Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(2): 276-293.e23, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38171360

RESUMEN

During development, morphogens pattern tissues by instructing cell fate across long distances. Directly visualizing morphogen transport in situ has been inaccessible, so the molecular mechanisms ensuring successful morphogen delivery remain unclear. To tackle this longstanding problem, we developed a mouse model for compromised sonic hedgehog (SHH) morphogen delivery and discovered that endocytic recycling promotes SHH loading into signaling filopodia called cytonemes. We optimized methods to preserve in vivo cytonemes for advanced microscopy and show endogenous SHH localized to cytonemes in developing mouse neural tubes. Depletion of SHH from neural tube cytonemes alters neuronal cell fates and compromises neurodevelopment. Mutation of the filopodial motor myosin 10 (MYO10) reduces cytoneme length and density, which corrupts neuronal signaling activity of both SHH and WNT. Combined, these results demonstrate that cytoneme-based signal transport provides essential contributions to morphogen dispersion during mammalian tissue development and suggest MYO10 is a key regulator of cytoneme function.


Asunto(s)
Estructuras de la Membrana Celular , Miosinas , Tubo Neural , Transducción de Señal , Animales , Ratones , Transporte Biológico , Estructuras de la Membrana Celular/metabolismo , Proteínas Hedgehog/metabolismo , Miosinas/metabolismo , Seudópodos/metabolismo , Tubo Neural/citología , Tubo Neural/metabolismo
2.
Cell ; 184(5): 1245-1261.e21, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33636132

RESUMEN

How early events in effector T cell (TEFF) subsets tune memory T cell (TMEM) responses remains incompletely understood. Here, we systematically investigated metabolic factors in fate determination of TEFF and TMEM cells using in vivo pooled CRISPR screening, focusing on negative regulators of TMEM responses. We found that amino acid transporters Slc7a1 and Slc38a2 dampened the magnitude of TMEM differentiation, in part through modulating mTORC1 signaling. By integrating genetic and systems approaches, we identified cellular and metabolic heterogeneity among TEFF cells, with terminal effector differentiation associated with establishment of metabolic quiescence and exit from the cell cycle. Importantly, Pofut1 (protein-O-fucosyltransferase-1) linked GDP-fucose availability to downstream Notch-Rbpj signaling, and perturbation of this nutrient signaling axis blocked terminal effector differentiation but drove context-dependent TEFF proliferation and TMEM development. Our study establishes that nutrient uptake and signaling are key determinants of T cell fate and shape the quantity and quality of TMEM responses.


Asunto(s)
Aminoácidos/metabolismo , Linfocitos T CD8-positivos/citología , Memoria Inmunológica , Transducción de Señal , Sistemas de Transporte de Aminoácidos/metabolismo , Animales , Linfocitos T CD8-positivos/inmunología , Sistemas CRISPR-Cas , Ciclo Celular , Diferenciación Celular , Modelos Animales de Enfermedad , Femenino , Técnicas de Sustitución del Gen , Coriomeningitis Linfocítica/inmunología , Masculino , Ratones , Ratones Transgénicos , Células Precursoras de Linfocitos T/citología
3.
Mol Cell ; 84(7): 1338-1353.e8, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38503284

RESUMEN

MCL-1 is essential for promoting the survival of many normal cell lineages and confers survival and chemoresistance in cancer. Beyond apoptosis regulation, MCL-1 has been linked to modulating mitochondrial metabolism, but the mechanism(s) by which it does so are unclear. Here, we show in tissues and cells that MCL-1 supports essential steps in long-chain (but not short-chain) fatty acid ß-oxidation (FAO) through its binding to specific long-chain acyl-coenzyme A (CoA) synthetases of the ACSL family. ACSL1 binds to the BH3-binding hydrophobic groove of MCL-1 through a non-conventional BH3-domain. Perturbation of this interaction, via genetic loss of Mcl1, mutagenesis, or use of selective BH3-mimetic MCL-1 inhibitors, represses long-chain FAO in cells and in mouse livers and hearts. Our findings reveal how anti-apoptotic MCL-1 facilitates mitochondrial metabolism and indicate that disruption of this function may be associated with unanticipated cardiac toxicities of MCL-1 inhibitors in clinical trials.


Asunto(s)
Ácidos Grasos , Mitocondrias , Animales , Ratones , Apoptosis , Coenzima A Ligasas/genética , Ácidos Grasos/metabolismo , Mitocondrias/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Oxidación-Reducción
4.
Cell ; 166(5): 1132-1146.e7, 2016 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-27565343

RESUMEN

Cancers are distributed unevenly across the body, but the importance of cell intrinsic factors such as stem cell function in determining organ cancer risk is unknown. Therefore, we used Cre-recombination of conditional lineage tracing, oncogene, and tumor suppressor alleles to define populations of stem and non-stem cells in mouse organs and test their life-long susceptibility to tumorigenesis. We show that tumor incidence is determined by the life-long generative capacity of mutated cells. This relationship held true in the presence of multiple genotypes and regardless of developmental stage, strongly supporting the notion that stem cells dictate organ cancer risk. Using the liver as a model system, we further show that damage-induced activation of stem cell function markedly increases cancer risk. Therefore, we propose that a combination of stem cell mutagenesis and extrinsic factors that enhance the proliferation of these cell populations, creates a "perfect storm" that ultimately determines organ cancer risk. VIDEO ABSTRACT.


Asunto(s)
Carcinogénesis/genética , Carcinogénesis/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Oncogenes , Células Madre , Alelos , Animales , Genes Supresores de Tumor , Humanos , Integrasas , Ratones , Modelos Biológicos , Mutagénesis , Recombinación Genética , Riesgo , Células Madre/metabolismo , Células Madre/patología
5.
Mol Cell ; 79(4): 645-659.e9, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32692974

RESUMEN

Stress granules (SGs) are membrane-less ribonucleoprotein condensates that form in response to various stress stimuli via phase separation. SGs act as a protective mechanism to cope with acute stress, but persistent SGs have cytotoxic effects that are associated with several age-related diseases. Here, we demonstrate that the testis-specific protein, MAGE-B2, increases cellular stress tolerance by suppressing SG formation through translational inhibition of the key SG nucleator G3BP. MAGE-B2 reduces G3BP protein levels below the critical concentration for phase separation and suppresses SG initiation. Knockout of the MAGE-B2 mouse ortholog or overexpression of G3BP1 confers hypersensitivity of the male germline to heat stress in vivo. Thus, MAGE-B2 provides cytoprotection to maintain mammalian spermatogenesis, a highly thermosensitive process that must be preserved throughout reproductive life. These results demonstrate a mechanism that allows for tissue-specific resistance against stress and could aid in the development of male fertility therapies.


Asunto(s)
Gránulos Citoplasmáticos/genética , ADN Helicasas/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética , Biosíntesis de Proteínas , ARN Helicasas/genética , Proteínas con Motivos de Reconocimiento de ARN/genética , Estrés Fisiológico/genética , Regiones no Traducidas 5' , Animales , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Gránulos Citoplasmáticos/metabolismo , Gránulos Citoplasmáticos/patología , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , ADN Helicasas/metabolismo , Femenino , Células HCT116 , Células HeLa , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Espermatogonias/citología , Espermatogonias/patología , Testículo/citología , Testículo/metabolismo
6.
Nature ; 595(7869): 724-729, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34234346

RESUMEN

T follicular helper (TFH) cells are crucial for B cell-mediated humoral immunity1. Although transcription factors such as BCL6 drive the differentiation of TFH cells2,3, it is unclear whether and how post-transcriptional and metabolic programs enforce TFH cell programming. Here we show that the cytidine diphosphate (CDP)-ethanolamine pathway co-ordinates the expression and localization of CXCR5 with the responses of TFH cells and humoral immunity. Using in vivo CRISPR-Cas9 screening and functional validation in mice, we identify ETNK1, PCYT2, and SELENOI-enzymes in the CDP-ethanolamine pathway for de novo synthesis of phosphatidylethanolamine (PE)-as selective post-transcriptional regulators of TFH cell differentiation that act by promoting the surface expression and functional effects of CXCR5. TFH cells exhibit unique lipid metabolic programs and PE is distributed to the outer layer of the plasma membrane, where it colocalizes with CXCR5. De novo synthesis of PE through the CDP-ethanolamine pathway co-ordinates these events to prevent the internalization and degradation of CXCR5. Genetic deletion of Pcyt2, but not of Pcyt1a (which mediates the CDP-choline pathway), in activated T cells impairs the differentiation of TFH cells, and this is associated with reduced humoral immune responses. Surface levels of PE and CXCR5 expression on B cells also depend on Pcyt2. Our results reveal that phospholipid metabolism orchestrates post-transcriptional mechanisms for TFH cell differentiation and humoral immunity, highlighting the metabolic control of context-dependent immune signalling and effector programs.


Asunto(s)
Inmunidad Humoral , Fosfatidiletanolaminas/metabolismo , Receptores CXCR5/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Linfocitos B/inmunología , Sistemas CRISPR-Cas , Diferenciación Celular , Citidina Difosfato , Femenino , Regulación de la Expresión Génica , Humanos , Leucocitos Mononucleares/inmunología , Activación de Linfocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosfotransferasas (Aceptor de Grupo Alcohol) , ARN Nucleotidiltransferasas , Transducción de Señal
7.
Nature ; 600(7888): 308-313, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34795452

RESUMEN

Nutrients are emerging regulators of adaptive immunity1. Selective nutrients interplay with immunological signals to activate mechanistic target of rapamycin complex 1 (mTORC1), a key driver of cell metabolism2-4, but how these environmental signals are integrated for immune regulation remains unclear. Here we use genome-wide CRISPR screening combined with protein-protein interaction networks to identify regulatory modules that mediate immune receptor- and nutrient-dependent signalling to mTORC1 in mouse regulatory T (Treg) cells. SEC31A is identified to promote mTORC1 activation by interacting with the GATOR2 component SEC13 to protect it from SKP1-dependent proteasomal degradation. Accordingly, loss of SEC31A impairs T cell priming and Treg suppressive function in mice. In addition, the SWI/SNF complex restricts expression of the amino acid sensor CASTOR1, thereby enhancing mTORC1 activation. Moreover, we reveal that the CCDC101-associated SAGA complex is a potent inhibitor of mTORC1, which limits the expression of glucose and amino acid transporters and maintains T cell quiescence in vivo. Specific deletion of Ccdc101 in mouse Treg cells results in uncontrolled inflammation but improved antitumour immunity. Collectively, our results establish epigenetic and post-translational mechanisms that underpin how nutrient transporters, sensors and transducers interplay with immune signals for three-tiered regulation of mTORC1 activity and identify their pivotal roles in licensing T cell immunity and immune tolerance.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Nutrientes , Mapas de Interacción de Proteínas , Linfocitos T Reguladores , Animales , Femenino , Masculino , Ratones , Proteínas Portadoras/metabolismo , Sistemas CRISPR-Cas/genética , Factores de Transcripción Forkhead/metabolismo , Genoma/genética , Homeostasis , Tolerancia Inmunológica , Inflamación/patología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Neoplasias/inmunología , Proteínas Nucleares/metabolismo , Nutrientes/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Transactivadores/metabolismo
8.
Blood ; 141(11): 1293-1307, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35977101

RESUMEN

Familial aggregation of Hodgkin lymphoma (HL) has been demonstrated in large population studies, pointing to genetic predisposition to this hematological malignancy. To understand the genetic variants associated with the development of HL, we performed whole genome sequencing on 234 individuals with and without HL from 36 pedigrees that had 2 or more first-degree relatives with HL. Our pedigree selection criteria also required at least 1 affected individual aged <21 years, with the median age at diagnosis of 21.98 years (3-55 years). Family-based segregation analysis was performed for the identification of coding and noncoding variants using linkage and filtering approaches. Using our tiered variant prioritization algorithm, we identified 44 HL-risk variants in 28 pedigrees, of which 33 are coding and 11 are noncoding. The top 4 recurrent risk variants are a coding variant in KDR (rs56302315), a 5' untranslated region variant in KLHDC8B (rs387906223), a noncoding variant in an intron of PAX5 (rs147081110), and another noncoding variant in an intron of GATA3 (rs3824666). A newly identified splice variant in KDR (c.3849-2A>C) was observed for 1 pedigree, and high-confidence stop-gain variants affecting IRF7 (p.W238∗) and EEF2KMT (p.K116∗) were also observed. Multiple truncating variants in POLR1E were found in 3 independent pedigrees as well. Whereas KDR and KLHDC8B have previously been reported, PAX5, GATA3, IRF7, EEF2KMT, and POLR1E represent novel observations. Although there may be environmental factors influencing lymphomagenesis, we observed segregation of candidate germline variants likely to predispose HL in most of the pedigrees studied.


Asunto(s)
Enfermedad de Hodgkin , Humanos , Adulto Joven , Adulto , Enfermedad de Hodgkin/genética , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Codón sin Sentido , Secuenciación Completa del Genoma , Linaje , Proteínas de Ciclo Celular/genética
9.
Nature ; 576(7787): 471-476, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31827283

RESUMEN

Adoptive cell therapy represents a new paradigm in cancer immunotherapy, but it can be limited by the poor persistence and function of transferred T cells1. Here we use an in vivo pooled CRISPR-Cas9 mutagenesis screening approach to demonstrate that, by targeting REGNASE-1, CD8+ T cells are reprogrammed to long-lived effector cells with extensive accumulation, better persistence and robust effector function in tumours. REGNASE-1-deficient CD8+ T cells show markedly improved therapeutic efficacy against mouse models of melanoma and leukaemia. By using a secondary genome-scale CRISPR-Cas9 screening, we identify BATF as the key target of REGNASE-1 and as a rheostat that shapes antitumour responses. Loss of BATF suppresses the increased accumulation and mitochondrial fitness of REGNASE-1-deficient CD8+ T cells. By contrast, the targeting of additional signalling factors-including PTPN2 and SOCS1-improves the therapeutic efficacy of REGNASE-1-deficient CD8+ T cells. Our findings suggest that T cell persistence and effector function can be coordinated in tumour immunity and point to avenues for improving the efficacy of adoptive cell therapy for cancer.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Inmunoterapia Adoptiva/métodos , Leucemia/inmunología , Leucemia/terapia , Melanoma/inmunología , Melanoma/terapia , Terapia Molecular Dirigida , Ribonucleasas/metabolismo , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/deficiencia , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Linfocitos T CD8-positivos/citología , Sistemas CRISPR-Cas/genética , Modelos Animales de Enfermedad , Femenino , Eliminación de Gen , Humanos , Leucemia/genética , Leucemia/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Melanoma/genética , Melanoma/metabolismo , Ratones , Mitocondrias/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 2/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 2/metabolismo , Reproducibilidad de los Resultados , Ribonucleasas/deficiencia , Ribonucleasas/genética , Ribonucleasas/inmunología , Proteína 1 Supresora de la Señalización de Citocinas/genética , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo , Microambiente Tumoral/inmunología
10.
Proc Natl Acad Sci U S A ; 119(38): e2206147119, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36095192

RESUMEN

The neocortex, the center for higher brain function, first emerged in mammals and has become massively expanded and folded in humans, constituting almost half the volume of the human brain. Primary microcephaly, a developmental disorder in which the brain is smaller than normal at birth, results mainly from there being fewer neurons in the neocortex because of defects in neural progenitor cells (NPCs). Outer radial glia (oRGs), NPCs that are abundant in gyrencephalic species but rare in lissencephalic species, are thought to play key roles in the expansion and folding of the neocortex. However, how oRGs expand, whether they are necessary for neocortical folding, and whether defects in oRGs cause microcephaly remain important questions in the study of brain development, evolution, and disease. Here, we show that oRG expansion in mice, ferrets, and human cerebral organoids requires cyclin-dependent kinase 6 (CDK6), the mutation of which causes primary microcephaly via an unknown mechanism. In a mouse model in which increased Hedgehog signaling expands oRGs and intermediate progenitor cells and induces neocortical folding, CDK6 loss selectively decreased oRGs and abolished neocortical folding. Remarkably, this function of CDK6 in oRG expansion did not require its kinase activity, was not shared by the highly similar CDK4 and CDK2, and was disrupted by the mutation causing microcephaly. Therefore, our results indicate that CDK6 is conserved to promote oRG expansion, that oRGs are necessary for neocortical folding, and that defects in oRG expansion may cause primary microcephaly.


Asunto(s)
Quinasa 6 Dependiente de la Ciclina , Células Ependimogliales , Microcefalia , Neocórtex , Animales , Quinasa 6 Dependiente de la Ciclina/genética , Quinasa 6 Dependiente de la Ciclina/metabolismo , Células Ependimogliales/citología , Células Ependimogliales/enzimología , Hurones , Proteínas Hedgehog/metabolismo , Humanos , Ratones , Microcefalia/genética , Neocórtex/anomalías , Neocórtex/enzimología , Células-Madre Neurales/citología , Células-Madre Neurales/enzimología , Organoides/embriología
11.
J Am Chem Soc ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38848464

RESUMEN

Histone monoaminylation (i.e., serotonylation and dopaminylation) is an emerging category of epigenetic mark occurring on the fifth glutamine (Q5) residue of H3 N-terminal tail, which plays significant roles in gene transcription. Current analysis of histone monoaminylation is mainly based on site-specific antibodies and mass spectrometry, which either lacks high resolution or is time-consuming. In this study, we report the development of chemical probes for bioorthogonal labeling and enrichment of histone serotonylation and dopaminylation. These probes were successfully applied for the monoaminylation analysis of in vitro biochemical assays, cells, and tissue samples. The enrichment of monoaminylated histones by the probes further confirmed the crosstalk between H3Q5 monoaminylation and H3K4 methylation. Finally, combining the ex vivo and in vitro analyses based on the developed probes, we have shown that both histone serotonylation and dopaminylation are highly enriched in tumor tissues that overexpress transglutaminase 2 (TGM2) and regulate the three-dimensional architecture of cellular chromatin.

12.
Plant Cell Environ ; 47(7): 2475-2490, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38567814

RESUMEN

Phosphorus (P)-hyperaccumulators for phytoextraction from P-polluted areas generally show rapid growth and accumulate large amounts of P without any toxicity symptom, which depends on a range of physiological processes and gene expression patterns that have never been explored. We investigated growth, leaf element concentrations, P fractions, photosynthetic traits, and leaf metabolome and transcriptome response in amphibious P-hyperaccumulators, Polygonum hydropiper and P. lapathifolium, to high-P exposure (5 mmol L-1), with 0.05 mmol L-1 as the control. Under high-P exposure, both species demonstrated good growth, allocating more P to metabolite P and inorganic P (Pi) accompanied by high potassium and calcium. The expression of a cluster of unigenes associated with photosynthesis was maintained or increased in P. lapathifolium, explaining the increase in net photosynthetic rate and the rapid growth under high-P exposure. Metabolites of trehalose metabolism, including trehalose 6-phosphate and trehalose, were sharply increased in both species by the high-P exposure, in line with the enhanced expression of associated unigenes, indicating that trehalose metabolic pathway was closely related to high-P tolerance. These findings elucidated the physiological and molecular responses involved in the photosynthesis and trehalose metabolism in P-hyperaccumulators to high-P exposure, and provides potential regulatory pathways to improve the P-phytoextraction capability.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Fósforo , Fotosíntesis , Hojas de la Planta , Polygonum , Fósforo/metabolismo , Polygonum/metabolismo , Polygonum/genética , Polygonum/efectos de los fármacos , Polygonum/fisiología , Hojas de la Planta/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Trehalosa/metabolismo , Metaboloma , Transcriptoma
13.
Environ Res ; : 119459, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38942257

RESUMEN

In situ immobilization is a widely used measure for passivating Cd-contaminated soils. Amendments need to be continuously applied to achieve stable remediation effects. However, few studies have evaluated the impact of consecutive application of amendments on soil health and the microecological environment. A field experiment was conducted in a Cd-contaminated paddy (available Cd concentration 0.40 mg kg-1) on the Chengdu Plain to investigate the changes in soil Cd availability and response characteristics of soil bacterial communities after consecutive application of rice straw biochar (SW), fly ash (FM) and marble powder (YH) amendments from 2018 to 2020. Compared with control treatment without amendments (CK), soil pH increased by 0.6, 0.5 and 1.5 under SW, FM and YH amendments, respectively, and the soil available Cd concentration decreased by 10.71%, 21.42% and 25.00%, respectively. The Cd concentration in rice grain was less than 0.2 mg kg-1 under YH amendment, which was within the Chinese Contaminant Limit in Food of National Food Safety Standards (GB2762-2022) in the second and third years. The three amendments had different effects on the transformation of Cd fractions in soil, which may be relevant to the specific bacterial communities shaped under different treatments. The proportion of Fe-Mn oxide-bound fraction Cd (OX-Cd) increased by 11% under YH treatment, which may be due to the promotion of Fe(III) and Cd binding by some enriched iron-oxidizing bacteria, such as Lysobacter, uncultured_Pelobacter sp. and Sulfurifusis. Candidatus_Tenderia and Sideroxydans were enriched under SW and FM amendments, respectively, and were likely beneficial for reducing Cd availability in soil through Cd immobilization. These results revealed the significance of the bacterial community in soil Cd immobilization after consecutive application of amendments and highlighted the potential of applying YH amendment to ensure the safe production of rice in Cd-contaminated soil.

14.
Am J Physiol Gastrointest Liver Physiol ; 325(4): G295-G305, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37461842

RESUMEN

Effective and widely available strategies are needed to diagnose colonic motility dysfunction. We investigated whether ultrasonography could generate spatiotemporal maps combined with motor pattern frequency analysis, to become a noninvasive method to characterize human colon motor patterns. Abdominal colonic ultrasonography was performed on healthy subjects (N = 7), focusing on the detailed recording of spontaneous haustral activities. We developed image segmentation and frequency analysis software to analyze the motor patterns captured. Ultrasonography recordings of the ascending, transverse, and descending colon identified three distinct rhythmic motor patterns: the 1 cycle/min and the 3 cycles/min cyclic motor pattern were seen throughout the whole colon, whereas the 12 cycles/min cyclic motor pattern was identified in the ascending colon. The rhythmic motor patterns of the human colon that are associated with interstitial cells of Cajal-associated pacemaking activity can be accurately identified and quantified using ultrasound.NEW & NOTEWORTHY Ultrasonography in the clinical field is an underutilized tool for assessing colonic motility; however, with the addition of frequency analysis techniques, it provides a method to identify human colonic motor patterns. Here we report on the 1, 3, and 12 cpm rhythmic motor patterns. Ultrasound has the potential to become a bedside assessment for colonic dysmotility and may reveal the health of interstitial cells of Cajal (ICC) pacemaker activities.


Asunto(s)
Motilidad Gastrointestinal , Células Intersticiales de Cajal , Humanos , Colon/diagnóstico por imagen , Ultrasonografía
15.
Neuropathol Appl Neurobiol ; 49(4): e12915, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37296499

RESUMEN

AIMS: Nijmegen breakage syndrome (NBS) is a rare autosomal recessive disorder caused by hypomorphic mutations of NBS1. NBS1 is a member of the MRE11-RAD50-NBS1 (MRN) complex that binds to DNA double-strand breaks and activates the DNA damage response (DDR). Nbs1 inactivation in neural progenitor cells leads to microcephaly and premature death. Interestingly, p53 homozygous deletion rescues the NBS1-deficient phenotype allowing long-term survival. The objective of this work was to determine whether simultaneous inactivation of Nbs1 and p53 in neural progenitors triggered brain tumorigenesis and if so in which category this tumour could be classified. METHODS: We generated a mouse model with simultaneous genetic inactivation of Nbs1 and p53 in embryonic neural stem cells and analysed the arising tumours with in-depth molecular analyses including immunohistochemistry, array comparative genomic hybridisation (aCGH), whole exome-sequencing and RNA-sequencing. RESULTS: NBS1/P53-deficient mice develop high-grade gliomas (HGG) arising in the olfactory bulbs and in the cortex along the rostral migratory stream. In-depth molecular analyses using immunohistochemistry, aCGH, whole exome-sequencing and RNA-sequencing revealed striking similarities to paediatric human HGG with shared features with radiation-induced gliomas (RIGs). CONCLUSIONS: Our findings show that concomitant inactivation of Nbs1 and p53 in mice promotes HGG with RIG features. This model could be useful for preclinical studies to improve the prognosis of these deadly tumours, but it also highlights the singularity of NBS1 among the other DNA damage response proteins in the aetiology of brain tumours.


Asunto(s)
Glioma , Proteína p53 Supresora de Tumor , Animales , Niño , Humanos , Ratones , Proteínas de Ciclo Celular/genética , Glioma/genética , Homocigoto , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Eliminación de Secuencia , Proteína p53 Supresora de Tumor/genética
16.
Blood ; 138(2): 122-135, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33690816

RESUMEN

Chimeric antigen receptor (CAR)-T-cell therapeutic efficacy is associated with long-term T-cell persistence and acquisition of memory. Memory-subset formation requires T-cell factor 1 (TCF-1), a master transcription factor for which few regulators have been identified. Here, we demonstrate using an immune-competent mouse model of B-cell acute lymphoblastic leukemia (ALL; B-ALL) that Regnase-1 deficiency promotes TCF-1 expression to enhance CAR-T-cell expansion and memory-like cell formation. This leads to improved CAR-T-mediated tumor clearance, sustained remissions, and protection against secondary tumor challenge. Phenotypic, transcriptional, and epigenetic profiling identified increased tumor-dependent programming of Regnase-1-deficient CAR-T cells into TCF-1+ precursor exhausted T cells (TPEX) characterized by upregulation of both memory and exhaustion markers. Regnase-1 directly targets Tcf7 messenger RNA (mRNA); its deficiency augments TCF-1 expression leading to the formation of TPEX that support long-term CAR-T-cell persistence and function. Regnase-1 deficiency also reduces exhaustion and enhances the activity of TCF-1- CAR-T cells. We further validate these findings in human CAR-T cells, where Regnase-1 deficiency mediates enhanced tumor clearance in a xenograft B-ALL model. This is associated with increased persistence and expansion of a TCF-1+ CAR-T-cell population. Our findings demonstrate the pivotal roles of TPEX, Regnase-1, and TCF-1 in mediating CAR-T-cell persistence and recall responses, and identify Regnase-1 as a modulator of human CAR-T-cell longevity and potency that may be manipulated for improved therapeutic efficacy.


Asunto(s)
Inmunoterapia Adoptiva , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Ribonucleasas/metabolismo , Factor 1 de Transcripción de Linfocitos T/metabolismo , Linfocitos T/inmunología , Animales , Antígenos CD19/metabolismo , Línea Celular Tumoral , Reprogramación Celular , Modelos Animales de Enfermedad , Epigénesis Genética , Humanos , Inmunocompetencia/inmunología , Memoria Inmunológica , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenotipo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología
17.
Blood ; 137(2): 155-167, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33156908

RESUMEN

The histone mark H3K27me3 and its reader/writer polycomb repressive complex 2 (PRC2) mediate widespread transcriptional repression in stem and progenitor cells. Mechanisms that regulate this activity are critical for hematopoietic development but are poorly understood. Here we show that the E3 ubiquitin ligase F-box only protein 11 (FBXO11) relieves PRC2-mediated repression during erythroid maturation by targeting its newly identified substrate bromo adjacent homology domain-containing 1 (BAHD1), an H3K27me3 reader that recruits transcriptional corepressors. Erythroblasts lacking FBXO11 are developmentally delayed, with reduced expression of maturation-associated genes, most of which harbor bivalent histone marks at their promoters. In FBXO11-/- erythroblasts, these gene promoters bind BAHD1 and fail to recruit the erythroid transcription factor GATA1. The BAHD1 complex interacts physically with PRC2, and depletion of either component restores FBXO11-deficient erythroid gene expression. Our studies identify BAHD1 as a novel effector of PRC2-mediated repression and reveal how a single E3 ubiquitin ligase eliminates PRC2 repression at many developmentally poised bivalent genes during erythropoiesis.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Eritropoyesis/fisiología , Proteínas F-Box/metabolismo , Regulación de la Expresión Génica/fisiología , Complejo Represivo Polycomb 2/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Línea Celular , Eritroblastos/metabolismo , Humanos , Proteolisis
18.
Opt Express ; 31(7): 11019-11040, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37155747

RESUMEN

Augmented reality near-eye display (AR-NED) technology has attracted enormous interests for its widespread potential applications. In this paper, two-dimensional (2D) holographic waveguide integrated simulation design and analysis, holographic optical elements (HOEs) exposure fabrication, prototype performance evaluation and imaging analysis are completed. In the system design, a 2D holographic waveguide AR-NED integrated with a miniature projection optical system is presented to achieve a larger 2D eye box expansion (EBE). A design method for controlling the luminance uniformity of 2D-EPE holographic waveguide by dividing the two thicknesses of HOEs is proposed, which is easy to fabricate. The optical principle and design method of the HOE-based 2D-EBE holographic waveguide are described in detail. In the system fabrication, laser exposure fabrication method of eliminating stray light for HOEs is proposed, and a prototype system is fabricated and demonstrated. The properties of the fabricated HOEs and the prototype are analyzed in detail. The experimental results verified that the 2D-EBE holographic waveguide has a diagonal field of view (FOV) of 45°, an ultra-thin thickness of 1 mm, and an eye box of 16 mm × 13 mm at an eye relief (ERF) of 18 mm, the MTF values of different FOVs at different 2D-EPE positions can be better than 0.2 at 20 lp/mm, and the whole luminance uniformity is 58%.

19.
Opt Lett ; 48(5): 1288-1291, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36857270

RESUMEN

In this Letter, we propose a design and fabrication method for a full-color augmented reality (AR) optical system based on a freeform holographic optical element (HOE). A point-by-point design method is proposed to generate the starting point of the system. Based on the preliminarily optimized system, the recording systems of the full-color HOE are designed. A joint optimization is conducted for all the systems, simultaneously considering the overall imaging performance, the diffraction efficiency, the constraints, and fabrication. A prototype is designed and fabricated to validate the feasibility and effectiveness of the proposed method.

20.
Langmuir ; 39(29): 10112-10121, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37452782

RESUMEN

Nanobubble (NB) technology has demonstrated the potential to enhance or substitute for current treatment processes in various areas. However, research employing it as a novel advanced oxidation process has thus far been relatively limited. Herein, we focused on the oxidative capacity of oxygen NBs and investigated the feasibility of utilizing their enhanced oxidation of ferrous ions (Fe2+) in a sulfuric acid medium when using copper as a catalyst and their effect mechanism. It was demonstrated that oxygen NBs could collapse to produce hydroxyl radicals (·OH) in the absence of dynamic stimuli using electron spin resonance spectroscopy, and methylene blue was used as a molecular probe for ·OH to illustrate that NB stability, determined by their properties, is the critical factor affecting ·OH release. In subsequent Fe2+ oxidation experiments, it was discovered that both strong acidity and copper ions (Cu2+) contribute to accelerating the collapse of NBs to produce ·OH. While ·OH derived from the collapse of NBs acts on Fe2+, the molecular oxygen generated homologously with ·OH will further activate the catalytic oxidation of Fe2+ by interacting with Cu2+. With the synergistic effect of the above two oxidation-driven mechanisms, the oxidation rate of Fe2+ can be significantly increased up to 88% due to the exceptional properties of oxygen NBs, which facilitate the formation of an atmosphere with persistent oxygen supersaturation and the generation of oxidation radicals. This study provides significant insight into applying NBs as a prospective technology for enhanced oxidation processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA