Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Synchrotron Radiat ; 28(Pt 5): 1662-1668, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34475313

RESUMEN

The new Brain Imaging Beamline (BIB) of the Taiwan Photon Source (TPS) has been commissioned and opened to users. The BIB and in particular its endstation are designed to take advantage of bright unmonochromatized synchrotron X-rays and target fast 3D imaging, ∼1 ms exposure time plus very high ∼0.3 µm spatial resolution. A critical step in achieving the planned performances was the solution to the X-ray induced damaging problems of the detection system. High-energy photons were identified as their principal cause and were solved by combining tailored filters/attenuators and a high-energy cut-off mirror. This enabled the tomography acquisition throughput to reach >1 mm3 min-1, a critical performance for large-animal brain mapping and a vital mission of the beamline.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagenología Tridimensional , Traumatismos por Radiación/prevención & control , Microtomografía por Rayos X/instrumentación , Animales , Diseño de Equipo , Fotones , Sincrotrones , Taiwán
2.
J Antimicrob Chemother ; 71(7): 1922-32, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27098012

RESUMEN

OBJECTIVES: Enterovirus 71 (EV-A71) is an important pathogen that can cause severe neurological symptoms and even death. Our aim was to identify potent anti-EV-A71 compounds and study their underlying mechanisms and in vivo activity. METHODS: We identified a potent imidazolidinone derivative (abbreviated to PR66) as an inhibitor of EV-A71 infection from the screening of compounds and subsequent structure-based modification. Time-course treatments and resistant virus selection of PR66 were employed to study the mode of mechanism of PR66. In vivo activity of PR66 was tested in the ICR strain of new-born mice challenged with EV-A71/4643/MP4. RESULTS: PR66 could impede the uncoating process during viral infection via interaction with capsid protein VP1, as shown by a resistant virus selection assay. Using site-directed mutagenesis, we confirmed that a change from valine to phenylalanine in the 179th amino acid residue of the cDNA-derived resistant virus resulted in resistance to PR66. PR66 increased the virion stability of WT viruses, but not the PR66-resistant mutant, in a particle stability thermal release assay. We further showed that PR66 had excellent anti-EV-A71 activity in an in vivo mouse model of disease, with a dose-dependent increase in survival rate and in protection against virus-induced hind-limb paralysis following oral or intraperitoneal administration. This was associated with reductions of viral titres in brain and muscle tissues. CONCLUSIONS: We demonstrated here for the first time that an imidazolidinone derivative (PR66) could protect against EV-A71-induced neurological symptoms in vivo by suppressing EV-A71 replication. This involved binding to and restricting viral uncoating.


Asunto(s)
Antivirales/metabolismo , Antivirales/farmacología , Cápside/efectos de los fármacos , Enterovirus Humano A/efectos de los fármacos , Animales , Antivirales/aislamiento & purificación , Línea Celular , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Infecciones por Enterovirus/tratamiento farmacológico , Infecciones por Enterovirus/virología , Humanos , Concentración 50 Inhibidora , Ratones Endogámicos ICR , Análisis de Supervivencia
3.
Sci Rep ; 12(1): 9668, 2022 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-35690597

RESUMEN

Microscopy by Achromatic X-rays With Emission of Laminar Light (MAXWELL) is a new X-ray/visible technique with attractive characteristics including isotropic resolution in all directions, large-volume imaging and high throughput. An ultrathin, laminar X-ray beam produced by a Wolter type I mirror irradiates the sample stimulating the emission of visible light by scintillating nanoparticles, captured by an optical system. Three-dimensional (3D) images are obtained by scanning the specimen with respect to the laminar beam. We implemented and tested the technique with a high-brightness undulator at SPring-8, demonstrating its validity for a variety of specimens. This work was performed under the Synchrotrons for Neuroscience-an Asia-Pacific Strategic Enterprise (SYNAPSE) collaboration.


Asunto(s)
Microscopía , Sincrotrones , Imagenología Tridimensional , Luz , Microscopía/métodos , Tomografía Computarizada por Rayos X/métodos , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA