Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 424
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 36(5): 1777-1790, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38190205

RESUMEN

Crown roots are the main components of root systems in cereals. Elucidating the mechanisms of crown root formation is instrumental for improving nutrient absorption, stress tolerance, and yield in cereal crops. Several members of the WUSCHEL-related homeobox (WOX) and lateral organ boundaries domain (LBD) transcription factor families play essential roles in controlling crown root development in rice (Oryza sativa). However, the functional relationships among these transcription factors in regulating genes involved in crown root development remain unclear. Here, we identified LBD16 as an additional regulator of rice crown root development. We showed that LBD16 is a direct downstream target of WOX11, a key crown root development regulator in rice. Our results indicated that WOX11 enhances LBD16 transcription by binding to its promoter and recruiting its interaction partner JMJ706, a demethylase that removes histone H3 lysine 9 dimethylation (H3K9me2) from the LBD16 locus. In addition, we established that LBD16 interacts with WOX11, thereby impairing JMJ706-WOX11 complex formation and repressing its own transcriptional activity. Together, our results reveal a feedback system regulating genes that orchestrate crown root development in rice, in which LBD16 acts as a molecular rheostat.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Raíces de Plantas , Factores de Transcripción , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Histona Demetilasas/metabolismo , Histona Demetilasas/genética , Regiones Promotoras Genéticas/genética
2.
Eur J Immunol ; 54(5): e2350779, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38440842

RESUMEN

Pneumocystis pneumonia (PCP) is a fungal pulmonary disease with high mortality in immunocompromised patients. Neutrophils are essential in defending against fungal infections; however, their role in PCP is controversial. Here we aim to investigate the effects of neutrophil extracellular traps (NETs) on Pneumocystis clearance and lung injury using a mouse model of PCP. Intriguingly, although neutrophils play a fundamental role in defending against fungal infections, NETs failed to eliminate Pneumocystis, but instead impaired the killing of Pneumocystis. Mechanically, Pneumocystis triggered Leukotriene B4 (LTB4)-dependent neutrophil swarming, leading to agglutinative NET formation. Blocking Leukotriene B4 with its receptor antagonist Etalocib significantly reduced the accumulation and NET release of neutrophils in vitro and in vivo, enhanced the killing ability of neutrophils against Pneumocystis, and alleviated lung injury in PCP mice. This study identifies the deleterious role of agglutinative NETs in Pneumocystis infection and reveals a new way to prevent NET formation, which provides new insights into the pathogenesis of PCP.


Asunto(s)
Trampas Extracelulares , Leucotrieno B4 , Neutrófilos , Pneumocystis , Neumonía por Pneumocystis , Trampas Extracelulares/inmunología , Animales , Ratones , Neutrófilos/inmunología , Neumonía por Pneumocystis/inmunología , Leucotrieno B4/metabolismo , Leucotrieno B4/inmunología , Pneumocystis/inmunología , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Humanos
3.
Nat Mater ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658674

RESUMEN

Magic-angle twisted bilayer graphene exhibits correlated phenomena such as superconductivity and Mott insulating states related to the weakly dispersing flat band near the Fermi energy. Such a flat band is expected to be sensitive to both the moiré period and lattice relaxations. Thus, clarifying the evolution of the electronic structure with the twist angle is critical for understanding the physics of magic-angle twisted bilayer graphene. Here we combine nano-spot angle-resolved photoemission spectroscopy and atomic force microscopy to resolve the fine electronic structure of the flat band and remote bands, as well as their evolution with twist angle from 1.07° to 2.60°. Near the magic angle, the dispersion is characterized by a flat band near the Fermi energy with a strongly reduced band width. Moreover, we observe a spectral weight transfer between remote bands at higher binding energy, which allows to extract the modulated interlayer spacing near the magic angle. Our work provides direct spectroscopic information on flat band physics and highlights the important role of lattice relaxations.

4.
Plant Physiol ; 195(2): 1312-1332, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38438131

RESUMEN

Changing ambient temperature often impairs plant development and sexual reproduction, particularly pollen ontogenesis. However, mechanisms underlying cold stress-induced male sterility are not well understood. Here, we exposed Chinese cabbage (Brassica campestris) to different cold conditions during flowering and demonstrated that the tetrad stage was the most sensitive. After completion of pollen development at optimal conditions, transient cold stress at the tetrad stage still impacted auxin levels, starch and lipid accumulation, and pollen germination, ultimately resulting in partial male sterility. Transcriptome and metabolome analyses and histochemical staining indicated that the reduced pollen germination rate was due to the imbalance of energy metabolism during pollen maturation. The investigation of ß-glucuronidase (GUS)-overexpressing transgenic plants driven by the promoter of DR5 (DR5::GUS report system) combined with cell tissue staining and metabolome analysis further validated that cold stress during the tetrad stage reduced auxin levels in mature pollen grains. Low-concentration auxin treatment on floral buds at the tetrad stage before cold exposure improved the cold tolerance of mature pollen grains. Artificially changing the content of endogenous auxin during pollen maturation by spraying chemical reagents and loss-of-function investigation of the auxin biosynthesis gene YUCCA6 by artificial microRNA technology showed that starch overaccumulation severely reduced the pollen germination rate. In summary, we revealed that transient cold stress at the tetrad stage of pollen development in Chinese cabbage causes auxin-mediated starch-related energy metabolism imbalance that contributes to the decline in pollen germination rate and ultimately seed set.


Asunto(s)
Brassica , Metabolismo Energético , Ácidos Indolacéticos , Polen , Polen/efectos de los fármacos , Polen/genética , Polen/fisiología , Polen/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Metabolismo Energético/efectos de los fármacos , Brassica/genética , Brassica/fisiología , Brassica/metabolismo , Brassica/efectos de los fármacos , Respuesta al Choque por Frío/fisiología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Plantas Modificadas Genéticamente , Frío , Germinación/efectos de los fármacos
5.
PLoS Biol ; 20(11): e3001851, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36346780

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), responsible for the Coronavirus Disease 2019 (COVID-19) pandemic, causes respiratory failure and damage to multiple organ systems. The emergence of viral variants poses a risk of vaccine failures and prolongation of the pandemic. However, our understanding of the molecular basis of SARS-CoV-2 infection and subsequent COVID-19 pathophysiology is limited. In this study, we have uncovered a critical role for the evolutionarily conserved Hippo signaling pathway in COVID-19 pathogenesis. Given the complexity of COVID-19-associated cell injury and immunopathogenesis processes, we investigated Hippo pathway dynamics in SARS-CoV-2 infection by utilizing COVID-19 lung samples and human cell models based on pluripotent stem cell-derived cardiomyocytes (PSC-CMs) and human primary lung air-liquid interface (ALI) cultures. SARS-CoV-2 infection caused activation of the Hippo signaling pathway in COVID-19 lung and in vitro cultures. Both parental and Delta variant of concern (VOC) strains induced Hippo pathway. The chemical inhibition and gene knockdown of upstream kinases MST1/2 and LATS1 resulted in significantly enhanced SARS-CoV-2 replication, indicating antiviral roles. Verteporfin, a pharmacological inhibitor of the Hippo pathway downstream transactivator, YAP, significantly reduced virus replication. These results delineate a direct antiviral role for Hippo signaling in SARS-CoV-2 infection and the potential for this pathway to be pharmacologically targeted to treat COVID-19.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Vía de Señalización Hippo , Antivirales/farmacología
6.
Nucleic Acids Res ; 51(W1): W180-W190, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37216602

RESUMEN

Quantitative assessment of single cell fluxome is critical for understanding the metabolic heterogeneity in diseases. Unfortunately, laboratory-based single cell fluxomics is currently impractical, and the current computational tools for flux estimation are not designed for single cell-level prediction. Given the well-established link between transcriptomic and metabolomic profiles, leveraging single cell transcriptomics data to predict single cell fluxome is not only feasible but also an urgent task. In this study, we present FLUXestimator, an online platform for predicting metabolic fluxome and variations using single cell or general transcriptomics data of large sample-size. The FLUXestimator webserver implements a recently developed unsupervised approach called single cell flux estimation analysis (scFEA), which uses a new neural network architecture to estimate reaction rates from transcriptomics data. To the best of our knowledge, FLUXestimator is the first web-based tool dedicated to predicting cell-/sample-wise metabolic flux and metabolite variations using transcriptomics data of human, mouse and 15 other common experimental organisms. The FLUXestimator webserver is available at http://scFLUX.org/, and stand-alone tools for local use are available at https://github.com/changwn/scFEA. Our tool provides a new avenue for studying metabolic heterogeneity in diseases and has the potential to facilitate the development of new therapeutic strategies.


Asunto(s)
Programas Informáticos , Transcriptoma , Animales , Humanos , Ratones , Redes y Vías Metabólicas , Metabolómica , Modelos Biológicos
7.
Nano Lett ; 24(21): 6286-6295, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38747346

RESUMEN

Moiré superlattices have become a fertile playground for topological Chern insulators, where the displacement field can tune the quantum geometry and Chern number of the topological band. However, in experiments, displacement field engineering of spontaneous symmetry-breaking Chern bands has not been demonstrated. Here in a rhombohedral trilayer graphene moiré superlattice, we use a thermodynamic probe and transport measurement to monitor the Chern number evolution as a function of the displacement field. At a quarter filling of the moiré band, a novel Chern number of three is unveiled to compete with the well-established number of two upon turning on the electric field and survives when the displacement field is sufficiently strong. The transition can be reconciled by a nematic instability on the Fermi surface due to the pseudomagnetic vector field potentials associated with moiré strain patterns. Our work opens more opportunities to active control of Chern numbers in van der Waals moiré systems.

8.
Small ; 20(15): e2306969, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37994220

RESUMEN

Carbonized polymer dots (CPDs) with a circularly polarized fluorescence property have received increasing attention in recent years. However, it is still a great challenge to construct circularly polarized room-temperature phosphorescence (CPRTP) CPDs. Herein, a simple approach to the synthesis of intrinsically CPRTP CPDs for the first time by utilizing sodium alginate and l-/d-arginine as precursors under relatively mild reaction conditions is presented. Notably, the CPDs exhibit both chirality and green RTP in solid states. Furthermore, color-tunable CPRTP is successfully achieved by engineering chiral light-harvesting systems based on circularly polarized phosphorescence resonance energy transfer (C-PRET) where the CPDs with green RTP function as an initiator of chirality and light absorbance, and commercially available fluorescent dyes with different emission colors ranging from yellow to red serve as the terminal acceptors. Through one-step or sequential C-PRET, the light-harvesting systems can simultaneously furnish energy transfer and chirality transmission/amplification. Given the multicolor long afterglow, lifetime-tunable, and CPRTP properties, their potential applications in multiple information encryption are demonstrated.

9.
Mamm Genome ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816661

RESUMEN

Prostatitis represents a common disease of the male genitourinary system, significantly impacting the physical and mental health of male patients. While numerous studies have suggested a potential link between immune cell activity and prostatitis, the exact causal role of immune cells in prostatitis remains uncertain. This study aims to explore the causal relationship between immune cell characteristics and prostatitis using a bidirectional Mendelian randomization approach. This study utilizes data from the public GWAS database and employs bidirectional Mendelian randomization analysis to investigate the causal relationship between immune cells and prostatitis. The causal relationship between 731 immune cell features and prostatitis was primarily investigated through inverse variance weighting (IVW), complemented by MR-Egger regression, a simple model, the weighted median method, and a weighted model. Ultimately, the results underwent sensitivity analysis to assess the heterogeneity, horizontal pleiotropy, and stability of Single Nucleotide Polymorphisms (SNPs) in immune cells and prostatitis. MR analysis revealed 17 immune cells exhibiting significant causal effects on prostatitis. In contrast, findings from reverse MR indicated a significant causal relationship between prostatitis and 13 immune cells. Our study utilizes bidirectional Mendelian Randomization to establish causal relationships between specific immune cell phenotypes and prostatitis, highlighting the reciprocal influence between immune system behavior and the disease. Our findings suggest targeted therapeutic approaches and the importance of including diverse populations for broader validation and personalized treatment strategies.

10.
Mol Carcinog ; 63(6): 1079-1091, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38426809

RESUMEN

This study was to explore the role of ELOVL6 in the development of head and neck squamous cell carcinoma (HNSCC). Considering its previously identified oncogenic role in hepatocellular carcinoma. ELOVL6 gene expression, clinicopathological analysis, enrichment analysis, and immune infiltration analysis were based on the data from Gene Expression Omnibus and The Cancer Genome Atlas, with additional bioinformatics analyses performed. Human HNSCC tissue microarray and cell lines were used. The expression of ELOVL6 in HNSCC was detected by quantitative polymerase chain reaction, immunohistochemistry assay, and western blot analysis. The proliferation ability of HNSCC cells, invasion, and apoptosis were evaluated using cell counting kit-8 method, Transwell assay, and flow cytometry, respectively. Based on the data derived from the cancer databases and our HNSCC cell and tissue studies, we found that ELOVL6 was overexpressed in HNSCC. Moreover, ELOVL6 expression level had a positive correlation with clinicopathology of HNSCC. Gene set enrichment analysis showed that ELOVL6 affected the occurrence of HNSCC through WNT signaling pathway. Functional experiments demonstrated that ELOVL6 knockdown inhibited the proliferation and invasion of HNSCC cells while promoting apoptosis. Additionally, compound 3f, an agonist of WNT/ß-catenin signaling pathway, enhances the effect of ELOVL6 on the progression of HNSCC cells. ELOVL6 is upregulated in HNSCC and promotes the development of HNSCC cells by inducing WNT/ß-catenin signaling pathway. ELOVL6 stands a potential target for the treatment of HNSCC and a prognosis indicator of human HNSCC.


Asunto(s)
Apoptosis , Proliferación Celular , Progresión de la Enfermedad , Elongasas de Ácidos Grasos , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello , Carcinoma de Células Escamosas de Cabeza y Cuello , Vía de Señalización Wnt , Humanos , Vía de Señalización Wnt/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Proliferación Celular/genética , Elongasas de Ácidos Grasos/genética , Elongasas de Ácidos Grasos/metabolismo , Línea Celular Tumoral , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Pronóstico , Movimiento Celular/genética
11.
Opt Lett ; 49(10): 2793-2796, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748163

RESUMEN

This work demonstrates a high-performance photodetector with a 4-cycle Ge0.86Si0.14/Ge multi-quantum well (MQW) structure grown by reduced pressure chemical vapor deposition techniques on a Ge-buffered Si (100) substrate. At -1 V bias, the dark current density of the fabricated PIN mesa devices is as low as 3 mA/cm2, and the optical responsivities are 0.51 and 0.17 A/W at 1310 and 1550 nm, respectively, corresponding to the cutoff wavelength of 1620 nm. At the same time, the device has good high-power performance and continuous repeatable light response. On the other hand, the temperature coefficient of resistance (TCR) of the device is as high as -5.18%/K, surpassing all commercial thermal detectors. These results indicate that the CMOS-compatible and low-cost Ge0.86Si0.14/Ge multilayer structure is promising for short-wave infrared and uncooled infrared imaging.

12.
Phys Rev Lett ; 132(24): 246501, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38949356

RESUMEN

Electrons residing in a flat-band system can play a vital role in triggering spectacular phenomenology due to relatively large interactions and spontaneous breaking of different degeneracies. In this work, we demonstrate chirally twisted triple bilayer graphene, a new moiré structure formed by three pieces of helically stacked Bernal bilayer graphene, as a highly tunable flat-band system. In addition to the correlated insulators showing at integer moiré fillings, commonly attributed to interaction induced symmetry broken isospin flavors in graphene, we observe abundant insulating states at half-integer moiré fillings, suggesting a longer-range interaction and the formation of charge density wave insulators which spontaneously break the moiré translation symmetry. With weak out-of-plane magnetic field applied, as observed half-integer filling states are enhanced and more quarter-integer filling states appear, pointing toward further quadrupling moiré unit cells. The insulating states at fractional fillings combined with Hartree-Fock calculations demonstrate the observation of a new type of correlated charge density wave insulators in graphene and points to a new accessible twist manner engineering correlated moiré electronics.

13.
FASEB J ; 37(6): e22977, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37219486

RESUMEN

Anthracyclines such as doxorubicin (Dox) are effective chemotherapeutic agents; however, their use is hampered by subsequent cardiotoxicity risk. Our understanding of cardiomyocyte protective pathways activated following anthracycline-induced cardiotoxicity (AIC) remains incomplete. Insulin-like growth factor binding protein (IGFBP) 3 (Igfbp-3), the most abundant IGFBP family member in the circulation, is associated with effects on the metabolism, proliferation, and survival of various cells. Whereas Igfbp-3 is induced by Dox in the heart, its role in AIC is ill-defined. We investigated molecular mechanisms as well as systems-level transcriptomic consequences of manipulating Igfbp-3 in AIC using neonatal rat ventricular myocytes and human-induced pluripotent stem cell-derived cardiomyocytes. Our findings reveal that Dox induces the nuclear enrichment of Igfbp-3 in cardiomyocytes. Furthermore, Igfbp-3 reduces DNA damage, impedes topoisomerase IIß expression (Top2ß) which forms Top2ß-Dox-DNA cleavage complex leading to DNA double-strand breaks (DSB), alleviates detyrosinated microtubule accumulation-a hallmark of increased cardiomyocyte stiffness and heart failure-and favorably affects contractility following Dox treatment. These results indicate that Igfbp-3 is induced by cardiomyocytes in an effort to mitigate AIC.


Asunto(s)
Antraciclinas , Transcriptoma , Humanos , Animales , Ratas , Cardiotoxicidad , Antibióticos Antineoplásicos , Miocitos Cardíacos
14.
Eur J Nutr ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689010

RESUMEN

PURPOSE: This updated umbrella review aimed to evaluate the evidence regarding the associations between dietary factors and the risks of esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC). METHODS: The PubMed, Embase, Cochrane Library, and Web of Science databases were searched to identify relevant studies. The quality of the included meta-analyses was evaluated using A MeaSurement Tool to Assess systematic Reviews 2 (AMSTAR 2). For each association, the number of cases, random effects pooled effect size, 95% confidence intervals (CIs), heterogeneity, 95% prediction interval (PrI), small-study effect, and excess significance bias were recalculated to determine the evidence level. RESULTS: We identified 33 meta-analyses describing 58 dietary factors associated with ESCC and 29 meta-analyses describing 38 dietary factors associated with EAC. There was convincing evidence regarding the association of 2 dietary factors (areca nut and high alcohol) with the risk of ESCC. There was highly suggestive evidence regarding the association of only 1 dietary factor (healthy pattern) with the risk of ESCC. There was suggestive evidence regarding the association of 11 dietary factors with the risk of ESCC, including fruit, citrus fruit, vegetables, pickled vegetables, maté tea, moderate alcohol, hot beverages and foods, hot tea, salt, folate, and vitamin B6. There was convincing evidence regarding the association of one dietary factor (vitamin B6) with the risk of EAC. There was suggestive evidence regarding the association of 4 dietary factors with the risk of EAC, including processed meat, dietary fibre, carbohydrate, and vitamin B12. The convincing evidence regarding the associations between dietary factors and the risks of ESCC and EAC remained robust in sensitivity analyses. CONCLUSIONS: This umbrella review highlighted convincing evidence regarding the associations of areca nut and high alcohol with a higher risk of ESCC. Additionally, an association between vitamin B6 and a decreased risk of EAC was observed. Further research is needed to examine the dietary factors with weak evidence regarding their associations with ESCC and EAC.

15.
Environ Res ; 244: 117905, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38101723

RESUMEN

Polyvinyl chloride (PVC) waste plastic is a typical solid waste. In this paper, the dechlorination and carbonization behavior of PVC in ethanol-water/water system under different process parameters (temperature, residence time, solid-liquid ratio) was studied, and hydrothermal carbon was characterized by SEM, elemental analysis, TG-DTG, XPS, Py-GC/MS. The results show that temperature is the key to the hydrothermal dechlorination of PVC, and the dechlorination efficiency of PVC is the highest by parameter optimization (220°C-90 min-10% S/D-80% E/D), which can reach 96.33 %. With the removal of Cl, the surface of the PVC matrix changed from full and smooth flocculent to honeycomb with uniform pore size distribution. Thermogravimetric analysis shows that the combustion of hydrochar can be divided into three stages: HCl precipitation and volatile combustion, semi-coke and coke combustion, and fixed carbon combustion. The combustion parameters and kinetic parameters of hydrochar were measured, and it was found that the hydrothermal carbonization of PVC at higher temperatures and ethanol-water ratio could improve the combustion performance of hydrochar. The highest calorific value can reach 36.68 MJ/mol. Py-GC/MS analyzed the distribution of the pyrolysis products, and alkylbenzene and aliphatic were the main products of pyrolysis. The structural analysis of hydrochar showed that C-C and CC accounted for the largest proportion, accompanied by a small amount of C-O and CO and trace C-Cl. The possible reaction mechanism of the hydrothermal carbonization of PVC was analyzed based on the distribution of functional groups and compound composition. This work provides an effective and sustainable method for the recycling of refractory chlorinated plastics.


Asunto(s)
Coque , Cloruro de Polivinilo , Cloruro de Polivinilo/química , Agua , Temperatura , Carbono
16.
Int J Hyperthermia ; 41(1): 2369749, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38925872

RESUMEN

PURPOSE: Dentin hypersensitivity (DH) is a prevalent condition, but long-term effective treatments are scarce. Differentiation of odontoblast-like cells is promising for inducing tertiary dentinogenesis and ensuring sustained therapeutic efficacy against DH. This study examined the effects and mechanism of action of mild heat stress (MHS) on the differentiation of odontoblast-like MDPC-23 cells. METHODS: We used a heating device to accurately control the temperature and duration, mimicking the thermal microenvironment of odontoblast-like cells. Using this device, the effects of MHS on cell viability and differentiation were examined. Cell viability was assessed using the MTT assay. The expression and nucleoplasmic ratio of the yes-associated protein (YAP) were examined by western blotting and immunofluorescence. The gene expression levels of heat shock proteins (HSPs) and dentin matrix protein-1 (DMP1) were measured using qPCR. Dentin sialophosphoprotein (DSPP) expression was evaluated using immunofluorescence and immunoblotting. Verteporfin was used to inhibit YAP activity. RESULTS: Mild heat stress (MHS) enhanced the odontoblast differentiation of MDPC-23 cells while maintaining cell viability. MHS also increased YAP activity, as well as the levels of HSP25 mRNA, HSP70 mRNA, HSP90α mRNA, DMP1 mRNA, and DSPP protein. However, after YAP inhibition, both cell viability and the levels of HSP90α mRNA, DMP1 mRNA, and DSPP protein were reduced. CONCLUSION: YAP plays a crucial role in maintaining cell viability and promoting odontoblast differentiation of MDPC-23 cells under MHS. Consequently, MHS is a potential therapeutic strategy for DH, and boosting YAP activity could be beneficial for maintaining cell viability and promoting odontoblast differentiation.


Asunto(s)
Diferenciación Celular , Respuesta al Choque Térmico , Odontoblastos , Proteínas Señalizadoras YAP , Odontoblastos/metabolismo , Animales , Proteínas Señalizadoras YAP/metabolismo , Ratones , Línea Celular , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Supervivencia Celular
17.
Child Dev ; 95(2): 559-573, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37794738

RESUMEN

Limited research has investigated the changes in ethnic-racial support that adolescents received during the COVID-19 pandemic. This study collected 2-week, daily data from 185 Midwest U.S. ethnic-racial minority adolescents (14.60 years old; 52% female) at two waves, spanning about 1 year apart. For the Pandemic Cohort (936 days of data, 41 participants; 2019-2020), peer cultural socialization declined significantly from before to during the pandemic; family cultural socialization, as well as family and peer support against discrimination, became more positively associated with same-day ethnic-racial identity over the pandemic ( ß = .13-.16). No significant changes emerged for the pre-Pandemic Cohort (3304 days of data, 144 participants; 2017-2019). Findings highlight the importance of ethnic-racial support during the pandemic when ethnic-racial issues were amplified in society.


Asunto(s)
COVID-19 , Pandemias , Adolescente , Humanos , Femenino , Masculino , Identificación Social , Grupo Paritario , Socialización
18.
Cell Mol Life Sci ; 80(9): 242, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37552373

RESUMEN

Radiotherapy resistance is a major obstacle to nasopharyngeal carcinoma (NPC) therapy and contributes to tumour recurrence and metastasis. Lipid metabolism is a key regulatory mechanism in cancer biology; however, its role in NPC radiotherapy resistance remains unclear. In this study, we identified hypoxia-inducible lipid droplet-associated protein (HILPDA) as a newly discovered regulator of radioresistance that induces not only lipid droplet (LD) formation but also intracellular lipid remodelling, notably changing mitochondrial cardiolipin (CL) levels. Additionally, we found that the upregulation of CL promotes mitophagy in response to irradiation exposure. Mechanistically, HILPDA inhibits PINK1-mediated CLS1 ubiquitination and degradation. The combination of a mitophagy inhibitor and irradiation significantly increases the radiosensitivity of NPC cells. Human cancer-derived data confirmed that the HILPDA-CLS1 pathway promotes NPC radioresistance. Collectively, these findings suggest that HILPDA plays a critical role in promoting NPC radioresistance and might be targeted to overcome radiotherapeutic resistance in NPC patients in the clinic.


Asunto(s)
Neoplasias Nasofaríngeas , Proteínas de Neoplasias , Humanos , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Lipidómica , Mitofagia , Carcinoma Nasofaríngeo/radioterapia , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/radioterapia , Neoplasias Nasofaríngeas/patología , Proteínas de Neoplasias/genética
19.
J Res Adolesc ; 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38433270

RESUMEN

"Left-behind" children refer to those who live in rural areas but have parents migrating to urban areas for work. They are at increased risk for developmental problems and family dysfunction. However, we currently know little regarding their support systems at school. Using daily data over five school days from 90 adolescents (Mage = 13.70) in rural China, this study investigated daily associations linking teacher and peer support to school belonging, and how these associations varied by parental migration. Teacher but not peer support was positively associated with same-day school belonging. However, this association was attenuated for adolescents with longer duration and history of parental migration. The findings highlighted the importance of considering school settings and within-group variations for left-behind adolescents.

20.
Environ Toxicol ; 39(3): 1129-1139, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37860888

RESUMEN

PURPOSE: Ubiquitin-specific peptidase 10 (USP10) has been found to have oncogenic activity in several human tumors. This study first revealed the exact function of USP10 on the progression of thyroid cancer (THCA) by researching its effect on the ferroptosis. METHODS: USP10 expression in THCA patients was analyzed by online data analysis and in 75 THCA cases was scrutinized by real-time quantitative reverse transcription-polymerase chain reaction and Western blot. Influence of USP10 on the viability, colony formation, migration and invasion of THCA cells was demonstrated by cell counting kit-8, colony formation, wound healing and Transwell invasion assays. Effect of USP10 on the Erastin-induced ferroptosis in THCA cells was evaluated by detecting the ferroptosis-related indicators. Intrinsic mechanism of USP10, glutathione peroxidase 4 (GPX4) and sirtuin 6 (SIRT6) in regulating THCA progression was identified. In vivo xenograft experiment was implemented. RESULTS: USP10 was abundantly expressed in THCA patients, linking to poor outcome. USP10 overexpression enhanced the viability, colony formation, migration and invasion of THCA cells. USP10 mitigated the Erastin-induced ferroptosis in THCA cells, decreased the levels of iron, Fe2+ , malondialdehyde, lipid reactive oxygen species, reduced mitochondrial superoxide level, and increased mitochondrial membrane potential. USP10 facilitated the expression of ferroptosis suppressor GPX4 by elevating SIRT6. Loss of USP10 repressed the in vivo growth of THCA cells. CONCLUSION: USP10 might attenuate the ferroptosis to promote thyroid cancer malignancy by facilitating GPX4 via elevating SIRT6. It might be novel target for the treatment of THCA.


Asunto(s)
Ferroptosis , Sirtuinas , Neoplasias de la Tiroides , Humanos , Proteasas Ubiquitina-Específicas , Ubiquitina Tiolesterasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA