Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biomed Sci ; 31(1): 70, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39003473

RESUMEN

Coronaviruses employ various strategies for survival, among which the activation of endogenous or exogenous apoptosis stands out, with viral proteins playing a pivotal role. Notably, highly pathogenic coronaviruses such as SARS-CoV-2, SARS-CoV, and MERS-CoV exhibit a greater array of non-structural proteins compared to low-pathogenic strains, facilitating their ability to induce apoptosis via multiple pathways. Moreover, these viral proteins are adept at dampening host immune responses, thereby bolstering viral replication and persistence. This review delves into the intricate interplay between highly pathogenic coronaviruses and apoptosis, systematically elucidating the molecular mechanisms underpinning apoptosis induction by viral proteins. Furthermore, it explores the potential therapeutic avenues stemming from apoptosis inhibition as antiviral agents and the utilization of apoptosis-inducing viral proteins as therapeutic modalities. These insights not only shed light on viral pathogenesis but also offer novel perspectives for cancer therapy.


Asunto(s)
Apoptosis , SARS-CoV-2 , Humanos , SARS-CoV-2/fisiología , Proteínas Virales/metabolismo , Proteínas Virales/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , COVID-19/virología
2.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33785590

RESUMEN

Compelling evidence indicates that radiotherapy (RT) has a systemic inhibitory effect on nonirradiated lesions (abscopal effect) in addition to the ablation of irradiated tumors. However, this effect occurs only in rare circumstances in clinical practice, and mechanisms underlying the abscopal effect of RT are neither fully understood nor therapeutically utilized. Here we identified that intercellular adhesion molecule-1 (ICAM-1), an inducible glycoprotein of the immunoglobulin superfamily, is up-regulated in nonirradiated tumors responsive to RT. ICAM-1 expression in preclinical animal models can be noninvasively detected by optical imaging and positron emission tomography (PET) using near-infrared fluorescence dye- and 64Cu-labeled imaging probes that we synthesized, respectively. Importantly, the expression levels of ICAM-1 determined by quantitative PET imaging showed a strong negative linear correlation with the growth of nonirradiated tumors. Moreover, genetic or pharmacologic up-regulation of ICAM-1 expression by either an intratumoral injection of engineered recombinant adenovirus or systemic administration of a Toll-like receptor 7 agonist-capsulated nanodrug could induce markedly increased abscopal responses to local RT in animal models. Mechanistic investigation revealed that ICAM-1 expression can enhance both the activation and tumor infiltration of CD8+ T cells to improve the responses of the nonirradiated tumors to RT. Together, our findings suggest that noninvasive PET imaging of ICAM-1 expression could be a powerful means to predict the responses of nonirradiated tumors to RT, which could facilitate the exploration of new combination RT strategies for effective ablation of primary and disseminated lesions.


Asunto(s)
Antineoplásicos/administración & dosificación , Imiquimod/administración & dosificación , Molécula 1 de Adhesión Intercelular/metabolismo , Neoplasias Experimentales/radioterapia , Adenoviridae , Animales , Biomarcadores/metabolismo , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/metabolismo , Evaluación Preclínica de Medicamentos , Molécula 1 de Adhesión Intercelular/administración & dosificación , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/metabolismo , Ratones Endogámicos BALB C , Nanopartículas , Neoplasias Experimentales/diagnóstico por imagen , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/metabolismo , Tomografía de Emisión de Positrones
3.
J Med Virol ; 95(1): e28220, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36229923

RESUMEN

Recognizing aberrant cytoplasmic double-stranded DNA and stimulating innate immunity is essential for the host's defense against viruses and tumors. Cyclic GMP-AMP (cGAMP) synthase (cGAS) is a cytosolic DNA sensor that synthesizes the second messenger 2'3'-cGAMP and subsequently activates stimulator of interferon genes (STING)-mediated activation of TANK-binding kinase 1 (TBK1)/interferon regulatory factor 3 (IRF3) and the production of type I interferon (IFN-I). Both the cGAS-STING-mediated IFN-I antiviral defense and the countermeasures developed by diverse viruses have been extensively studied. However, recent studies have revealed a convergent evolutionary feature of severe acute respiratory syndrome coronavirus 2 and human immunodeficiency virus (HIV) viral proteins in terms of the selective regulation of cGAS-STING-mediated nuclear factor-κB (NF-κB) signaling without any effect on cGAS-STING-mediated TBK1/IRF3 activation and IFN production. The potential beneficial effect of this cGAS-STING-mediated, NF-κB-dependent antiviral effect, and the possible detrimental effect of IFN-I in the pathogenesis of coronavirus disease 2019 and HIV infection deserve more attention and future investigation.


Asunto(s)
COVID-19 , Infecciones por VIH , Infecciones por Papillomavirus , Humanos , SARS-CoV-2/genética , FN-kappa B/metabolismo , Nucleotidiltransferasas , Inmunidad Innata , ADN/metabolismo , Antivirales
4.
J Med Virol ; 95(1): e28175, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36163413

RESUMEN

Recognizing aberrant cytoplasmic dsDNA and stimulating cGAS-STING-mediated innate immunity is essential for the host defense against viruses. Recent studies have reported that SARS-CoV-2 infection, responsible for the COVID-19 pandemic, triggers cGAS-STING activation. cGAS-STING activation can trigger IRF3-Type I interferon (IFN) and autophagy-mediated antiviral activity. Although viral evasion of STING-triggered IFN-mediated antiviral function has been well studied, studies concerning viral evasion of STING-triggered autophagy-mediated antiviral function are scarce. In the present study, we have discovered that SARS-CoV-2 ORF3a is a unique viral protein that can interact with STING and disrupt the STING-LC3 interaction, thus blocking cGAS-STING-induced autophagy but not IRF3-Type I IFN induction. This novel function of ORF3a, distinct from targeting autophagosome-lysosome fusion, is a selective inhibition of STING-triggered autophagy to facilitate viral replication. We have also found that activation of bat STING can induce autophagy and antiviral activity despite its defect in IFN induction. Furthermore, ORF3a from bat coronaviruses can block bat STING-triggered autophagy and antiviral function. Interestingly, the ability to inhibit STING-induced autophagy appears to be an acquired function of SARS-CoV-2 ORF3a, since SARS-CoV ORF3a lacks this function. Taken together, these discoveries identify ORF3a as a potential target for intervention against COVID-19.


Asunto(s)
COVID-19 , Quirópteros , Interferón Tipo I , Animales , Humanos , Antivirales , Autofagia , Inmunidad Innata , Proteínas de la Membrana/genética , Nucleotidiltransferasas , Pandemias , SARS-CoV-2/metabolismo
5.
Eur J Nucl Med Mol Imaging ; 49(8): 2746-2760, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35106644

RESUMEN

PURPOSE: Hypoxia is a hallmark of solid tumors that is related to radiotherapy resistance. As galectin members, such as galectin-1 and galectin-3, are associated with tumor hypoxia, herein we aimed to investigate whether positron emission tomography (PET) imaging of galectin expression can be employed to effectively pinpoint tumor hypoxia, and to predict radiotherapy resistance. METHODS: We synthesized a galectin-targeting radiotracer, designated 68Ga-galectracer, by radiolabeling a thiodigalactoside derivative. The properties of 68Ga-galectracer for PET imaging of tumor hypoxia were characterized in three tumor hypoxia mouse models. Additionally, preliminary PET/CT was performed in two patients with lung cancer to investigate the potential application of 68Ga-galectracer for clinical imaging. RESULTS: High-contrast imaging was achieved in the murine acute hypoxia tumor model, A549 natural hypoxia model, and sorafenib treatment-induced hypoxic 4T1 tumor model by PET using 68Ga-galectracer. In fact, 68Ga-galectracer exhibited superior hypoxia detection to that of 18F-misonidazole in the 4T1 tumors. Moreover, tumors with high galectin expression levels, as detected by 68Ga-galectracer PET, exhibited significantly lower responses to subsequent radiotherapy compared to those with low galectin expression levels. In patients with lung cancer, PET imaging using 68Ga-galectracer provided data that were complementary to that of the glucose metabolic PET radiotracer 18F-fluorodeoxyglucose. CONCLUSION: 68Ga-galectracer is a promising radiotracer for PET-based imaging of tumor hypoxia in vivo. Thus, hypoxia PET with 68Ga-galectracer could provide a noninvasive approach to proactively predict radiotherapy efficacy. TRIAL REGISTRATION: Chictr.org.cn (ChiCTR2000029522). Registered 03 February 2020.


Asunto(s)
Radioisótopos de Galio , Neoplasias Pulmonares , Animales , Biomarcadores , Humanos , Hipoxia , Neoplasias Pulmonares/patología , Ratones , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Tomografía de Emisión de Positrones/métodos
6.
Eur J Nucl Med Mol Imaging ; 49(8): 2693-2704, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35235005

RESUMEN

PURPOSE: Radioligand therapy (RLT) targeting prostate-specific membrane antigen (PSMA) is emerging as an effective treatment option for metastatic castration-resistant prostate cancer (mCRPC). An imaging-based method to quantify early treatment responses can help to understand and optimize RLT. METHODS: We developed a self-triggered probe 2 targeting the colocalization of PSMA and caspase-3 for fluorescence imaging of RLT-induced apoptosis. RESULTS: The probe binds to PSMA potently with a Ki of 4.12 nM, and its fluorescence can be effectively switched on by caspase-3 with a Km of 67.62 µM. Cellular and in vivo studies demonstrated its specificity for imaging radiation-induced caspase-3 upregulation in prostate cancer. To identify the detection limit of our method, we showed that probe 2 could achieve 1.79 times fluorescence enhancement in response to 177Lu-RLT in a medium PSMA-expressing 22Rv1 xenograft model. CONCLUSION: Probe 2 can potently bind to PSMA, and the fluorescence signal can be sensitively switched on by caspase-3 both in vitro and in vivo. This method may provide an effective tool to investigate and optimize PSMA-RLT.


Asunto(s)
Lutecio , Neoplasias de la Próstata Resistentes a la Castración , Antígenos de Superficie , Caspasa 3 , Dipéptidos , Glutamato Carboxipeptidasa II , Compuestos Heterocíclicos con 1 Anillo , Humanos , Lutecio/uso terapéutico , Masculino , Imagen Óptica , Neoplasias de la Próstata Resistentes a la Castración/diagnóstico por imagen , Neoplasias de la Próstata Resistentes a la Castración/radioterapia , Resultado del Tratamiento
7.
Eur J Nucl Med Mol Imaging ; 49(6): 1810-1821, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35013776

RESUMEN

PURPOSE: Overexpression of epithelial cell adhesion molecule (EpCAM) plays essential roles in tumorigenesis and tumor progression in almost all epithelium-derived cancer. Monitoring EpCAM expression in tumors can be used for the diagnosis, staging, and prognosis of cancer patients, as well as guiding the individualized treatment of EpCAM-targeted drugs. In this study, we described the synthesis and evaluation of a site-specifically [99mTc]Tc-labeled EpCAM-targeted nanobody for the SPECT/CT imaging of EpCAM expression. METHODS: We first prepared the [99mTc]Tc-HYNIC-G4K; then, it was site-specifically connected to EpCAM-targeted nanobody NB4. The in vitro characteristics of [99mTc]Tc-NB4 were investigated in HT-29 (EpCAM positive) and HL-60 (EpCAM negative) cells, while the in vivo studies were performed using small-animal SPECT/CT in the subcutaneous tumor models and the lymph node metastasis model to verify the specific targeting capacity as well as the potential applications of [99mTc]Tc-NB4. RESULTS: [99mTc]Tc-NB4 displayed a high EpCAM specificity both in vitro and in vivo. SPECT/CT imaging revealed that [99mTc]Tc-NB4 was cleared rapidly from the blood and normal organs except for the kidneys, and HT-29 tumors were clearly visualized in contrast with HL-60 tumors. The uptake value of [99mTc]Tc-NB4 in HT-29 tumors was increased continuously from 3.77 ± 0.39%ID/g at 0.5 h to 5.53 ± 0.82%ID/g at 12 h after injection. Moreover, the [99mTc]Tc-NB4 SPECT/CT could clearly image tumor-draining lymph nodes. CONCLUSION: [99mTc]Tc-NB4 is a broad-spectrum, specific, and sensitive SPECT radiotracer for the noninvasive imaging of EpCAM expression in the epithelium-derived cancer and revealed a great potential for the clinical translation.


Asunto(s)
Neoplasias , Tomografía Computarizada de Emisión de Fotón Único , Animales , Línea Celular Tumoral , Molécula de Adhesión Celular Epitelial , Humanos , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único , Tecnecio , Tomografía Computarizada de Emisión de Fotón Único/métodos
8.
J Nanobiotechnology ; 19(1): 175, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34112200

RESUMEN

BACKGROUND: Adoptive T cell transfer-based immunotherapy yields unsatisfactory results in the treatment of solid tumors, partially owing to limited tumor infiltration and the immunosuppressive microenvironment in solid tumors. Therefore, strategies for the noninvasive tracking of adoptive T cells are critical for monitoring tumor infiltration and for guiding the development of novel combination therapies. METHODS: We developed a radiolabeling method for cytotoxic T lymphocytes (CTLs) that comprises metabolically labeling the cell surface glycans with azidosugars and then covalently conjugating them with 64Cu-1,4,7-triazacyclononanetriacetic acid-dibenzo-cyclooctyne (64Cu-NOTA-DBCO) using bioorthogonal chemistry. 64Cu-labeled control-CTLs and ovalbumin-specific CTLs (OVA-CTLs) were tracked using positron emission tomography (PET) in B16-OVA tumor-bearing mice. We also investigated the effects of focal adhesion kinase (FAK) inhibition on the antitumor efficacy of OVA-CTLs using a poly(lactic-co-glycolic) acid (PLGA)-encapsulated nanodrug (PLGA-FAKi). RESULTS: CTLs can be stably radiolabeled with 64Cu with a minimal effect on cell viability. PET imaging of 64Cu-OVA-CTLs enables noninvasive mapping of their in vivo behavior. Moreover, 64Cu-OVA-CTLs PET imaging revealed that PLGA-FAKi induced a significant increase in OVA-CTL infiltration into tumors, suggesting the potential for a combined therapy comprising OVA-CTLs and PLGA-FAKi. Further combination therapy studies confirmed that the PLGA-FAKi nanodrug markedly improved the antitumor effects of adoptive OVA-CTLs transfer by multiple mechanisms. CONCLUSION: These findings demonstrated that metabolic radiolabeling followed by PET imaging can be used to sensitively profile the early-stage migration and tumor-targeting efficiency of adoptive T cells in vivo. This strategy presents opportunities for predicting the efficacy of cell-based adoptive therapies and for guiding combination regimens.


Asunto(s)
Terapia Combinada/métodos , Inmunoterapia Adoptiva/métodos , Tomografía de Emisión de Positrones/métodos , Linfocitos T Citotóxicos/efectos de los fármacos , Linfocitos T Citotóxicos/patología , Traslado Adoptivo , Animales , Antineoplásicos , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Humanos , Melanoma Experimental , Ratones , Ratones Endogámicos C57BL , Ovalbúmina , Microambiente Tumoral
9.
Bioconjug Chem ; 31(8): 1971-1980, 2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32660241

RESUMEN

Human epidermal growth factor receptor-2 (HER2)-enriched breast cancer is characterized by strong invasiveness, high recurrence rate, and poor prognosis. HER2-specific imaging can help screening right patients for appropriate HER2-targeted therapies. Previously, we have developed a 99mTc-labeled HER2-targeted H6 peptide for SPECT imaging of breast cancer. However, the poor metabolic stability and high gallbladder uptake hamper its clinical application. In this study, a retro-inverso D-peptide of H6 (RDH6) was designed to increase the metabolic stability. PEGylation was used to improve its water solubility and in vivo pharmacokinetics. The results showed that the D-amino acids in 99mTc-PEG4-RDH6 brought better metabolic stability than 99mTc-PEG4-H6, thus achieving higher tumor uptake. As the length of the PEG chain increases, the hydrophilicity of the probes gradually increased, which may also be the main cause for the decreased liver uptake. Compared with radiotracers modified by PEG4 and PEG12, 99mTc-PEG24-RDH6 had a comparable tumor uptake and the lowest liver radioactivity. The SPECT imaging demonstrated that 99mTc-PEG24-RDH6 could specifically distinguish HER2-positive tumors from HER2-negative tumors with better imaging contrast, which thus has the potential for clinical screening of HER2-positive breast patients.


Asunto(s)
Neoplasias de la Mama/diagnóstico , Péptidos/química , Polietilenglicoles/química , Receptor ErbB-2/metabolismo , Tomografía Computarizada de Emisión de Fotón Único/métodos , Animales , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones SCID , Neoplasias Experimentales , Compuestos de Organotecnecio , Péptidos/inmunología , Receptor ErbB-2/genética
10.
Bioconjug Chem ; 31(5): 1510-1521, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32347718

RESUMEN

In this study, we reported a 99mTc-labeled integrin α6-targeted peptide as the molecular imaging probe for tumor imaging by single-photon emission computed tomography (SPECT). We found that replacing Cys-Cys cyclized RWY peptide (sequence: cCRWYDENAC) with lactam-bridged cyclic cKiE peptide (sequence: cKRWYDENAisoE) did not sacrifice the integrin α6-binding affinity and specificity of cKiE radiotracer. To further improve the radiotracer's tumor targeting capability, the dimerized cKiE peptide (termed cKiE2) was designed, and the corresponding radiotracer 99mTc-cKiE2 was evaluated for tumor uptake and in vivo pharmacokinetics properties in tumor models. We found that cKiE2 showed higher binding affinity to integrin α6 than did monomeric RWY or cKiE peptide. The biodistribution results showed that the tumor uptake of 99mTc-cKiE2 was twice higher than that of 99mTc-RWY (3.20 ± 0.12 vs 1.26 ± 0.06 %ID/g, P < 0.001) at 0.5 h postinjection. The tumor to nontargeting tissue ratios were also enhanced in most normal organs. Specificity of 99mTc-cKiE2 for integrin α6 was demonstrated by competitive blocking of tumor uptake with excess cold peptide (3.20 ± 0.24 to 1.38 ± 0.23 %ID/g, P < 0.001). The integrin α6-positive tumors were clearly visualized by 99mTc-cKiE2/SPECT with low background except with a relatively high kidney uptake. The tumor uptake of 99mTc-cKiE2 correlates well with the tumor integrin α6 expression levels in a linear fashion (R2 = 0.9623). We also compared 99mTc-cKiE2 with an integrin αvß3-targeted radiotracer 99mTc-3PRGD2 in the orthotopic hepatocellular carcinoma tumor models. We found that the orthotopic tumor was clearly visualized with 99mTc-cKiE2. 99mTc-3PRGD2 imaging did not show tumor contours in situ as clearly as 99mTc-cKiE2. The tumor-to-liver ratios of 99mTc-cKiE2 and 99mTc-3PRGD2 were 2.20 ± 0.17 and 0.85 ± 0.20. In conclusion, 99mTc-cKiE2 is an improved SPECT radiotracer for imaging integrin α6-positive tumors and has great potential for further clinical application.


Asunto(s)
Integrina alfa6/metabolismo , Péptidos/metabolismo , Animales , Transporte Biológico , Línea Celular Tumoral , Humanos , Ratones , Péptidos/química , Péptidos/farmacocinética , Unión Proteica , Trazadores Radiactivos , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único
11.
Eur J Nucl Med Mol Imaging ; 47(4): 991-1002, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31897587

RESUMEN

PURPOSE: The role that gut microbiota plays in determining the efficacy of the anti-tumor effect of immune checkpoint inhibitors is gaining increasing attention, and fecal bacterial transplantation has been recognized as a promising strategy for improving or rescuing the effect of immune checkpoint inhibition. However, techniques for the precise monitoring of in vivo bacterial behaviors after transplantation are limited. In this study, we aimed to use metabolic labeling and subsequent positron emission tomography (PET) imaging to track the in vivo behaviors of gut bacteria that are responsible for the efficacy of anti-PD-1 therapy in living mice. METHODS: The antitumor effect of anti-PD-1 blockade was tested in a low-response 4T1 syngeneic mouse model with or without fecal transplantation and with or without broad-spectrum antibiotic imipenem treatment. High-throughput sequencing analyses of 16S rRNA gene amplicons in feces of 4T1 tumor-bearing mice pre- and post-anti-PD-1 treatment were performed. The identified bacteria, Bacteroides fragilis (B. fragilis), were labeled with 64Cu and fluorescence dye by the metabolic labeling of N3 followed by click chemistry. In vivo PET and optical imaging of B. fragilis were performed in mice after oral gavage. RESULTS: The disturbance of gut microbiota reduced the efficacy of anti-PD-1 treatment, and the combination of B. fragilis gavage and PD-1 blockade was beneficial in rescuing the antitumor effect of anti-PD-1 therapy. Metabolic oligosaccharide engineering and biorthogonal click chemistry resulted in successful B. fragilis labeling with 64Cu and fluorescence dye with high in vitro and in vivo stability and no effect on viability. PET imaging successfully detected the in vivo behaviors of B. fragilis after transplantation. CONCLUSION: PET tracking by metabolic labeling is a powerful, noninvasive tool for the real-time tracking and quantitative imaging of gut microbiota. This strategy is clinically translatable and may also be extended to the PET tracking of other functional cells to guide cell-based adoptive therapies.


Asunto(s)
Microbioma Gastrointestinal , Animales , Antibacterianos , Ratones , Imagen Óptica , Tomografía de Emisión de Positrones , ARN Ribosómico 16S
12.
Mol Pharm ; 16(1): 339-348, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30452269

RESUMEN

Antiangiogenic therapies have been demonstrated to improve the efficacy of immune checkpoint inhibition by overcoming the immunosuppressive status of the tumor microenvironment. However, most of the current antiangiogenic agents cannot discriminate tumor angiogenesis from physiological angiogenesis. The aim of this study was to investigate whether a photodynamic therapy (PDT) agent that targets CD276, a receptor overexpressed in various tumor cells and tumor vasculature but with limited expression in normal tissue vasculature, could improve the tumor inhibitory efficacy of a PD-1/PD-L1 blockade. A CD276-targeting agent (IRD-αCD276/Fab) was synthesized by conjugating the Fab fragment of an anti-CD276 antibody with a photosensitizer IRDye700. The in vivo tumor-targeting efficacy and therapeutic effects of IRD-αCD276/Fab with or without an anti-PD-1/PD-L1 blockade were tested in subcutaneous and lung metastatic tumor models. PDT using IRD-αCD276/Fab significantly suppressed the growth of subcutaneous 4T1 tumor and inhibited its lung metastasis. Moreover, it triggered in vivo antitumor immunity by increasing the activation and maturation of dendritic cells. Tumor PD-L1 levels were also markedly increased after PDT using IRD-αCD276/Fab, as evidenced by noninvasive PD-L1-targeted small-animal PET imaging. In combination with an anti-PD-1/PD-L1 blockade, IRD-αCD276/Fab PDT markedly suppressed the growth of tumors and prevented their metastasis to the lung by recruiting the tumor infiltration of CD8+ T cells. Our data provide evidence for the role of CD276-targeted PDT for local immune modulation, and its combination with PD-L1/PD-1 axis inhibition is a promising strategy for eliminating primary tumors as well as disseminated metastases, by generating local and systemic antitumor responses.


Asunto(s)
Antígenos B7/metabolismo , Fotoquimioterapia/métodos , Receptor de Muerte Celular Programada 1/metabolismo , Animales , Anticuerpos/uso terapéutico , Antígenos B7/antagonistas & inhibidores , Línea Celular Tumoral , Humanos , Inmunoterapia , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/terapia , Imagen Molecular/métodos , Neovascularización Fisiológica , Fármacos Fotosensibilizantes/uso terapéutico , Microambiente Tumoral
13.
Anal Chim Acta ; 1288: 342184, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38220311

RESUMEN

BACKGROUND: Sulfur dioxide (SO2) is a common gaseous pollutant that significantly threatens environmental pollution and human health. Meanwhile, viscosity is an essential parameter of the intracellular microenvironment, manipulating many physiological roles such as nutrient transport, metabolism, signaling regulation and apoptosis. Currently, most of the fluorescent probes used for detecting SO2 derivatives and viscosity are single-emission probes or probes based on the ICT mechanism, which suffer from short emission wavelengths, small Stokes shifts or susceptibility to environmental background. Therefore, the development of powerful high-performance probes for real-time monitoring of sulfur dioxide derivatives and viscosity is of great significance for human health. RESULTS: In this research, we designed the fluorescent probe QQC to detect SO2 derivatives and viscosity based on FRET platform with quinolinium salt as donor and quinolinium-carbazole as acceptor. QQC exhibited a ratiometric fluorescence response to SO2 with a low detection limit (0.09 µM), large Stokes shift (186 nm) and high energy transfer efficiency (95 %), indicating that probe QQC had good sensitivity and specificity. In addition, QQC was sensitive to viscosity, with an 9.10-folds enhancement of orange fluorescence and an excellent linear relationship (R2 = 0.98) between the logarithm of fluorescence intensity at 592 nm and viscosity. Importantly, QQC could not only recognize SO2 derivatives in real water samples and food, but also detect viscosity changes caused by food thickeners and thereby had broad market application prospects. SIGNIFICANCE: We have developed a ratiometric fluorescent probe based on the FRET platform for detecting sulfur dioxide derivatives and viscosity. QQC could not only successfully detect SO2 derivatives in food and water samples, but also be made into test strips for detecting HSO3-/SO32- solution. In addition, the probe was also used to detect viscosity changes caused by food thickeners. Therefore, this novel probe had significant value in food and environmental detection applications.


Asunto(s)
Colorantes Fluorescentes , Dióxido de Azufre , Humanos , Transferencia Resonante de Energía de Fluorescencia , Viscosidad , Agua , Células HeLa
14.
Talanta ; 275: 126135, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38677165

RESUMEN

Hydrogen peroxide (H2O2) and viscosity play vital roles in the cellular environment as signaling molecule and microenvironment parameter, respectively, and are associated with many physiological and pathological processes in biological systems. We developed a near-infrared fluorescent probe, CQ, which performed colorimetric and ratiometric detection of H2O2 and viscosity based on the FRET mechanism, and was capable of monitoring changes in viscosity and H2O2 levels simultaneously through two different channels. Based on the specific reaction of H2O2 with borate ester, CQ exhibited a significant ratiometric response to H2O2 with a large Stokes shift of 221 nm, a detection limit of 0.87 µM, a near-infrared emission wavelength of 671 nm, a response time of 1 h, a wide detection ranges of 0.87-800 µM and a high energy transfer efficiency of 99.9 %. CQ could also recognize viscosity by the TICT mechanism, and efficiently detect viscosity changes caused by food thickeners. More importantly, CQ could successfully detect endogenous/exogenous H2O2 and viscosity in live HeLa cells, which was expected to be a practical tool for detecting H2O2 and viscosity in live cells.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes , Peróxido de Hidrógeno , Peróxido de Hidrógeno/análisis , Peróxido de Hidrógeno/química , Colorantes Fluorescentes/química , Humanos , Células HeLa , Transferencia Resonante de Energía de Fluorescencia/métodos , Viscosidad , Rayos Infrarrojos , Límite de Detección , Supervivencia Celular
15.
Theranostics ; 14(2): 699-713, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38169608

RESUMEN

Background: Radiotherapy (RT) may trigger systemic antitumor immunity, manifesting as regression of non-irradiated lesions (abscopal effect). Intracellular adhesion molecule-1 (ICAM-1) is a key molecule involved in the abscopal effect of RT. However, the specific function of ICAM-1 in CD8+ T cells during antitumor immune responses remains unclear. Herein, we investigated whether noninvasive imaging of ICAM-1 can be used to annotate CD8+ T-cell function, thereby better selecting combinational therapy to enhance the antitumor immunity induced by RT. Methods: Using knockout mouse models, we investigated the role of ICAM-1 expressed on CD8+ T cells in the antitumor immunity of RT and conducted drug screening guided by ICAM-1-targeted noninvasive imaging. Results: The systemic antitumor effect of RT relies on the expression of ICAM-1 on CD8+ T cells. ICAM-1 expression is essential for CD8+ T-cell activation, proliferation, and effector function. Noninvasive annotation of the proliferation and effector function of CD8+ T cells by ICAM-1-targeted imaging identified VS-6063, a focal adhesion kinase inhibitor, as a new adjuvant to augment systemic antitumor immunity of RT in an immunologically "cold" tumor model. Mechanistically, VS-6063 overcomes the physical barriers in tumors and promotes the migration and infiltration of CD8+ T cells primed by RT into distant tumors. Conclusion: Our findings highlight that molecular imaging of ICAM-1 levels provides a dynamic readout of the proliferation and effector function of tumor-infiltrating CD8+ T cells, which facilitates the high-throughput exploitation of new combinational drugs to maximize the systemic antitumor effect of RT.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Ratones , Animales , Molécula 1 de Adhesión Intercelular/metabolismo , Neoplasias/radioterapia , Neoplasias/metabolismo , Adyuvantes Inmunológicos/farmacología , Ratones Noqueados
16.
Lab Chip ; 22(14): 2624-2646, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35775630

RESUMEN

Electroporation is a fundamental technique for applications in biotechnology. To date, the ongoing research on cell membrane electroporation has explored its mechanism, principles and potential applications. Therefore, in this review, we first discuss the primary electroporation mechanism to help establish a clear framework. Within the context of its principles, several critical terms are highlighted to present a better understanding of the theory of aqueous pores. Different degrees of electroporation can be used in different applications. Thus, we discuss the electric factors (shock strength, shock duration, and shock frequency) responsible for the degree of electroporation. In addition, finding an effective electroporation detection method is of great significance to optimize electroporation experiments. Accordingly, we summarize several primary electroporation detection methods in the following sections. Finally, given the development of micro- and nano-technology has greatly promoted the innovation of microfluidic-based electroporation devices, we also present the recent advances in microfluidic-based electroporation devices. Also, the challenges and outlook of the electroporation technique for cell membrane electroporation are presented.


Asunto(s)
Electroporación , Microfluídica , Membrana Celular
17.
Lab Chip ; 22(17): 3277, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35917170

RESUMEN

Correction for 'Recent advances in microfluidic-based electroporation techniques for cell membranes' by Fei Wang et al., Lab Chip, 2022, 22, 2624-2646, https://doi.org/10.1039/D2LC00122E.

18.
J Clin Invest ; 132(16)2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35788116

RESUMEN

Accurately identifying patients who respond to immunotherapy remains clinically challenging. A noninvasive method that can longitudinally capture information about immune cell function and assist in the early assessment of tumor responses is highly desirable for precision immunotherapy. Here, we show that PET imaging using a granzyme B-targeted radiotracer named 68Ga-grazytracer, could noninvasively and effectively predict tumor responses to immune checkpoint inhibitors and adoptive T cell transfer therapy in multiple tumor models. 68Ga-grazytracer was designed and selected from several radiotracers based on non-aldehyde peptidomimetics, and exhibited excellent in vivo metabolic stability and favorable targeting efficiency to granzyme B secreted by effector CD8+ T cells during immune responses. 68Ga-grazytracer permitted more sensitive discrimination of responders and nonresponders than did 18F-fluorodeoxyglucose, distinguishing between tumor pseudoprogression and true progression upon immune checkpoint blockade therapy in mouse models with varying immunogenicity. In a preliminary clinical trial with 5 patients, no adverse events were observed after 68Ga-grazytracer injection, and clinical responses in cancer patients undergoing immunotherapy were favorably correlated with 68Ga-grazytracer PET results. These results highlight the potential of 68Ga-grazytracer PET to enhance the clinical effectiveness of granzyme B secretion-related immunotherapies by supporting early response assessment and precise patient stratification in a noninvasive and longitudinal manner.


Asunto(s)
Inmunoterapia , Neoplasias , Animales , Linfocitos T CD8-positivos , Granzimas , Factores Inmunológicos , Inmunoterapia/métodos , Ratones , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Tomografía de Emisión de Positrones/métodos
19.
Biosens Bioelectron ; 194: 113594, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34474280

RESUMEN

Gastric cancer cell-derived exosomes as biomarkers have a very high application potential to the non-invasive detection of early-stage gastric cancer. However, the small size of exosomes (30-150 nm) results in huge challenges in separating and detecting them from complex media (e.g., plasma, urine, saliva, and cell culture supernatant). Here we proposed a highly integrated exosome separation and detection (ExoSD) chip to immunomagnetic separate exosomes from cell culture supernatant in a manner of continuous flow, and to immunofluorescence detect gastric cancer cell-derived exosomes with high sensitivity. The ExoSD chip has achieved a high exosome recovery (>80%) and purity (>83%) at the injection rate of 4.8 mL/h. Furthermore, experimental results based on clinical serum samples of patients with gastric cancer (stages I and II) show that the detection rate of the ExoSD chip is as high as 70%. The proposed ExoSD chip has been successfully demonstrated as a cutting-edge platform for exosomes separation and detection. It can be served as a versatile platform to extend to the applications of separation and detection of the other cell-derived exosomes or cells.


Asunto(s)
Técnicas Biosensibles , Exosomas , Neoplasias Gástricas , Detección Precoz del Cáncer , Humanos , Separación Inmunomagnética , Neoplasias Gástricas/diagnóstico
20.
Front Cell Dev Biol ; 9: 686737, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34336836

RESUMEN

Many carcinomas feature hypoxia, a condition has long been associated with tumor progression and poor prognosis, as well as resistance to chemoradiotherapy. Here, we report that the F-box protein JFK promotes mammary tumor initiation and progression in MMTV-PyMT murine model of spontaneous breast cancer. We find that JFK is inducible under hypoxic conditions, in which hypoxia-inducible factor HIF-1α binds to and transcriptionally activates JFK in breast cancer cells. Consistently, analysis of public clinical datasets reveals that the mRNA level of JFK is positively correlated with that of HIF-1α in breast cancer. We show that JFK deficiency leads to a decrease in HIF-1α-induced glycolysis in breast cancer and sensitizes hypoxic breast cancer cells to ionizing radiation and chemotherapeutic treatment. These results indicate that JFK is an important player in hypoxic response, supporting the pursuit of JFK as a potential therapeutic target for breast cancer intervention.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA