Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 719: 150084, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38733742

RESUMEN

INTRODUCTION: Colorectal cancer (CRC) is a prevalent digestive malignancy with significant global mortality and morbidity rates. Improving diagnostic capabilities for CRC and investigating novel therapeutic approaches are pressing clinical imperatives. Additionally, carcinoembryonic antigen (CEA) has emerged as a highly promising candidate for both colorectal tumor imaging and treatment. METHODS: A novel active CEA-targeting nanoparticle, CEA(Ab)-MSNs-ICG-Pt, was designed and synthesized, which served as a tumor-specific fluorescence agent to help in CRC near-infrared (NIR) fluorescence imaging. In cell studies, CEA(Ab)-MSNs-ICG-Pt exhibited specific targeting to RKO cells through specific antibody-antigen binding of CEA, resulting in distribution both within and around these cells. The tumor-targeting-specific imaging capabilities of the nanoparticle were determined through in vivo fluorescence imaging experiments. Furthermore, the efficacy of the nanoparticle in delivering chemotherapeutics and its killing effect were evaluated both in vitro and in vivo. RESULTS: The CEA(Ab)-MSNs-ICG-Pt nanoparticle, designed as a novel targeting agent for carcinoembryonic antigen (CEA), exhibited dual functionality as a targeting fluorescent agent. This CEA-targeting nanoparticle showed exceptional efficacy in eradicating CRC cells in comparison to individual treatment modalities. Furthermore, it exhibits exceptional biosafety and biocompatibility properties. CEA(Ab)-MSNs-ICG-Pt exhibits significant promise due to its ability to selectively target tumors through NIR fluorescence imaging and effectively eradicate CRC cells with minimal adverse effects in both laboratory and in vivo environments. CONCLUSION: The favorable characteristics of CEA(Ab)-MSNs-ICG-Pt offer opportunities for its application in chemotherapeutic interventions, tumor-specific NIR fluorescence imaging, and fluorescence-guided surgical procedures.


Asunto(s)
Antígeno Carcinoembrionario , Neoplasias Colorrectales , Nanopartículas , Antígeno Carcinoembrionario/metabolismo , Neoplasias Colorrectales/diagnóstico por imagen , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Nanopartículas/química , Humanos , Animales , Línea Celular Tumoral , Imagen Óptica/métodos , Ratones , Ratones Desnudos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Ratones Endogámicos BALB C , Colorantes Fluorescentes/química
2.
J Org Chem ; 89(7): 5170-5180, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38545893

RESUMEN

A chiral NHC-catalyzed [3 + 3] cycloaddition reaction of 3-aminobenzofurans with isatin-derived enals has been documented, furnishing 3,4'-piperidinoyl spirooxindoles bearing a quaternary stereocenter with good yields and excellent enantioselectivities. Further gram-scale preparation and synthetic transformation of the cycloadducts to δ-amino acid derivative demonstrated good practicality and applicability of this reaction.

3.
Molecules ; 29(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38542831

RESUMEN

Catalytic hydrogenation presents a promising approach for converting CO2 into valuable chemicals and fuels, crucial for climate change mitigation. Iron-based catalysts have emerged as key contributors, particularly in driving the reverse water-gas shift and Fischer-Tropsch synthesis reactions. Recent research has focused on enhancing the efficiency and selectivity of these catalysts by incorporating alkali metal promoters or transition metal dopants, enabling precise adjustments to their composition and properties. This review synthesizes recent theoretical advancements in CO2 hydrogenation with iron-based catalysts, employing density functional theory and microkinetic modeling. By elucidating the underlying mechanisms involving metallic iron, iron oxides, and iron carbides, we address current challenges and provide insights for future sustainable CO2 hydrogenation developments.

4.
Angew Chem Int Ed Engl ; : e202405969, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760324

RESUMEN

High-silica CHA zeolite membranes are highly desired for natural gas upgrading because of their separation performance in combination with superior mechanical and chemical stability. However, the narrow synthesis condition range significantly constrains scale-up preparation. Herein, we propose a facile interzeolite conversion approach using the FAU zeolite to prepare SSZ-13 zeolite seeds, featuring a shorter induction and a longer crystallization period of the membrane synthesis on hollow fiber substrates. The membrane thickness was constant at ~3 µm over a wide span of synthesis time (24-96 h), while the selectivity (separation efficiency) was easily improved by extending the synthesis time without compromising permeance (throughput). At 0.2 MPa feed pressure and 303 K, the membranes showed an average CO2 permeance of (5.2±0.5)×10-7 mol m-2 s-1 Pa-1 (1530 GPU), with an average CO2/CH4 mixture selectivity of 143±7. Minimal defects ensure a high selectivity of 126 with a CO2 permeation flux of 0.4 mol m-2 s-1 at 6.1 MPa feed pressure, far surpassing requirements for industrial applications. The feasibility for successful scale-up of our approach was further demonstrated by the batch synthesis of 40 cm-long hollow fiber SSZ-13 zeolite membranes exhibiting CO2/CH4 mixture selectivity up to 400 (0.2 MPa feed pressure and 303 K) without using sweep gas.

5.
Bioorg Chem ; 138: 106654, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37300959

RESUMEN

Parkinson's disease (PD) is a progressive neurodegenerative disorder with a complex etiology. Neuroinflammation and oxidative stress are important factors driving the progression of PD. It has been reported that 1,3,4-oxadiazole and flavone derivatives have numerous biological functions, especially in the aspect of anti-inflammatory and antioxidant. Based on the strategy of pharmacodynamic combination, we introduced 1,3,4-oxadiazole moiety into the flavonoid backbone, designed and synthesized a series of novel flavonoid 1,3,4-oxadiazole derivatives. Further, we evaluated their toxicity, anti-inflammatory and antioxidant activities using BV2 microglia. Following a comprehensive analysis, compound F12 showed the best pharmacological activity. In vivo, we induced the classical PD animal model by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) into C57/BL6J mice. Our results showed that compound F12 ameliorated MPTP-induced dysfunction in mice. Further, compound F12 reduced oxidative stress by promoting the nucleation of nuclear factor erythroid 2-related factor 2 (Nrf2) and decreased the inflammatory response by inhibiting the nuclear translocation of nuclear factor-κB (NF-κB) in vivo and in vitro. Meanwhile, compound F12 inhibited the mitochondrial apoptotic pathway to rescue microglia inflammation-mediated loss of dopaminergic neurons. In conclusion, compound F12 reduced oxidative stress and inflammation and could be as a potential agent for PD treatment.


Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , Ratones , Animales , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , FN-kappa B/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Antioxidantes/farmacología , Flavonoides/farmacología , Flavonoides/uso terapéutico , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Transducción de Señal , Inflamación/tratamiento farmacológico , Antiinflamatorios/farmacología , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
6.
Acta Pharmacol Sin ; 44(2): 308-320, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35948752

RESUMEN

Sensitization of central pain and inflammatory pathways play essential roles in migraine, a primary neurobiological headache disorder. Since hypoxia-inducible factor-1α (HIF-1α) is implicated in neuroprotection and inflammation inhibition, herein we investigated the role of HIF-1α in migraine. A chronic migraine model was established in mice by repeated injection of nitroglycerin (10 mg/kg, i.p.) every other day for 5 total injections. In the prevention and acute experiments, roxadustat, a HIF-1α stabilizer, was orally administered starting before or after nitroglycerin injection, respectively. Pressure application measurement, and tail flick and light-aversive behaviour tests were performed to determine the pressure pain threshold, thermal nociceptive sensitivity and migraine-related light sensitivity. At the end of experiments, mouse serum samples and brain tissues were collected for analyses. We showed that roxadustat administration significantly attenuated nitroglycerin-induced basal hypersensitivity and acute hyperalgesia by improving central sensitization. Roxadustat administration also decreased inflammatory cytokine levels in serum and trigeminal nucleus caudalis (TNC) through NF-κB pathway. Consistent with the in vivo results showing that roxadustat inhibited microglia activation, roxadustat (2, 10, and 20 µM) dose-dependently reduced ROS generation and inflammation in LPS-stimulated BV-2 cells, a mouse microglia cell line, by inhibiting HIF-1α/NF-κB pathway. Taken together, this study demonstrates that roxadustat administration ameliorates migraine-like behaviours and inhibits central pain sensitization in nitroglycerin-injected mice, which is mainly mediated by HIF-1α/NF-κB/inflammation pathway, suggesting the potential of HIF-1α activators as therapeutics for migraine.


Asunto(s)
Trastornos Migrañosos , FN-kappa B , Ratones , Animales , FN-kappa B/metabolismo , Nitroglicerina/efectos adversos , Subunidad alfa del Factor 1 Inducible por Hipoxia , Umbral del Dolor , Trastornos Migrañosos/inducido químicamente , Trastornos Migrañosos/tratamiento farmacológico , Trastornos Migrañosos/metabolismo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico
7.
Chem Rev ; 120(16): 8303-8377, 2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32412734

RESUMEN

The steep stepwise uptake of water vapor and easy release at low relative pressures and moderate temperatures together with high working capacities make metal-organic frameworks (MOFs) attractive, promising materials for energy efficient applications in adsorption devices for humidity control (evaporation and condensation processes) and heat reallocation (heating and cooling) by utilizing water as benign sorptive and low-grade renewable or waste heat. Emerging MOF-based process applications covered are desiccation, heat pumps/chillers, water harvesting, air conditioning, and desalination. Governing parameters of the intrinsic sorption properties and stability under humid conditions and cyclic operation are identified. Transport of mass and heat in MOF structures, at least as important, is still an underexposed topic. Essential engineering elements of operation and implementation are presented. An update on stability of MOFs in water vapor and liquid systems is provided, and a suite of 18 MOFs are identified for selective use in heat pumps and chillers, while several can be used for air conditioning, water harvesting, and desalination. Most applications with MOFs are still in an exploratory state. An outlook is given for further R&D to realize these applications, providing essential kinetic parameters, performing smart engineering in the design of systems, and conceptual process designs to benchmark them against existing technologies. A concerted effort bridging chemistry, materials science, and engineering is required.

8.
Mol Breed ; 42(6): 33, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37312966

RESUMEN

Maize (Zea mays L.) is the most important food crop in the world, with significant acreage and production across the globe. However, it is affected by low temperatures throughout its growth process, especially during germination. Therefore, it is important to identify more QTLs or genes associated with germination under low-temperature conditions. For the QTL analysis of traits related to low-temperature germination, we used a high-res genetic map of 213 lines of the intermated B73 × Mo17 (IBM) Syn10 doubled haploid (DH) population, which had 6618 bin markers. We detected 28 QTLs of eight phenotypic characteristics associated with low-temperature germination, while they explained the phenotypic contribution rate of 5.4 ~ 13.34%. Additionally, 14 overlapping QTLs produced six QTL clusters on every chromosome, except for 8 and 10. RNA-Seq found six genes related to low-temperature tolerance in these QTLs, while qRT-PCR analysis demonstrated that the expression trends of the Zm00001d045568 gene in the LT_BvsLT_M group and the CK_BvsCK_M group were highly significantly different at all four-time points (P < 0.01), and encoded the RING zinc finger protein. It was located on qRTL9-2 and qRSVI9-1 and is related to the total length and simple vitality index. These results provided potential candidate genes for further gene cloning and improving the low-temperature tolerance of maize. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01297-6.

9.
Mediators Inflamm ; 2022: 5026103, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35677734

RESUMEN

Sepsis-induced inflammatory response leads to intestinal damage and secondary bacterial translocation, causing systemic infections and eventually death. Emodin is a natural anthraquinone derivative in many plants with promising bioactivities. However, the effects and mechanisms of emodin on sepsis-induced intestinal dysfunctions have not been well clarified yet. We found that emodin treatment suppressed the inflammatory response in the intestines of septic mice. Intestinal barrier function was also improved by emodin through enhancing ZO-1 and occludin expression, which prevented the secondary translocation of Escherichia coli. By proteome microarray investigation, JNK2 was identified as a direct target of emodin. In vitro study also showed that emodin inhibited LPS-induced inflammatory response in intestinal epithelial cells. Nuclear factors including NF-κB and AP-1 were further identified as downstream effectors of JNK2. Bioinformatic analysis based on 16s rRNA gene sequencing illustrated that emodin treatment significantly increased the alpha- and beta-diversity of gut microbiota in septic mice. Moreover, data according to functional prediction showed that emodin decreased the abundance of potential pathogenic bacteria in gut. Our findings have shown that emodin treatment prevented inflammatory induced barrier dysfunction and decreased the potential pathogenicity of lumen bacteria, reducing the hazard of lumen bacterial translocation during sepsis.


Asunto(s)
Emodina , Microbioma Gastrointestinal , Mucosa Intestinal , Sepsis , Animales , Emodina/uso terapéutico , Mucosa Intestinal/metabolismo , Lipopolisacáridos , Ratones , FN-kappa B/metabolismo , ARN Ribosómico 16S/metabolismo , Sepsis/tratamiento farmacológico , Sepsis/microbiología
10.
Angew Chem Int Ed Engl ; 60(16): 9032-9037, 2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33529488

RESUMEN

Capture and storage of the long-lived 85 Kr is an efficient approach to mitigate the emission of volatile radionuclides from the spent nuclear fuel reprocessing facilities. However, it is challenging to separate krypton (Kr) from xenon (Xe) because of the chemical inertness and similar physical properties. Herein we prepared high-silica CHA zeolite membranes with ultra-high selectivity and irradiation stability for Kr/Xe separation. The suitable aperture size and rigid framework endures the membrane a strong size-exclusion effect. The ultrahigh selectivity of 51-152 together with the Kr permeance of 0.7-1.3×10-8  mol m-2 s-1 Pa-1 of high-silica CHA zeolite membranes far surpass the state-of-the-art polymeric membranes. The membrane is among the most stable polycrystalline membranes for separation of humid Kr/Xe mixtures. Together with the excellent irradiation stability, high-silica CHA zeolite membranes pave the way to separate radioactive Kr from Xe for a notable reduction of the volatile nuclear waste storage volume.

11.
J Immunol ; 200(5): 1829-1838, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29367209

RESUMEN

Thoracic aortic dissection (TAD), once ruptured, is devastating to patients, and no effective pharmaceutical therapy is available. Anaphylatoxins released by complement activation are involved in a variety of diseases. However, the role of the complement system in TAD is unknown. We found that plasma levels of C3a, C4a, and C5a were significantly increased in patients with TAD. Elevated circulating C3a levels were also detected in the developmental process of mouse TAD, which was induced by ß-aminopropionitrile monofumarate (BAPN) treatment, with enhanced expression of C1q and properdin in mouse dissected aortas. These findings indicated activation of classical and alternative complement pathways. Further, expression of C3aR was obviously increased in smooth muscle cells of human and mouse dissected aortas, and knockout of C3aR notably inhibited BAPN-induced formation and rupture of TAD in mice. C3aR antagonist administered pre- and post-BAPN treatment attenuated the development of TAD. We found that C3aR knockout decreased matrix metalloproteinase 2 (MMP2) expression in BAPN-treated mice. Additionally, recombinant C3a stimulation enhanced MMP2 expression and activation in smooth muscle cells that were subjected to mechanical stretch. Finally, we generated MMP2-knockdown mice by in vivo MMP2 short hairpin RNA delivery using recombinant adeno-associated virus and found that MMP2 deficiency significantly reduced the formation of TAD. Therefore, our study suggests that the C3a-C3aR axis contributes to the development of TAD via regulation of MMP2 expression. Targeting the C3a-C3aR axis may represent a strategy for inhibiting the formation of TAD.


Asunto(s)
Disección Aórtica/metabolismo , Complemento C3a/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Receptores de Complemento/metabolismo , Anafilatoxinas/metabolismo , Animales , Células Cultivadas , Activación de Complemento/fisiología , Complemento C5a/metabolismo , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos del Músculo Liso/metabolismo , Receptor de Anafilatoxina C5a/metabolismo , Transducción de Señal/fisiología
12.
Chembiochem ; 20(19): 2467-2473, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31063617

RESUMEN

This study demonstrates that the enzymatic reaction rate can be increased significantly by targeted heating of the microenvironment around the enzyme, while maintaining the reaction system at environmental temperature. Enzyme molecules are covalently attached to the surface of Fe3 O4 @reduced graphite oxide (rGO). Under visible-light irradiation, the reaction rate catalyzed by the enzyme-Fe3 O4 @rGO system is clearly enhanced relative to that of the free enzyme and a mixture of free enzyme and Fe3 O4 @rGO. This local heating mechanism contributes to promotion of the enzymatic reactions of the targeted heating of the enzyme (THE) system, which has been validated by using different enzymes, including lipase, glucose oxidase, and organophosphorus hydrolase. These results indicate that targeted heating of the catalytic centers has the same effect on speeding up reactions as that of traditional heating methods, which treat the whole reaction system. As an example, it is shown that the THE system promotes the sensitivity of an enzyme screen-printed electrode by 14 times at room temperature, which implies that the THE system can be advantageous in improving enzyme efficiency, especially if heating the entire system is impossible or could lead to degradation of substrates or damage of components, such as in vitro bioanalysis of frangible molecules or in vivo diagnosis.


Asunto(s)
Arildialquilfosfatasa/metabolismo , Técnicas Biosensibles , Glucosa Oxidasa/metabolismo , Grafito/química , Calefacción/métodos , Lipasa/metabolismo , Nanopartículas/química , Arildialquilfosfatasa/química , Supervivencia Celular , Microambiente Celular , Compuestos Férricos/química , Glucosa Oxidasa/química , Humanos , Rayos Infrarrojos , Lipasa/química
13.
Angew Chem Int Ed Engl ; 58(43): 15518-15525, 2019 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-31452313

RESUMEN

Xe is only produced by cryogenic distillation of air, and its availability is limited by the extremely low abundance. Therefore, Xe recovery after usage is the only way to guarantee sufficient supply and broad application. Herein we demonstrate DD3R zeolite as a benchmark membrane material for CO2 /Xe separation. The CO2 permeance after an optimized membrane synthesis is one order magnitude higher than for conventional membranes and is less susceptible to water vapour. The overall membrane performance is dominated by diffusivity selectivity of CO2 over Xe in DD3R zeolite membranes, whereby rigidity of the zeolite structure plays a key role. For relevant anaesthetic composition (<5 % CO2 ) and condition (humid), CO2 permeance and CO2 /Xe selectivity stabilized at 2.0×10-8  mol m-2 s-1 Pa-1 and 67, respectively, during long-term operation (>320 h). This endows DD3R zeolite membranes great potential for on-stream CO2 removal from the Xe-based closed-circuit anesthesia system. The large cost reduction of up to 4 orders of magnitude by membrane Xe-recycling (>99+%) allows the use of the precious Xe as anaesthetics gas a viable general option in surgery.


Asunto(s)
Anestésicos/química , Xenón/química , Zeolitas/química , Adsorción , Dióxido de Carbono/química , Dióxido de Carbono/aislamiento & purificación , Difusión , Gases/química , Agua/química , Xenón/aislamiento & purificación
14.
Ecotoxicol Environ Saf ; 157: 201-206, 2018 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-29625393

RESUMEN

Al contamination becomes a growing problem in human society. Accumulation of Al in blood could destroy the structure and disorder function of erythrocyte, and finally cause blood diseases. In the present study, AlCl3 and Al(malt)3 are respectively used in the erythrocyte system, in order to investigate the comparative toxic effect on erythrocyte fragility, the influence on cellular biochemical components and lipid peroxidation level. We find that the osmotic fragility, the number of Heinz bodies, the content of MDA and advanced oxidation protein product of the AlCl3 treated erythrocytes were higher than the Al(malt)3 treated erythrocytes at the same concentrations of Al(Ⅲ). The morphological and membrane protein changes of the AlCl3 treated group show superior to the Al(malt)3 treated group. In summary, we conclude that the comparative effect on the erythrocyte between organic aluminum and inorganic aluminum is significantly different, and the prime comparative difference between the toxic effects of both the compounds is oxidative stress. Further research should focus on in vivo experiments to confirm the differential toxicity and to elucidate the molecular mechanisms underlying Al-induced erythrocyte toxicity in order to prevent hematological disorders.


Asunto(s)
Aluminio/toxicidad , Eritrocitos/efectos de los fármacos , Cloruro de Aluminio , Compuestos de Aluminio/toxicidad , Animales , Antioxidantes/metabolismo , Cloruros/toxicidad , Eritrocitos/citología , Eritrocitos/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Masculino , Compuestos Organometálicos/toxicidad , Estrés Oxidativo , Pironas/toxicidad , Ratas
15.
Neuromodulation ; 21(8): 762-776, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29111577

RESUMEN

OBJECTIVE: Acupuncture is widely applied for treatment of various neurological disorders. This manuscript will review the preclinical evidence of acupuncture in mediating neural plasticity, the mechanisms involved. MATERIALS AND METHODS: We searched acupuncture, plasticity, and other potential related words at the following sites: PubMed, EMBASE, Cochrane Library, Chinese National Knowledge Infrastructure (CNKI), and VIP information data base. The following keywords were used: acupuncture, electroacupuncture, plasticity, neural plasticity, neuroplasticity, neurogenesis, neuroblast, stem cell, progenitor cell, BrdU, synapse, synapse structure, synaptogenesis, axon, axon regeneration, synaptic plasticity, LTP, LTD, neurotrophin, neurotrophic factor, BDNF, GDNF, VEGF, bFGF, EGF, NT-3, NT-4, NT-5, p75NTR, neurotransmitter, acetylcholine, norepinephrine, noradrenaline, dopamine, monamine. We assessed the effects of acupuncture on plasticity under pathological conditions in this review. RESULTS: Relevant references were reviewed and presented to reflect the effects of acupuncture on neural plasticity. The acquired literatures mainly focused on neurogenesis, alterations of synapses, neurotrophins (NTs), and neurotranimitters. Acupuncture methods mentioned in this article include manual acupuncture and electroacupuncture. CONCLUSIONS: The cumulative evidences demonstrated that acupuncture could induce neural plasticity in rodents exposed to cerebral ischemia. Neural plasticity mediated by acupuncture in other neural disorders, such as Alzheimer's disease, Parkinson's disease, and depression, were also investigated and there is evidence of positive role of acupuncture induced plasticity in these disorders as well. Mediation of neural plasticity by acupuncture is likely associated with its modulation on NTs and neurotransmitters. The exact mechanisms underlying acupuncture's effects on neural plasticity remain to be elucidated. Neural plasticity may be the potential bridge between acupuncture and the treatment of various neurological diseases.


Asunto(s)
Terapia por Acupuntura , Sistema Nervioso Central/fisiología , Plasticidad Neuronal/fisiología , Animales , Humanos , Enfermedades del Sistema Nervioso/fisiopatología , Enfermedades del Sistema Nervioso/terapia
16.
Stroke ; 48(4): 1044-1051, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28289242

RESUMEN

BACKGROUND AND PURPOSE: Emerging evidence suggests that acupuncture could improve cognitive impairment in vascular dementia by enhancing synaptic plasticity in the hippocampus. The purpose of this study is to investigate whether dopamine, a key mediator of synaptic plasticity, is involved in this cognitive improvement. METHODS: Vascular dementia model was established by bilateral common carotid arteries occlusion in male Wistar rats. Three days after the operation, animals received acupuncture treatment for 2 weeks, once daily. The D1/D5 receptors antagonist SCH23390 was administered intraperitoneally 15 minutes before each acupuncture treatment. Morris water maze was examined after acupuncture. Long-term potentiation was studied by an electrophysiological technique. Dopamine and metabolites levels were detected by microdialysis and high-performance liquid chromatography from brain tissue. The expression of D1R and D5R was analyzed by immunofluorescence. RESULTS: Acupuncture remarkably reversed cognitive deficits in 2-vessel occlusion model (2VO) rats, and the acupuncture points Zusanli (ST36) and Baihui (GV20) were confirmed to be the most effective combination. Electrophysiological recording data showed that 2VO-induced impairments of long-term potentiation were prevented by acupuncture. In addition, acupuncture promoted the release of dopamine and its major metabolites in the hippocampus of 2VO rats. The immunofluorescence experiment showed that the decrease of D1R and D5R in hippocampal dentate gyrus region of 2VO rats was reversed by acupuncture. Furthermore, we found that the effects of acupuncture against 2VO-induced impairments in cognition and synaptic plasticity were abolished by SCH23390. CONCLUSIONS: Improvement in cognition and hippocampal synaptic plasticity induced by acupuncture was achieved via activation of D1/D5 receptors in 2VO rats.


Asunto(s)
Terapia por Acupuntura/métodos , Demencia Vascular/terapia , Giro Dentado/metabolismo , Giro Dentado/fisiopatología , Antagonistas de Dopamina/farmacología , Potenciación a Largo Plazo/fisiología , Trastornos de la Memoria/terapia , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D5/metabolismo , Animales , Conducta Animal , Benzazepinas/administración & dosificación , Benzazepinas/farmacología , Demencia Vascular/complicaciones , Modelos Animales de Enfermedad , Antagonistas de Dopamina/administración & dosificación , Masculino , Trastornos de la Memoria/etiología , Ratas , Ratas Wistar
17.
Neural Plast ; 2017: 8696402, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28270938

RESUMEN

The sympathetic nervous system, via epinephrine and norepinephrine, regulates ß-adrenergic receptor (ß-AR) expression, and renal sympathetic activation causes sustained increases in blood pressure by enhanced renin release. In this study, we aim to investigate the effect and underlying mechanism of acupuncture at Taichong (LR3) on renal sympathetic activity in spontaneously hypertensive rats. Unanesthetized rats were subject to daily acupuncture for 2 weeks. Mean blood pressure (MBP) and heart rate variability (HRV) were monitored at days 0, 7, and 14 by radiotelemetry. After euthanasia on the 14th day, blood and the kidneys were collected and subject to the following analyses. Epinephrine and norepinephrine were detected by ELISA. The expression of ß-ARs was studied by western blotting and PCR. The renin content was analyzed by radioimmunoassay. 14-day acupuncture significantly attenuates the increase of MBP. The HRV indices, the standard deviation of all normal NN intervals (SDNN), and the ratio of the low-frequency component to the high-frequency component (LF/HF) were improved following acupuncture. Renal sympathetic activation induced upregulation of epinephrine, norepinephrine, and renin content were attenuated by acupuncture. In addition, acupuncture decreased ß1-AR expression and improved ß2-AR expression. These results indicated that acupuncture relieves the increased MBP via the regulation of renal sympathetic activity and ß-ARs.


Asunto(s)
Terapia por Acupuntura , Presión Sanguínea , Frecuencia Cardíaca , Receptores Adrenérgicos beta/fisiología , Sistema Nervioso Simpático/fisiología , Animales , Epinefrina/metabolismo , Masculino , Norepinefrina/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Renina/metabolismo
19.
Org Lett ; 26(9): 1770-1774, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38353481

RESUMEN

General and efficient strategies for highly diastereoselective synthesis of divergent heterocyclic scaffolds through desymmetric [3+3] cycloaddition of p-quinamines with 1,3-dipole surrogates hydroximoyl halides and α-halohydroxamates have been developed. This synthetic protocol provided a variety of heterocyclic architectures containing 1,2,4-oxadiazine and hydroquinoxaline skeletons in good yields with a wide substrate scope.

20.
Sleep ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38635888

RESUMEN

STUDY OBJECTIVES: To investigate the role of longitudinal change of sleep patterns in the incidence of cardiovascular diseases (CVD). METHODS: Based on UK Biobank, a total of 18,172 participants were enrolled. Five dimensions of healthy sleep including early chronotype, sleep 7-8 hours/day, free of insomnia, no snoring, and no frequent excessive daytime sleepiness were used to generate a healthy sleep score (HSS) ranging from 0 to 5. Corresponding to the HSS of 0-1, 2-3, and 4-5, the poor, intermediate, and healthy sleep pattern were defined. Based on changes of HSS across assessment 1 and 2, we calculated the absolute difference of HSS. For the change of sleep patterns, we categorized five profiles (stable healthy, worsening, stable intermediate, optimizing, and stable poor sleep patterns). The outcomes were incidence of CVD including coronary heart disease (CHD) and stroke. We assessed the adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) by Cox hazard models. RESULTS: Compared with participants with stable poor pattern, those who improved their sleep pattern or maintained the healthy sleep pattern had a 26% and 32% lower risk of CVD, respectively. Stable healthy sleep pattern was associated with a 29% and 44% reduced risk of CHD and stroke. Per unit longitudinal increment of the HSS was related to an 8% lower risk of CVD and CHD. Compared with individuals with constant HSS, those with decreased HSS had a 13% higher risk of developing CVD. CONCLUSION: Optimizing sleep pattern and maintaining the healthy sleep pattern may reduce the risk of CVD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA