the United States, the risk of low cognitive performance may be positively related to the WWI.


Asunto(s)
Cognición , Obesidad , Humanos , Anciano , Estudios Transversales , Encuestas Nutricionales , Modelos Lineales , Obesidad/epidemiología
9.
BMC Cardiovasc Disord ; 23(1): 293, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37296380

RESUMEN

BACKGROUND: In recent years, the incidence of diabetes mellitus has been increasing annually, and cardiovascular complications secondary to diabetes mellitus have become the leading cause of death in diabetic patients. Considering the high incidence of type 2 diabetes (T2DM) combined with cardiovascular disease (CVD), some new hypoglycemic agents with cardiovascular protective effects have attracted extensive attention. However, the specific role of these regimens in ventricular remodeling remains unknown. The purpose of this network meta-analysis was to compare the effects of sodium glucose cotransporter type 2 inhibitor (SGLT-2i), glucagon-like peptide 1 receptor agonist (GLP-1RA) and dipeptidyl peptidase-4 inhibitor (DPP-4i) on ventricular remodeling in patients with T2DM and/or CVD. METHODS: Articles published prior to 24 August 2022 were retrieved in four electronic databases: the Cochrane Library, Embase, PubMed, and Web of Science. This meta-analysis included randomized controlled trials (RCTs) and a small number of cohort studies. The differences in mean changes of left ventricular ultrasonic parameters between the treatment and control groups were compared. RESULTS: A total of 31 RCTs and 4 cohort studies involving 4322 patients were analyzed. GLP-1RA was more significantly associated with improvement in left ventricular end-systolic diameter (LVESD) [MD = -0.38 mm, 95% CI (-0.66, -0.10)] and LV mass index (LVMI) [MD = -1.07 g/m2, 95% CI (-1.71, -0.42)], but significantly decreased e' [MD = -0.43 cm/s 95% CI (-0.81, -0.04)]. DPP-4i was more strongly associated with improvement in e' [MD = 3.82 cm/s, 95% CI (2.92,4.7)] and E/e'[MD = -5.97 95% CI (-10.35, -1.59)], but significantly inhibited LV ejection fraction (LVEF) [MD = -0.89% 95% CI (-1.76, -0.03)]. SGLT-2i significantly improved LVMI [MD = -0.28 g/m2, 95% CI (-0.43, -0.12)] and LV end-diastolic diameter (LVEDD) [MD = -0.72 ml, 95% CI (-1.30, -0.14)] in the overall population, as well as E/e' and SBP in T2DM patients combined with CVD, without showing any negative effect on left ventricular function. CONCLUSION: The results of the network meta-analysis provided high certainty to suggest that SGLT-2i may be more effective in cardiac remodeling compared to GLP-1RA and DPP-4i. While GLP-1RA and DPP-4i may have a tendency to improve cardiac systolic and diastolic function respectively. SGLT-2i is the most recommended drug for reversing ventricular remodeling in this meta-analysis.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Inhibidores de la Dipeptidil-Peptidasa IV , Humanos , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/prevención & control , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Receptor del Péptido 1 Similar al Glucagón/agonistas , Hipoglucemiantes/farmacología , Metaanálisis en Red , Inhibidores de Proteasas/farmacología , Remodelación Ventricular
10.
J Nat Prod ; 86(4): 966-978, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37043698

RESUMEN

Hepatocellular carcinoma (HCC) is a malignant tumor with a high rate of recurrence and a poor prognosis. Here, we investigated the effect and the potential antitumor mechanism of Gamabufotalin (CS-6) against HCC. Our results show that CS-6 strikingly reduced cell viability, inhibited colony formation, and promoted apoptosis in Hep3B and Huh7 cells. In vivo, CS-6 inhibited HCC xenograft tumor growth with no toxicity to normal tissues. Mechanistically, we found that CS-6 could induce cytoprotective autophagy through the mTOR-ULK1 signaling pathway through downregulation of p62 and upregulation of LC3 II/LC3 I. Meanwhile, CS-6 activated caspase-3 and PARP mediated apoptosis, and the caspase inhibitor Z-VAD-FMK blocked the CS-6-induced cell death in HCC cells. Moreover, autophagy and apoptosis were found to have antagonistic effects in Hep3B and Huh7 cells. Both the autophagy inhibitor chloroquine (CQ) and the mTOR activator MHY1485 blocked autophagy and further enhanced CS-6-induced apoptosis. Taken together, we demonstrated for the first time that CS-6 promotes apoptosis and cytoprotective autophagy through the mTOR signaling pathway in HCC, which proposes a novel strategy for HCC therapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Apoptosis , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Autofagia , Línea Celular Tumoral , Proliferación Celular
11.
Molecules ; 27(19)2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36235310

RESUMEN

During the course of a review of our publication, we found two errors in Figure 4b and Figure 9 [...].

12.
Ecotoxicol Environ Saf ; 225: 112763, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34544025

RESUMEN

In this research, micro Coix lacryma-jobi L. vertical flow constructed wetlands (VFCWs) were set up using domestic sewage (DWS) and 1/2 Hoagland nutrient solution (HNS) as VFCWs water sources. 0, 20 mg L-1 and 40 mg L-1 of Cr6+ (in the form of K2Cr7O2) were added into the water sources separately in order to study the response of Coix lacryma-jobi L. under Cr6+ stress. The results showed that the inhibition rates of Cr6 + on plant height, stem diameter, shoot and root dry weight treated with HNS were 2.88~10.16%, 5.12~11.86%, 3.53~6.51% and 2.89~6.34% higher than those in DWS treatment. SEM analysis showed that the nuclear bilayer membrane was slightly damaged, the chromatin decreased and the number of mitochondrial cristae decreased when treated with 20 mg L-1 of Cr6+, however, organelle damage was more severe under 40 mg L-1 of Cr6+exposure. The X-ray energy spectrum analysis results indicated that the accumulation of chromium in epidermis and endodermis were higher than those in stele. The contents of total Cr in roots, stems and leaves treated with HNS were higher than those of DWS treatment. The highest content of Cr was observed in cell wall (32.12-188.1 mg kg-1), followed by vacuole (5.0-38.14 mg kg-1). The contents of Cr in each subcellular component in roots, stems, and leaves treated with HNS were higher than those of DWS, except for organelle components in the 14th week. DWS was used as water influent, the contents of easily migrated combined Cr (ETM) in roots, stems and leaves were significantly lower than those in HNS treatment. Improving the nutritional conditions of constructed wetlands might be beneficial to the improvement of their ability to purify chrome-containing waste water.


Asunto(s)
Coix , Cromo/toxicidad , Aguas del Alcantarillado , Aguas Residuales , Humedales
13.
J Transl Med ; 18(1): 40, 2020 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-32000807

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is the most common type of liver tumour, and is closely related to liver cirrhosis. Previous studies have focussed on the pathogenesis of liver cirrhosis developing into HCC, but the molecular mechanism remains unclear. The aims of the present study were to identify key genes related to the transformation of cirrhosis into HCC, and explore the associated molecular mechanisms. METHODS: GSE89377, GSE17548, GSE63898 and GSE54236 mRNA microarray datasets from Gene Expression Omnibus (GEO) were analysed to obtain differentially expressed genes (DEGs) between HCC and liver cirrhosis tissues, and network analysis of protein-protein interactions (PPIs) was carried out. String and Cytoscape were used to analyse modules and identify hub genes, Kaplan-Meier Plotter and Oncomine databases were used to explore relationships between hub genes and disease occurrence, development and prognosis of HCC, and the molecular mechanism of the main hub gene was probed using Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway analysis. RESULTS: In total, 58 DEGs were obtained, of which 12 and 46 were up- and down-regulated, respectively. Three hub genes (CDKN3, CYP2C9 and LCAT) were identified and associated prognostic information was obtained. CDKN3 may be correlated with the occurrence, invasion, and recurrence of HCC. Genes closely related to changes in the CDKN3 hub gene were screened, and Kyoto Encyclopedia of Genes and Genomes (KEGGs) pathway analysis identified numerous cell cycle-related genes. CONCLUSION: CDKN3 may affect the transformation of liver cirrhosis into HCC, and represents a new candidate molecular marker of the occurrence and progression of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/genética , Biología Computacional , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Cirrosis Hepática/genética , Neoplasias Hepáticas/genética , Recurrencia Local de Neoplasia
14.
Int J Mol Sci ; 21(18)2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32906715

RESUMEN

Coating a cationic antibacterial layer on the surface of cotton fabric is an effective strategy to provide it with excellent antibacterial properties and to protect humans from bacterial cross-infection. However, washing with anionic detergent will inactivate the cationic antibacterial coating. Although this problem can be solved by increasing the amount of cationic antibacterial coating, excessive cationic antibacterial coating reduces the drapability of cotton fabric and affects the comfort of wearing it. In this study, a coordinated antibacterial coating strategy based on quaternary ammonium salt and a halogenated amine compound was designed. The results show that the antibacterial effect of the modified cotton fabric was significantly improved. In addition, after mechanically washing the fabric 50 times in the presence of anionic detergent, the antibacterial effect against Staphylococcus aureus and Escherichia coli was still more than 95%. Furthermore, the softness of the obtained cotton fabric showed little change compared with the untreated cotton fabric. This easy-to-implement and cost-effective approach, combined with the cationic contact and the release effect of antibacterial agents, can endow cotton textiles with durable antibacterial properties and excellent wearability.

15.
Proc Natl Acad Sci U S A ; 113(6): E735-43, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26744312

RESUMEN

The arthropod-specific juvenile hormone (JH) controls numerous essential functions. Its involvement in gene activation is known to be mediated by the transcription factor Methoprene-tolerant (Met), which turns on JH-controlled genes by directly binding to E-box-like motifs in their regulatory regions. However, it remains unclear how JH represses genes. We used the Aedes aegypti female mosquito, in which JH is necessary for reproductive maturation, to show that a repressor, Hairy, is required for the gene-repressive action of JH and Met. The RNA interference (RNAi) screen for Met and Hairy in the Aedes female fat body revealed a large cohort of Met- and Hairy-corepressed genes. Analysis of selected genes from this cohort demonstrated that they are repressed by JH, but RNAi of either Met or Hairy renders JH ineffective in repressing these genes in an in vitro fat-body culture assay. Moreover, this JH action was prevented by the addition of the translational inhibitor cycloheximide (CHX) to the culture, indicating the existence of an indirect regulatory hierarchy. The lack of Hairy protein in the CHX-treated tissue was verified using immunoblot analysis, and the upstream regions of Met/Hairy-corepressed genes were shown to contain common binding motifs that interact with Hairy. Groucho (gro) RNAi silencing phenocopied the effect of Hairy RNAi knockdown, indicating that it is involved in the JH/Met/Hairy hierarchy. Finally, the requirement of Hairy and Gro for gene repression was confirmed in a cell transfection assay. Thus, our study has established that Hairy and its cofactor Gro mediate the repressive function of JH and Met.


Asunto(s)
Aedes/genética , Regulación de la Expresión Génica , Genes de Insecto , Proteínas de Insectos/metabolismo , Hormonas Juveniles/metabolismo , Metopreno/metabolismo , Proteínas Represoras/metabolismo , Animales , Secuencia de Bases , Pollos , Proteínas Co-Represoras/metabolismo , Cuerpo Adiposo/metabolismo , Femenino , Ontología de Genes , Genes Reporteros , Inmunoprecipitación , Luciferasas/metabolismo , Datos de Secuencia Molecular , Motivos de Nucleótidos/genética , Regiones Promotoras Genéticas/genética , Unión Proteica , Interferencia de ARN , Ratas , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN , Transfección
16.
Future Oncol ; 14(20): 2005-2011, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29513033

RESUMEN

AIM: To explore the association between the determinant factors including HLA-DQB1*03, DRB1-*07, -*13 and high-risk HPV infection, the cervical squamous cell carcinoma (CSCC) pathogenesis among Chinese Uighur and Han population. MATERIALS & METHODS: HLA alleles were genotyped by PCR sequence-specific primers. RESULTS: HPV16 infection rate was significantly higher among the Uighurs and Hans with CSCC as compared with healthy controls, respectively. HLA-DQB1*03 significantly increased among Uighurs with CSCC, while HLA-DRB1*07 significantly increased among Hans with CSCC. Similar tendencies were observed for DQB1*03 with HPV16-positive Uighurs CSCC and DRB1*07 with HPV16-positive Hans CSCC. CONCLUSION: This study suggests that HLA-DQB1*03 and DRB1*07 alleles may influence the immune response to HPV16 infection and increase the risk of CSCC among the Uighurs and Hans in China.


Asunto(s)
Alelos , Etnicidad/genética , Predisposición Genética a la Enfermedad , Cadenas beta de HLA-DQ/genética , Neoplasias del Cuello Uterino/genética , Adulto , Anciano , China/epidemiología , Femenino , Papillomavirus Humano 16 , Humanos , Persona de Mediana Edad , Oportunidad Relativa , Infecciones por Papillomavirus/virología , Medición de Riesgo , Análisis de Secuencia de ADN , Neoplasias del Cuello Uterino/virología , Adulto Joven
17.
PLoS Genet ; 11(7): e1005309, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26158648

RESUMEN

Hematophagous mosquitoes serve as vectors of multiple devastating human diseases, and many unique physiological features contribute to the incredible evolutionary success of these insects. These functions place high-energy demands on a reproducing female mosquito, and carbohydrate metabolism (CM) must be synchronized with these needs. Functional analysis of metabolic gene profiling showed that major CM pathways, including glycolysis, glycogen and sugar metabolism, and citrate cycle, are dramatically repressed at post eclosion (PE) stage in mosquito fat body followed by a sharply increase at post-blood meal (PBM) stage, which were also verified by Real-time RT-PCR. Consistent to the change of transcript and protein level of CM genes, the level of glycogen, glucose and trehalose and other secondary metabolites are also periodically accumulated and degraded during the reproductive cycle respectively. Levels of triacylglycerols (TAG), which represent another important energy storage form in the mosquito fat body, followed a similar tendency. On the other hand, ATP, which is generated by catabolism of these secondary metabolites, showed an opposite trend. Additionally, we used RNA interference studies for the juvenile hormone and ecdysone receptors, Met and EcR, coupled with transcriptomics and metabolomics analyses to show that these hormone receptors function as major regulatory switches coordinating CM with the differing energy requirements of the female mosquito throughout its reproductive cycle. Our study demonstrates how, by metabolic reprogramming, a multicellular organism adapts to drastic and rapid functional changes.


Asunto(s)
Aedes/metabolismo , Metabolismo de los Hidratos de Carbono/genética , Metabolismo de los Hidratos de Carbono/fisiología , Proteínas de Insectos/genética , Hormonas Juveniles/genética , Receptores de Esteroides/genética , Reproducción/fisiología , Adenosina Trifosfato/metabolismo , Animales , Cuerpo Adiposo/metabolismo , Glucosa/metabolismo , Glucógeno/metabolismo , Proteínas de Insectos/metabolismo , Interferencia de ARN , ARN Interferente Pequeño , Receptores de Esteroides/metabolismo , Reproducción/genética , Trehalosa/metabolismo , Triglicéridos/metabolismo
18.
Ecotoxicol Environ Saf ; 165: 564-572, 2018 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-30236918

RESUMEN

In acidic Cd-contaminated soils, soil nitrogen conversion is inhibited and usually block nitrogen supply for plants. Earthworms are well known for improving soil properties and regulating various soil biogeochemical processes including nitrogen cycling. To figure out the effect and mechanisms of earthworms on soil nitrogen transformation in Cd-contaminated soil, ten treatments with and without A. robustus in five soil Cd concentration gradients were established. The tolerant concentration of A. robustus to Cd in the acidic soil is about 6 mg kg-1. The potential ammonia oxidation of the acidic soils was very low, ranging from 0.05 to 0.1 µg NO2--N g-1 d-1. Although AOA was more abundant in the acidic soil than AOB, AOA was inhibited by Cd pollution, while AOB showed some increase under Cd-stress. AOA may play a dominant role in ammonia oxidation in acidic soil, but the recovery of nitrification in Cd-contaminated acidic soil was probably due to the effect of AOB. Earthworms significantly increased soil pH, DOC, ammonium and PAO, thus promoted soil ammonification and potential nitrification, but had no significant effect on soil net nitrification. Correlation analysis results demonstrate that earthworms may promote soil PAO by increasing soil pH, NH4+-N content, and AOB abundance. This study could provide a theoretical basis for solving the problem of nitrogen-cycling-functional degradation and nitrogen supply in the process of phytoremediation of heavy metals-contaminated soils.


Asunto(s)
Cadmio/análisis , Nitrógeno/metabolismo , Oligoquetos/metabolismo , Contaminantes del Suelo/análisis , Animales , Archaea/metabolismo , Cadmio/química , Restauración y Remediación Ambiental , Nitrificación , Oxidación-Reducción , Suelo/química , Microbiología del Suelo , Contaminantes del Suelo/química
19.
Molecules ; 23(12)2018 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-30572689

RESUMEN

The stimuli-sensitive and biodegradable hydrogels are promising biomaterials as controlled drug delivery systems for diverse biomedical applications. In this study, we construct hybrid hydrogels combined with peptide-based bis-acrylate and acrylic acid (AAc). The peptide-based bis-acrylate/AAc hybrid hydrogel displays an interconnected and porous structure by scanning electron microscopy (SEM) observation and exhibits pH-dependent swelling property. The biodegradation of hybrid hydrogels was characterized by SEM and weight loss, and the results showed the hydrogels have a good enzymatic biodegradation property. The mechanical and cytotoxicity properties of the hydrogels were also tested. Besides, triclosan was preloaded during the hydrogel formation for drug release and antibacterial studies. In summary, the peptide-based bis-acrylate/AAc hydrogel with stimuli sensitivity and biodegradable property may be excellent candidates as drug delivery systems for antibacterial wound dressing application.


Asunto(s)
Antibacterianos/química , Sistemas de Liberación de Medicamentos/métodos , Hidrogeles/química , Péptidos/química , Concentración de Iones de Hidrógeno , Microscopía Electrónica de Rastreo
20.
Exp Mol Pathol ; 102(1): 15-21, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27939650

RESUMEN

Tumor associated macrophages (TAMs) play an important role in the growth, progression, and metastasis of tumors. The distribution of TAMs in Kazakh esophageal squamous cell carcinoma (ESCC) is not determined. We aimed to investigate the role of TAMs in the occurrence and progression of Kazakh ESCC. CD163 was used as the TAM marker, and immunohistochemistry (IHC) counts were used to quantify the density of TAMs in tumor nest and surrounding stroma. IHC staining was used to evaluate the expression of vascular endothelial growth factor C (VEGF-C) in Kazakh ESCC and cancer adjacent normal (CAN) tissues. The density of TAMs in Kazakh ESCCs tumor nest and stromal was significantly higher than that in CAN tissues. The increased number of CD163-positive TAMs in tumor nest and tumor stromal was positively associated with Kazakh ESCC lymph node metastasis and clinical stage progression. Meanwhile, the expression of VEGF-C in Kazakh ESCCs was significantly higher than that in CAN tissues. Overexpression of VEGF-C in Kazakh ESCCs was significantly associated with gender, depth of tumor invasion, lymph node metastasis and tumor clinical stage. The increased number of TAMs, either in the tumor nests or tumor stroma was positively correlated with the overexpression of VEGF-C, which may promote lymphangiogenesis and play an important role in the invasion and metastasis of Kazakh ESCC.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Neoplasias Esofágicas/metabolismo , Macrófagos/metabolismo , Factor C de Crecimiento Endotelial Vascular/biosíntesis , Análisis de Varianza , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Carcinoma de Células Escamosas/patología , Progresión de la Enfermedad , Neoplasias Esofágicas/patología , Femenino , Humanos , Inmunohistoquímica , Metástasis Linfática , Macrófagos/patología , Masculino , Persona de Mediana Edad , Invasividad Neoplásica , Estadificación de Neoplasias , Receptores de Superficie Celular/metabolismo , Factores Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA