Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Regen Ther ; 26: 354-365, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39040711

RESUMEN

Vascularization is a key step to achieve pulp tissue regeneration and in vitro pre-vascularized dental pulp tissue could be applied as a graft substitute for dental pulp tissue repair. In this study, human dental pulp stem cells (DPSCs) and human umbilical vein endothelial cells (hUVECs) were co-cultured in 3D Matrigel and 150 mV/mm electric fields (EFs) were used to promote the construction of pre-vascularized dental pulp tissue. After optimizing co-cultured ratio of two cell types, immunofluorescence staining, and live/dead detection were used to investigate the effect of EFs on cell survival, differentiation and vessel formation in 3D engineered dental pulp tissue. RNA sequencing was used to investigate the potential molecular mechanisms by which EF regulates vessel formation in 3D engineered dental pulp tissue. Here we identified that EF-induced pre-vascularized engineered dental pulp tissue not only had odontoblasts, but also had a rich vascular network, and smooth muscle-like cells appeared around the blood vessels. The GO enrichment analysis showed that these genes were significantly enriched in regulation of angiogenesis, cell migration and motility. The most significant term of the KEGG pathway analysis were NOTCH signaling pathway and Calcium signaling pathway etc. The PPI network revealed that NOTCH1 and IL-6 were central hub genes. Our study indicated that EFs significantly promoted the maturation and stable of blood vessel in 3D engineered pulp tissue and provided an experimental basis for the application of EF in dental pulp angiogenesis and regeneration.

2.
Regen Ther ; 24: 237-244, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37534238

RESUMEN

Tissue engineering presents a promising solution for regenerative medicine and the success depends on the supply of oxygen/nutrients to the cells by rapid vascularization. More and more technologies are being developed to facilitate vascularization of engineered tissues. In this review, we indicated that a regulatory system which influences all angiogenesis associated cells to achieve their desired functional state is ideal for the construction of vascularized engineered tissues in vitro. We presented the evidence that electrical stimulation (ES) enhances the synergistic promotion of co-cultured angiogenesis associated cells and its potential regulatory mechanisms, highlighted the potential advantages of a combination of mesenchymal stem cells (MSCs), endothelial cells (ECs) and ES to achieve tissue vascularization, with particular emphasis on the different biological pathways of ES-regulated ECs. Finally, we proposed the future direction of using ES to reconstruct engineered tissue blood vessels, pointed out the potential advantages and disadvantages of ES application on tissue vascularization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA