Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioorg Chem ; 144: 107140, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38245950

RESUMEN

Two new compounds namely [Zn(L1)phen]31 and Ni(L1)phen(MeOH) 2 (L1 = 3, 5-dichlorosalicylaldehyde thiosemicarbazone) were synthesized by the slow evaporation method at room temperature. The structure of ligand L1 was determined using 1H NMR and 13C NMR spectra. X-ray single crystal diffraction analysis revealed that compounds 1-2 can form 3D supramolecular network structures through π···π stacking and hydrogen bonding interactions. The DFT calculation shows that the coordination of ligand and metal is in good agreement with the experimental results. Hirshfeld surface analysis revealed that H…H and Cl…H interactions were the predominant interactions in compounds 1-2. Energy framework analysis indicated that dispersion energy played a dominant role in the energy composition of compounds 1-2. The inhibitory effects of compounds 1-2 against Escherichia coli (E. coli) and Methicillin-resistant Staphylococcus aureus (MRSA) were tested using the paper disk diffusion method (1: E. coli: 18 mm, MRSA: 17 mm, 2: E. coli: 15 mm, MRSA: 16 mm). Ion releasing experiments were conducted to assess the ion release capacity of compounds 1-2 (Zn2+, 4 days, 38.33 µg/mL; Ni2+, 4 days, 29.12 µg/mL). Molecular docking demonstrated the interaction modes of compounds 1-2 with UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) and dihydrofolate reductase (DHFR) in bacteria, involving hydrophobic, stacking, hydrogen bonding and halogen bonding interactions. The generation of reactive oxygen species (ROS) in bacteria under the presence of compounds 1-2 were evaluated using a fluorescent dye known as dichlorodihydrofluorescein diacetate (DCFH-DA). Potential antibacterial mechanisms of compounds 1-2 were proposed.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Antibacterianos/farmacología , Escherichia coli , Ligandos , Simulación del Acoplamiento Molecular , Zinc/farmacología , Zinc/química , Níquel/química , Complejos de Coordinación/química , Complejos de Coordinación/farmacología
2.
Brain Behav Immun ; 80: 859-870, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31145977

RESUMEN

Sepsis-associated encephalopathy (SAE) manifested clinically in acute and long-term cognitive impairments and associated with increased morbidity and mortality worldwide. The potential pathological changes of SAE are complex and remain to be elucidated. Pyroptosis, a novel programmed cell death, is executed by caspase-1-cleaved GSDMD N-terminal (GSDMD-NT) and we investigated it in peripheral blood immunocytes of septic patients previously. Here, a caspase-1 inhibitor VX765 was treated with CLP-induced septic mice. Novel object recognition test indicated that VX765 treatment reversed cognitive dysfunction in septic mice. Elevated plus maze, tail suspension test and open field test revealed that depressive-like behaviors of septic mice were relieved. Inhibited caspase-1 suppressed the expressions of GSDMD and its cleavage form GSDMD-NT, and reduced pyroptosis in brain at day 1 and day 7 after sepsis. Meantime, inhibited caspase-1 mitigated the expressions of IL-1ß, MCP-1 and TNF-α in serum and brain, diminished microglia activation in septic mice, and reduced sepsis-induced brain-blood barrier disruption and ultrastructure damages in brain as well. Inhibited caspase-1 protected the synapse plasticity and preserved long-term potential, which may be the possible mechanism of cognitive functions protective effects of septic mice. In conclusion, caspase-1 inhibition exerts brain-protective effects against SAE and cognitive impairments in a mouse model of sepsis.


Asunto(s)
Disfunción Cognitiva/fisiopatología , Piroptosis/efectos de los fármacos , Encefalopatía Asociada a la Sepsis/metabolismo , Animales , Apoptosis/efectos de los fármacos , Encéfalo/metabolismo , Encefalopatías/metabolismo , Encefalopatías/fisiopatología , Caspasa 1/metabolismo , Inhibidores de Caspasas/farmacología , Dipéptidos/farmacología , Hipocampo/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lipopolisacáridos/farmacología , Activación de Macrófagos , Masculino , Ratones , Ratones Endogámicos BALB C , Proteínas de Unión a Fosfato/metabolismo , Piroptosis/fisiología , Sepsis/complicaciones , Sepsis/metabolismo , Sepsis/fisiopatología , Encefalopatía Asociada a la Sepsis/fisiopatología , Sinapsis/metabolismo , para-Aminobenzoatos/farmacología
3.
J Med Genet ; 53(1): 43-52, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26475046

RESUMEN

BACKGROUND: Somatic mosaicism is being increasingly recognised as an important cause of non-Mendelian presentations of hereditary syndromes. A previous whole-exome sequencing study using DNA derived from peripheral blood identified mosaic mutations in DICER1 in two children with overgrowth and developmental delay as well as more typical phenotypes of germline DICER1 mutation. However, very-low-frequency mosaicism is difficult to detect, and thus, causal mutations can go unnoticed. Highly sensitive, cost-effective approaches are needed to molecularly diagnose these persons. We studied four children with multiple primary tumours known to be associated with the DICER1 syndrome, but in whom germline DICER1 mutations were not detected by conventional mutation detection techniques. METHODS AND RESULTS: We observed the same missense mutation within the DICER1 RNase IIIb domain in multiple tumours from different sites in each patient, raising suspicion of somatic mosaicism. We implemented three different targeted-capture technologies, including the novel HaloPlex(HS) (Agilent Technologies), followed by deep sequencing, and confirmed that the identified mutations are mosaic in origin in three patients, detectable in 0.24-31% of sequencing reads in constitutional DNA. The mosaic origin of patient 4's mutation remains to be unequivocally established. We also discovered likely pathogenic second somatic mutations or loss of heterozygosity (LOH) in tumours from all four patients. CONCLUSIONS: Mosaic DICER1 mutations are an important cause of the DICER1 syndrome in patients with severe phenotypes and often appear to be accompanied by second somatic truncating mutations or LOH in the associated tumours. Furthermore, the molecular barcode-containing HaloPlex(HS) provides the sensitivity required for detection of such low-level mosaic mutations and could have general applicability.


Asunto(s)
ARN Helicasas DEAD-box/genética , Estudios de Asociación Genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mosaicismo , Mutación , Neoplasias Primarias Múltiples/genética , Ribonucleasa III/genética , Niño , Preescolar , Biología Computacional/métodos , Análisis Mutacional de ADN , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Humanos , Pérdida de Heterocigocidad , Masculino , Neoplasias Primarias Múltiples/diagnóstico , Fenotipo , Sensibilidad y Especificidad , Síndrome
4.
Elife ; 122023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37285284

RESUMEN

In skeletal muscle, muscle stem cells (MuSC) are the main cells responsible for regeneration upon injury. In diseased skeletal muscle, it would be therapeutically advantageous to replace defective MuSCs, or rejuvenate them with drugs to enhance their self-renewal and ensure long-term regenerative potential. One limitation of the replacement approach has been the inability to efficiently expand MuSCs ex vivo, while maintaining their stemness and engraftment abilities. Herein, we show that inhibition of type I protein arginine methyltransferases (PRMTs) with MS023 increases the proliferative capacity of ex vivo cultured MuSCs. Single cell RNA sequencing (scRNAseq) of ex vivo cultured MuSCs revealed the emergence of subpopulations in MS023-treated cells which are defined by elevated Pax7 expression and markers of MuSC quiescence, both features of enhanced self-renewal. Furthermore, the scRNAseq identified MS023-specific subpopulations to be metabolically altered with upregulated glycolysis and oxidative phosphorylation (OxPhos). Transplantation of MuSCs treated with MS023 had a better ability to repopulate the MuSC niche and contributed efficiently to muscle regeneration following injury. Interestingly, the preclinical mouse model of Duchenne muscular dystrophy had increased grip strength with MS023 treatment. Our findings show that inhibition of type I PRMTs increased the proliferation capabilities of MuSCs with altered cellular metabolism, while maintaining their stem-like properties such as self-renewal and engraftment potential.


Asunto(s)
Distrofia Muscular de Duchenne , Células Satélite del Músculo Esquelético , Animales , Ratones , Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Células Cultivadas , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo
5.
Radiat Prot Dosimetry ; 199(15-16): 2047-2052, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37819315

RESUMEN

We hypothesised that single-cell whole-genome sequencing has the potential to detect mutational differences in the genomes of the cells that are irradiated with different doses of radiation and we set out to test our hypothesis using in silico and in vitro experiments. In this manuscript, we present our findings from a Monte Carlo single-cell irradiation simulation performed in TOPAS-nBio using a custom-built geometric nuclear deoxyribonucleic acid (DNA) model, which predicts a significant dose dependence of the number of cluster damages per cell as a function of radiation dose. We also present preliminary experimental results, obtained from single-cell whole-genome DNA sequencing analysis performed on cells irradiated with different doses of radiation, showing promising agreement with the simulation results.


Asunto(s)
ADN , Radiometría , Simulación por Computador , Método de Montecarlo , Análisis de Secuencia de ADN , Daño del ADN
6.
Artículo en Inglés | MEDLINE | ID: mdl-36446612

RESUMEN

BACKGROUND AND OBJECTIVES: Multiple sclerosis (MS) is a neuroinflammatory and neurodegenerative disease characterized by infiltration of immune cells in multifocal areas of the CNS. The specific molecular processes allowing autoreactive immune cells to enter the CNS compartment through the blood-brain barrier remain elusive. METHODS: Using endothelial cell (EC) enrichment and single-cell RNA sequencing, we characterized the cells implicated in the neuroinflammatory processes in experimental autoimmune encephalomyelitis, an animal model of MS. Validations on human MS brain sections of the most differentially expressed genes in venous ECs were performed using immunohistochemistry and confocal microscopy. RESULTS: We found an upregulation of genes associated with antigen presentation and interferon in most populations of CNS-resident cells, including ECs. Interestingly, instead of transcriptionally distinct profiles, a continuous gradient of gene expression separated the arteriovenous zonation of the brain vasculature. However, differential gene expression analysis presented more transcriptomic alterations on the venous side of the axis, suggesting a prominent role of venous ECs in neuroinflammation. Furthermore, analysis of ligand-receptor interactions identified important potential molecular communications between venous ECs and infiltrated immune populations. To confirm the relevance of our observation in the context of human disease, we validated the protein expression of the most upregulated genes (Ackr1 and Lcn2) in MS lesions. DISCUSSION: In this study, we provide a landscape of the cellular heterogeneity associated with neuroinflammation. We also present important molecular insights for further exploration of specific cell processes that promote infiltration of immune cells inside the brain of experimental autoimmune encephalomyelitis mice.


Asunto(s)
Encefalitis , Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Enfermedades Neurodegenerativas , Humanos , Animales , Ratones , Encefalomielitis Autoinmune Experimental/genética , Transcriptoma , Esclerosis Múltiple/genética , Encéfalo , Endotelio
7.
Front Genet ; 13: 1031355, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36324505

RESUMEN

Full-length transcript sequencing remains a main goal of RNA sequencing. However, even the application of long-read sequencing technologies such as Oxford Nanopore Technologies still fail to yield full-length transcript sequencing for a significant portion of sequenced reads. Since these technologies can sequence reads that are far longer than the longest known processed transcripts, the lack of efficiency to obtain full-length transcripts from good quality RNAs stems from library preparation inefficiency rather than the presence of degraded RNA molecules. It has previously been shown that addition of inverted terminal repeats in cDNA during reverse transcription followed by single-primer PCR creates a PCR suppression effect that prevents amplification of short molecules thus enriching the library for longer transcripts. We adapted this method for Nanopore cDNA library preparation and show that not only is PCR efficiency increased but gene body coverage is dramatically improved. The results show that implementation of this simple strategy will result in better quality full-length RNA sequencing data and make full-length transcript sequencing possible for most of sequenced reads.

8.
Life Sci Alliance ; 5(10)2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35705491

RESUMEN

Remyelination failure in multiple sclerosis leads to progressive demyelination and inflammation, resulting in neurodegeneration and clinical decline. Microglia are innate immune cells that can acquire a regenerative phenotype to promote remyelination, yet little is known about the regulators controlling the regenerative microglia activation. Herein, using a cuprizone (CPZ)-diet induced de- and remyelination mice model, we identify PRMT1 as a driver for MHC-associated microglia population required for remyelination in the central nervous system. The loss of PRMT1, but not PRMT5, in microglia resulted in impairment of the remyelination with a reduction of oligoprogenitor cell number and prolonged microgliosis and astrogliosis. Using single-cell RNA sequencing, we found eight distinct microglial clusters during the CPZ diet, and PRMT1 depleted microglia hindered the formation of the MHC-associated cluster, expressing MHCII and CD11c. Mechanistically, PRMT1-KO microglia displayed reduced the H3K27ac peaks at the promoter regions of the MHC- and IFN-associated genes and further suppressed gene expression during CPZ diet. Overall, our findings demonstrate that PRMT1 is a critical regulator of the MHC- and IFN-associated microglia, necessary for central nervous system remyelination.


Asunto(s)
Enfermedades Desmielinizantes , Remielinización , Animales , Sistema Nervioso Central/metabolismo , Cuprizona/metabolismo , Enfermedades Desmielinizantes/genética , Enfermedades Desmielinizantes/metabolismo , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo
9.
Free Radic Biol Med ; 184: 208-217, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35367342

RESUMEN

Acute lung injury (ALI) is the leading cause of bacterial sepsis-related death because of disrupted pulmonary endothelial barrier, resulting in protein-rich pulmonary oedema, an influx of pro-inflammatory cells and refractory hypoxaemia. Several studies have reported that C3a levels are significantly higher in organs with sepsis and their peripheral organs and are closely associated with organ dysfunction and poor prognosis in sepsis. However, the role of the C3a complement in sepsis ALI remains unclear. Therefore, this study aimed to investigate the important role and mechanism of C3a in preventing the occurrence of pyroptosis (a pro-inflammatory form of cell death) to protect the lung endothelial cells (ECs) in sepsis-induced ALI. A septic mouse model was established with cecal ligation and puncture (CLP), which demonstrated that C3a mediated EC pyroptosis through its C3aR receptor. Furthermore, inhibition of the C3a-C3aR axis could block both NLRP3/caspase-1 and caspase-11 pathways, thus preventing pulmonary EC from pyroptosis. These results indicate that inhibition of the C3A-C3AR complement axis can inhibit pulmonary vascular EC pyroptosis, a potential target for the treatment of ALI.


Asunto(s)
Lesión Pulmonar Aguda , Sepsis , Lesión Pulmonar Aguda/metabolismo , Animales , Caspasas/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL , Piroptosis , Sepsis/complicaciones , Sepsis/metabolismo
10.
Guang Pu Xue Yu Guang Pu Fen Xi ; 31(7): 1930-4, 2011 Jul.
Artículo en Zh | MEDLINE | ID: mdl-21942054

RESUMEN

The soil available nutrient determination based on atomic absorption spectrometry using multi-element hollow cathode lamp (HCL) is improved from the instrument using single-element HCLs via modifying the software and hardware. As a test, available Cu, Fe, Zn, Mg and Ca contents of 30 fluvo-aquic soil samples measured by atomic absorption spectrometry using a multi-element HCL were compared with that measured by using single-element HCLs for 3 replications. A significant linear relationship with the slope close to 1 was found in soil available Cu, Fe, Zn and Ca contents measured by using multi-element HCL and single-element HCLs. The linear correlation coefficient of 0.86 and the slope of 0.85 were found in soil available Mg content. No significant difference was revealed from the above comparison data via analysis of variance. Therefore, the soil available nutrient determination based on atomic absorption spectrometry using multi-element HCL has the same measurement accuracy and is 50%-60% time-saving compared to that by using single-element HCLs.

11.
Sci Rep ; 11(1): 7878, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33846393

RESUMEN

The olive fruit fly, Bactrocera oleae, is the most important pest for the olive fruit but lacks adequate transcriptomic characterization that could aid in molecular control approaches. We apply nanopore long-read RNA-seq with internal RNA standards allowing absolute transcript quantification to analyze transcription dynamics during early embryo development for the first time in this organism. Sequencing on the MinION platform generated over 31 million reads. Over 50% of the expressed genes had at least one read covering its entire length validating our full-length approach. We generated a de novo transcriptome assembly and identified 1768 new genes and a total of 79,810 isoforms; a fourfold increase in transcriptome diversity compared to the current NCBI predicted transcriptome. Absolute transcript quantification per embryo allowed an insight into the dramatic re-organization of maternal transcripts. We further identified Zelda as a possible regulator of early zygotic genome activation in B. oleae and provide further insights into the maternal-to-zygotic transition. These data show the utility of long-read RNA in improving characterization of non-model organisms that lack a fully annotated genome, provide potential targets for sterile insect technic approaches, and provide the first insight into the transcriptome landscape of the developing olive fruit fly embryo.


Asunto(s)
Desarrollo Embrionario/genética , ARN/metabolismo , Tephritidae , Transcriptoma/genética , Animales , Tephritidae/embriología , Tephritidae/genética
12.
Nat Commun ; 12(1): 2627, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976190

RESUMEN

The kidney and upper urinary tract develop through reciprocal interactions between the ureteric bud and the surrounding mesenchyme. Ureteric bud branching forms the arborized collecting duct system of the kidney, while ureteric tips promote nephron formation from dedicated progenitor cells. While nephron progenitor cells are relatively well characterized, the origin of ureteric bud progenitors has received little attention so far. It is well established that the ureteric bud is induced from the nephric duct, an epithelial duct derived from the intermediate mesoderm of the embryo. However, the cell state transitions underlying the progression from intermediate mesoderm to nephric duct and ureteric bud remain unknown. Here we show that nephric duct morphogenesis results from the coordinated organization of four major progenitor cell populations. Using single cell RNA-seq and Cluster RNA-seq, we show that these progenitors emerge in time and space according to a stereotypical pattern. We identify the transcription factors Tfap2a/b and Gata3 as critical coordinators of this progenitor cell progression. This study provides a better understanding of the cellular origin of the renal collecting duct system and associated urinary tract developmental diseases, which may inform guided differentiation of functional kidney tissue.


Asunto(s)
Nefronas/embriología , Organogénesis/genética , Células Madre/fisiología , Animales , Diferenciación Celular/genética , Embrión de Mamíferos , Femenino , Factor de Transcripción GATA3/metabolismo , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Ratones Transgénicos , Modelos Animales , RNA-Seq , Análisis de la Célula Individual , Factor de Transcripción AP-2/metabolismo
13.
Nat Protoc ; 16(6): 2788-2801, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33972803

RESUMEN

Single-cell and single-nucleus sequencing techniques are a burgeoning field with various biological, biomedical and clinical applications. Numerous high- and low-throughput methods have been developed for sequencing the RNA and DNA content of single cells. However, for all these methods, the key requirement is high-quality input of a single-cell or single-nucleus suspension. Preparing such a suspension is the limiting step when working with fragile, archived tissues of variable quality. This hurdle can prevent such tissues from being extensively investigated with single-cell technologies. We describe a protocol for preparing single-nucleus suspensions within the span of a few hours that reliably works for multiple postmortem and archived tissue types using standard laboratory equipment. The stages of the protocol include tissue preparation and dissociation, nuclei extraction, and nuclei concentration assessment and capture. The protocol is comparable to other published protocols but does not require fluorescence-assisted nuclei sorting (FANS) or ultracentrifugation. The protocol can be carried out by a competent graduate student familiar with basic laboratory techniques and equipment. Moreover, these preparations are compatible with single-nucleus (sn)RNA-seq and assay for transposase-accessible chromatin (ATAC)-seq using the 10X Genomics Chromium system. The protocol reliably results in efficient capture of single nuclei for high-quality snRNA-seq libraries.


Asunto(s)
Núcleo Celular , Análisis de Secuencia de ADN , Análisis de la Célula Individual/métodos , Humanos
14.
Cancer Res ; 81(20): 5147-5160, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34301761

RESUMEN

Ovarian cancer is the most lethal gynecologic cancer to date. High-grade serous ovarian carcinoma (HGSOC) accounts for most ovarian cancer cases, and it is most frequently diagnosed at advanced stages. Here, we developed a novel strategy to generate somatic ovarian cancer mouse models using a combination of in vivo electroporation and CRISPR-Cas9-mediated genome editing. Mutation of tumor suppressor genes associated with HGSOC in two different combinations (Brca1, Tp53, Pten with and without Lkb1) resulted in successfully generation of HGSOC, albeit with different latencies and pathophysiology. Implementing Cre lineage tracing in this system enabled visualization of peritoneal micrometastases in an immune-competent environment. In addition, these models displayed copy number alterations and phenotypes similar to human HGSOC. Because this strategy is flexible in selecting mutation combinations and targeting areas, it could prove highly useful for generating mouse models to advance the understanding and treatment of ovarian cancer. SIGNIFICANCE: This study unveils a new strategy to generate genetic mouse models of ovarian cancer with high flexibility in selecting mutation combinations and targeting areas.


Asunto(s)
Proteínas Quinasas Activadas por AMP/fisiología , Sistemas CRISPR-Cas , Cistadenocarcinoma Seroso/patología , Modelos Animales de Enfermedad , Trompas Uterinas/patología , Edición Génica , Neoplasias Ováricas/patología , Animales , Proteína BRCA1/fisiología , Cistadenocarcinoma Seroso/genética , Variaciones en el Número de Copia de ADN , Electroporación , Trompas Uterinas/metabolismo , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Neoplasias Ováricas/genética , Fosfohidrolasa PTEN/fisiología , Proteína p53 Supresora de Tumor/fisiología
15.
Cell Rep ; 36(10): 109677, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34496237

RESUMEN

Owing to technical advances in single-cell biology, the appreciation of cellular heterogeneity has increased, which has aided our understanding of organ function, homeostasis, and disease progression. The oviduct (also known as the fallopian tube) is the distalmost portion of the female reproductive tract. It is essential for reproduction and the proposed origin of high-grade serous ovarian carcinoma (HGSOC). In mammals, the oviduct is morphologically segmented along the ovary-uterus axis into four evolutionally conserved regions. It is unclear, however, if there is a diversification of epithelial cell characteristics between these regions. In this study, we identify transcriptionally distinct populations of secretory and multiciliated cells restricted to the distal and proximal regions of the oviduct. We demonstrate that distal and proximal populations are distinct lineages specified early in Müllerian duct development and are maintained separately. These results aid our understanding of epithelial development, homeostasis, and initiation of disease from the oviduct.


Asunto(s)
Células Epiteliales/patología , Trompas Uterinas/patología , Neoplasias Ováricas/patología , Animales , Cistadenocarcinoma Seroso/patología , Femenino , Ratones Endogámicos C57BL , Oviductos/patología
16.
Nat Commun ; 12(1): 1749, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33741928

RESUMEN

Sonic hedgehog medulloblastoma encompasses a clinically and molecularly diverse group of cancers of the developing central nervous system. Here, we use unbiased sequencing of the transcriptome across a large cohort of 250 tumors to reveal differences among molecular subtypes of the disease, and demonstrate the previously unappreciated importance of non-coding RNA transcripts. We identify alterations within the cAMP dependent pathway (GNAS, PRKAR1A) which converge on GLI2 activity and show that 18% of tumors have a genetic event that directly targets the abundance and/or stability of MYCN. Furthermore, we discover an extensive network of fusions in focally amplified regions encompassing GLI2, and several loss-of-function fusions in tumor suppressor genes PTCH1, SUFU and NCOR1. Molecular convergence on a subset of genes by nucleotide variants, copy number aberrations, and gene fusions highlight the key roles of specific pathways in the pathogenesis of Sonic hedgehog medulloblastoma and open up opportunities for therapeutic intervention.


Asunto(s)
Neoplasias Cerebelosas/genética , Regulación Neoplásica de la Expresión Génica , Proteínas Hedgehog/genética , Meduloblastoma/genética , Transcriptoma , Adolescente , Adulto , Niño , Preescolar , Femenino , Redes Reguladoras de Genes , Variación Genética , Humanos , Lactante , Masculino , Persona de Mediana Edad , Transducción de Señal/genética , Adulto Joven
17.
Sci Rep ; 10(1): 8079, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32415257

RESUMEN

Childhood acute lymphoblastic leukemia (cALL) is the most common pediatric cancer. It is characterized by bone marrow lymphoid precursors that acquire genetic alterations, resulting in disrupted maturation and uncontrollable proliferation. More than a dozen molecular subtypes of variable severity can be used to classify cALL cases. Modern therapy protocols currently cure 85-90% of cases, but other patients are refractory or will relapse and eventually succumb to their disease. To better understand intratumor heterogeneity in cALL patients, we investigated the nature and extent of transcriptional heterogeneity at the cellular level by sequencing the transcriptomes of 39,375 individual cells in eight patients (six B-ALL and two T-ALL) and three healthy pediatric controls. We observed intra-individual transcriptional clusters in five out of the eight patients. Using pseudotime maturation trajectories of healthy B and T cells, we obtained the predicted developmental state of each leukemia cell and observed distribution shifts within patients. We showed that the predicted developmental states of these cancer cells are inversely correlated with ribosomal protein expression levels, which could be a common contributor to intra-individual heterogeneity in cALL patients.


Asunto(s)
Biomarcadores de Tumor/genética , Regulación del Desarrollo de la Expresión Génica , Heterogeneidad Genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Proteínas Ribosómicas/genética , Análisis de la Célula Individual/métodos , Biomarcadores de Tumor/metabolismo , Niño , Preescolar , Femenino , Humanos , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/clasificación , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Proteínas Ribosómicas/metabolismo , Secuenciación del Exoma/métodos
18.
Nat Neurosci ; 23(6): 771-781, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32341540

RESUMEN

Major depressive disorder (MDD) has an enormous impact on global disease burden, affecting millions of people worldwide and ranking as a leading cause of disability for almost three decades. Past molecular studies of MDD employed bulk homogenates of postmortem brain tissue, which obscures gene expression changes within individual cell types. Here we used single-nucleus transcriptomics to examine ~80,000 nuclei from the dorsolateral prefrontal cortex of male individuals with MDD (n = 17) and of healthy controls (n = 17). We identified 26 cellular clusters, and over 60% of these showed differential gene expression between groups. We found that the greatest dysregulation occurred in deep layer excitatory neurons and immature oligodendrocyte precursor cells (OPCs), and these contributed almost half (47%) of all changes in gene expression. These results highlight the importance of dissecting cell-type-specific contributions to the disease and offer opportunities to identify new avenues of research and novel targets for treatment.


Asunto(s)
Trastorno Depresivo Mayor/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Neuronas/metabolismo , Células Precursoras de Oligodendrocitos/metabolismo , Corteza Prefrontal/metabolismo , Transcriptoma , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Redes Reguladoras de Genes , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
19.
Life Sci ; 250: 117551, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32179075

RESUMEN

AIMS: Increasing evidence indicates that FK866, a specific noncompetitive nicotinamide phosphoribosyl transferase inhibitor, exhibits a protective effect on acute lung injury (ALI). Autophagy plays a pivotal role in sepsis-induced ALI. However, the contribution of autophagy and the underlying mechanism by which FK866-confered lung protection remains elusive. Herein, we aimed to study whether FK866 could alleviate sepsis-induced ALI via the JNK-dependent autophagy. MAIN METHODS: Male C57BL/6 mice were subjected to cecal ligation and puncture (CLP) to establish the polymicrobial sepsis mice model, and treated with FK866 (10 mg/kg) at 24, 12 and 0.5 h before the CLP procedure. The lung protective effects were measured by lung histopathology, tissue edema, vascular leakage, inflammation infiltration, autophagy-related protein expression and JNK activity. A549 cells were stimulated with LPS (1000 ng/ml) to generate the ALI cell model, and pretreated with FK866 or SP600125 for 30 min to measure the autophagy-related protein expression and JNK activity. KEY FINDINGS: Our results demonstrated that FK866 reduced lung injury score, tissue edema, vascular leakage, and inflammatory infiltration, and upregulated autophagy. The protective effect of autophagy conferred by FK866 on ALI was further clarified by using 3-methyladenine (3MA) and rapamycin. Additionally, the activity of JNK was suppressed by FK866, and inhibition of JNK promoted autophagy and showed a benefit effect. SIGNIFICANCE: Our study indicates that FK866 protects against sepsis-induced ALI by induction of JNK-dependent autophagy. This may provide new insights into the functional mechanism of NAMPT inhibition in sepsis-induced ALI.


Asunto(s)
Acrilamidas/uso terapéutico , Lesión Pulmonar Aguda/tratamiento farmacológico , Autofagia , MAP Quinasa Quinasa 4/metabolismo , Piperidinas/uso terapéutico , Sepsis/tratamiento farmacológico , Células A549 , Lesión Pulmonar Aguda/complicaciones , Animales , Líquido del Lavado Bronquioalveolar , Permeabilidad Capilar , Modelos Animales de Enfermedad , Humanos , Pulmón/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Sepsis/complicaciones , Transducción de Señal , Regulación hacia Arriba
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 233: 118232, 2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32163878

RESUMEN

One new pyridine-3,4-dicarboxylhydrazidate-coordinated compound [Zn(pdh)] 1 (pdh = pyridine-3,4-dicarboxylhydrazidate) was obtained under the hydrothermal conditions. Noteworthily, the pdh molecules in the title compound originated from the ligand in situ reaction between organic pyridine-3,4-dicarboxylic acid (pdca) and N2H4·H2O. X-ray single-crystal diffraction analysis revealed that the pdh ligands exhibit a special µ4-bridging mode in compound 1, which link Zn(II) centers into a 2D layered structure. The photocatalysis analysis indicates that it is a potential visible light catalyst. In addition, the solid photoluminescence property of compound 1 was also investigated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA