RESUMEN
BACKGROUND: Cardiac hypertrophy and its associated remodeling are among the leading causes of heart failure. Lysine crotonylation is a recently discovered posttranslational modification whose role in cardiac hypertrophy remains largely unknown. NAE1 (NEDD8 [neural precursor cell expressed developmentally downregulated protein 8]-activating enzyme E1 regulatory subunit) is mainly involved in the neddylation modification of protein targets. However, the function of crotonylated NAE1 has not been defined. This study aims to elucidate the effects and mechanisms of NAE1 crotonylation on cardiac hypertrophy. METHODS: Crotonylation levels were detected in both human and mouse subjects with cardiac hypertrophy through immunoprecipitation and Western blot assays. Tandem mass tag (TMT)-labeled quantitative lysine crotonylome analysis was performed to identify the crotonylated proteins in a mouse cardiac hypertrophic model induced by transverse aortic constriction. We generated NAE1 knock-in mice carrying a crotonylation-defective K238R (lysine to arginine mutation at site 238) mutation (NAE1 K238R) and NAE1 knock-in mice expressing a crotonylation-mimicking K238Q (lysine to glutamine mutation at site 238) mutation (NAE1 K238Q) to assess the functional role of crotonylation of NAE1 at K238 in pathological cardiac hypertrophy. Furthermore, we combined coimmunoprecipitation, mass spectrometry, and dot blot analysis that was followed by multiple molecular biological methodologies to identify the target GSN (gelsolin) and corresponding molecular events contributing to the function of NAE1 K238 (lysine residue at site 238) crotonylation. RESULTS: The crotonylation level of NAE1 was increased in mice and patients with cardiac hypertrophy. Quantitative crotonylomics analysis revealed that K238 was the main crotonylation site of NAE1. Loss of K238 crotonylation in NAE1 K238R knock-in mice attenuated cardiac hypertrophy and restored the heart function, while hypercrotonylation mimic in NAE1 K238Q knock-in mice significantly enhanced transverse aortic constriction-induced pathological hypertrophic response, leading to impaired cardiac structure and function. The recombinant adenoviral vector carrying NAE1 K238R mutant attenuated, while the K238Q mutant aggravated Ang II (angiotensin II)-induced hypertrophy. Mechanistically, we identified GSN as a direct target of NAE1. K238 crotonylation of NAE1 promoted GSN neddylation and, thus, enhanced its protein stability and expression. NAE1 crotonylation-dependent increase of GSN promoted actin-severing activity, which resulted in adverse cytoskeletal remodeling and progression of pathological hypertrophy. CONCLUSIONS: Our findings provide new insights into the previously unrecognized role of crotonylation on nonhistone proteins during cardiac hypertrophy. We found that K238 crotonylation of NAE1 plays an essential role in mediating cardiac hypertrophy through GSN neddylation, which provides potential novel therapeutic targets for pathological hypertrophy and cardiac remodeling.
Asunto(s)
Cardiomegalia , Animales , Humanos , Cardiomegalia/metabolismo , Cardiomegalia/patología , Cardiomegalia/genética , Ratones , Masculino , Procesamiento Proteico-Postraduccional , Ratones Endogámicos C57BL , Enzimas Activadoras de Ubiquitina/metabolismo , Enzimas Activadoras de Ubiquitina/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratones Transgénicos , Proteína NEDD8/metabolismo , Proteína NEDD8/genética , Células HEK293RESUMEN
BACKGROUND: The objective of this study was to evaluate the effects of glutamine on the growth performance and systemic innate immune response in broiler chickens challenged with Salmonella pullorum. A total of 600 one-day-old Arbor Acres broiler chickens were assigned randomly to 6 dietary treatments with 10 replicates for a 21-day feeding experiment. The experimental treatments were as follows: the control treatment (birds fed the basal diet), the Gln1 treatment, and the Gln 2 treatment (birds fed the basal diet supplemented with 0.5%, and 1.0% Glutamine, respectively). At 3 d of age, half of the birds from each treatment were challenged oral gavage with 2.0 × 104 CFU/mL of S. pullorum suspension (1.0 mL per bird) or an equivalent amount of sterile saline alone, which served as a control. RESULTS: The results showed that S. pullorum infection had adverse effects on the average daily feed intake, average daily gain, and feed conversion ratio of broiler chickens compared with those of the CON treatment on d 7, decreased the spleen and bursa of fabricius relative weights (except on d 21), serum immunoglobulin A (IgA),immunoglobulin G (IgG), and immunoglobulin M (IgM) concentrations, and spleen melanoma differentiation-associated gene 5 (MDA5) and laboratory of genetics and physiology gene 2 (LGP2) mRNA expression levels, and increased the mRNA expression levels of spleen Nodinitib-1 (NOD1), Toll-like receptors 2,4 (TLR2, TLR4), DNA-dependent activator of IFN-regulatory factors (DAI), mitochondrial antiviral-signaling protein (MAVS), P50, P65, and RelB on d 4, 7, 14, and 21. Supplementation with Gln improved the relative weights of the spleen and bursa of Fabricius (except on d 21), increased the serum IgA, IgG, and IgM concentrations and the mRNA expression levels of spleen MDA5 and LGP2, and decreased the mRNA expression levels of spleen NOD1, TLR2, TLR4, DAI, MAVS, P50, P65, and RelB of S. pullorum-challenged broiler chickens. CONCLUSION: These results indicate that Gln might stimulate the systemic innate immune responses of the spleen in broiler chickens challenged with S. pullorum.
Asunto(s)
Pollos , Receptor Toll-Like 2 , Animales , Receptor Toll-Like 2/metabolismo , Glutamina/farmacología , Receptor Toll-Like 4/metabolismo , Suplementos Dietéticos , Dieta/veterinaria , Inmunidad Innata , Salmonella , Inmunoglobulina G , Inmunoglobulina M , ARN Mensajero/metabolismo , Inmunoglobulina A , Alimentación Animal/análisisRESUMEN
Cytochrome P450 monooxygenases (CYPs) are present in almost all areas of the tree of life. As one of the largest and most diverse superfamilies of multifunctional enzymes, they play important roles in the metabolism of xenobiotics and biosynthesis of endogenous compounds, shaping the success of insects. In this study, the CYPome (an omics term for all the CYP genes in a genome) diversification was examined in the four Tenebrionidea species through genome-wide analysis. A total of 483 CYP genes were identified, of which 103, 157, 122, and 101 were respectively deciphered from the genomes of Tebebrio molitor, Asbolus verucosus, Hycleus cichorii and Hycleus phaleratus. These CYPs were classified into four major clans (mitochondrial, CYP2, CYP3, and CYP4), and clans CYP3 and CYP4 are most diverse. Phylogenetic analysis showed that most CYPs of these Tenebrionidea beetles from each clan had a very close 1:1 orthology to each other, suggesting that they originate closely and have evolutionally conserved function. Expression analysis at different developmental stages and in various tissues showed the life stage-, gut-, salivary gland-, fat body-, Malpighian tubule-, antennae-, ovary- and testis-specific expression patterns of T. molitor CYP genes, implying their various potential roles in development, detoxification, immune response, digestion, olfaction, and reproduction. Our studies provide a platform to understand the evolution of Tenebrionidea CYP gene superfamily, and a basis for further functional investigation of the T. molitor CYPs involved in various biological processes.
Asunto(s)
Escarabajos , Xenobióticos , Animales , Escarabajos/genética , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Genoma , Enzimas Multifuncionales/genética , FilogeniaRESUMEN
Chitin is of great importance in the cuticle and inner cuticular linings of insects. Chitin synthases (CHSs), chitin deacetylases (CDAs), chitinases (CHTs), and ß-N-acetylhexosaminidases (HEXs) are important enzymes required for chitin metabolism, and play essential roles in development and metamorphosis. Although chitin metabolism genes have been well characterized in limited insects, the information in the yellow mealworm, Tenebrio molitor, a model insect, is presently still unavailable. With the help of bioinformatics, we identified 54 genes that encode putative chitin metabolism enzymes, including 2 CHSs, 10 CDAs, 32 CHTs, and 10 HEXs in the genome of T. molitor. All these genes have the conserved domains and motifs of their corresponding protein family. Phylogenetic analyses indicated that CHS genes were divided into two groups. CDA genes were clustered into five groups. CHT genes were phylogenetically grouped into 11 clades, among which 1 in the endo-ß-N-acetylglucosaminidases group and the others were classified in the glycoside hydrolase family 18 groups. HEX genes were assorted into six groups. Developmental and tissue-specific expression profiling indicated that the identified chitin metabolism genes showed dynamical expression patterns concurrent with specific instar during molting period, suggesting their significant roles in molting and development. They were predominantly expressed in different tissues or body parts, implying their functional specialization and diversity. The results provide important information for further clarifying their biological functions using the yellow mealworm as an ideal experimental insect.
Asunto(s)
Quitinasas , Tenebrio , Animales , Quitina/metabolismo , Quitina Sintasa/genética , Quitina Sintasa/metabolismo , Quitinasas/genética , Quitinasas/metabolismo , Genómica , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Insectos/metabolismo , Filogenia , Tenebrio/genética , Tenebrio/metabolismo , Transcriptoma , beta-N-Acetilhexosaminidasas/metabolismoRESUMEN
Background: Adverse drug outcomes in the elderly have led to the development of lists of potentially inappropriate medications (PIMs), such as the Beers criteria, and these PIMs have been studied widely; however, it is still unclear whether PIM use is predictive of adverse outcomes in older people. Objective: To qualitatively examine the associations between exposure to PIMs from the general Beers criteria and the Screening Tool of Older Persons' Prescriptions list and adverse outcomes, such as adverse drug reactions (ADRs)/adverse drug events (ADEs), hospitalization, and mortality. Methods: Specified databases were searched from inception to February 1, 2018. Two reviewers independently selected studies that met the inclusion criteria, assessed study quality, and extracted data. Data were pooled using Stata 12.0. The outcomes were ADRs/ADEs, hospitalization, and mortality. Results: A total of 33 studies met the inclusion criteria. The combined analysis revealed a statistically significant association between ADRs/hospitalizations and PIMs (odds ratio [OR] = 1.44, 95% CI = 1.33-1.56; OR = 1.27, 95% CI = 1.20-1.35), but no statistically significant association was found between mortality and PIMs (OR = 1.04; 95% CI = 0.75-1.45). It is interesting to note that the results changed when different continents/criteria were used for the analysis. Compared with the elderly individuals exposed to 1 PIM, the risk of adverse health outcomes was much higher for those who took ≥2 PIMs. Conclusion and Relevance: We recommend that clinicians avoid prescribing PIMs for older adults whenever feasible. In addition, the observed associations should be generalized to other countries with different PIM criteria with caution.
Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/epidemiología , Prescripción Inadecuada/estadística & datos numéricos , Lista de Medicamentos Potencialmente Inapropiados , Anciano , Hospitalización/estadística & datos numéricos , HumanosRESUMEN
Acetaminophen (APAP) is a widely used analgesic and antipyretic drug that leads to severe hepatotoxicity at excessive doses. Fucoidan, a sulfated polysaccharide derived from brown seaweeds, possesses a wide range of pharmacological properties. However, the impacts of fucoidan on APAP-induced liver injury have not been sufficiently addressed. In the present study, male Institute of Cancer Research (ICR) mice aged 6 weeks were subjected to a single APAP (500 mg/kg) intraperitoneal injection after 7 days of fucoidan (100 or 200 mg/kg/day) or bicyclol intragastric administration. The mice continued to be administered fucoidan or bicyclol once per day, and were sacrificed at an indicated time. The indexes evaluated included liver pathological changes, levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in the serum, levels of reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH) and catalase (CAT) in the liver, and related proteins levels (CYP2E1, pJNK and Bax). Furthermore, human hepatocyte HL-7702 cell line was used to elucidate the potential molecular mechanism of fucoidan. The mitochondrial membrane potential (MMP) and nuclear factor-erythroid 2-related factor (Nrf2) translocation in HL-7702 cells were determined. The results showed that fucoidan pretreatment reduced the levels of ALT, AST, ROS, and MDA, while it enhanced the levels of GSH, SOD, and CAT activities. Additionally, oxidative stress-induced phosphorylated c-Jun N-terminal protein kinase (JNK) and decreased MMP were attenuated by fucoidan. Although the nuclear Nrf2 was induced after APAP incubation, fucoidan further enhanced Nrf2 in cell nuclei and total expression of Nrf2. These results indicated that fucoidan ameliorated APAP hepatotoxicity, and the mechanism might be related to Nrf2-mediated oxidative stress.
Asunto(s)
Acetaminofén/efectos adversos , Compuestos de Bifenilo/administración & dosificación , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Polisacáridos/administración & dosificación , Animales , Compuestos de Bifenilo/farmacología , Línea Celular , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Inyecciones Intraperitoneales , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Endogámicos ICR , Polisacáridos/farmacología , Transporte de Proteínas/efectos de los fármacosRESUMEN
Dihydromyricetin (DMY), one of the flavonoids in vine tea, exerts several pharmacological actions. However, it is not clear whether DMY has a protective effect on pressure overload-induced myocardial hypertrophy. In the present study, male C57BL/6 mice aging 8â»10 weeks were subjected to transverse aortic constriction (TAC) surgery after 2 weeks of DMY (250 mg/kg/day) intragastric administration. DMY was given for another 2 weeks after surgery. Blood pressure, myocardial structure, cardiomyocyte cross-sectional area, cardiac function, and cardiac index were observed. The level of oxidative stress in the myocardium was assessed with dihydroethidium staining. Our results showed that DMY had no significant effect on the blood pressure. DMY decreased inter ventricular septum and left ventricular posterior wall thickness, relative wall thickness, cardiomyocyte cross-sectional areas, as well as cardiac index after TAC. DMY pretreatment also significantly reduced arterial natriuretic peptide (ANP), brain natriuretic peptide (BNP) mRNA and protein expressions, decreased reactive oxygen species production and malondialdehyde (MDA) level, while increased total antioxidant capacity (T-AOC), activity of superoxide dismutase (SOD), expression of sirtuin 3 (SIRT3), forkhead-box-protein 3a (FOXO3a) and SOD2, and SIRT3 activity in the myocardium of mice after TAC. Taken together, DMY ameliorated TAC induced myocardial hypertrophy in mice related to oxidative stress inhibition and SIRT3 pathway enhancement.
Asunto(s)
Antioxidantes/uso terapéutico , Cardiomegalia/tratamiento farmacológico , Flavonoles/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Sirtuina 3/metabolismo , Animales , Antioxidantes/farmacología , Cardiomegalia/etiología , Flavonoles/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Miocardio/metabolismo , Transducción de Señal/efectos de los fármacos , Obstrucción del Flujo Ventricular Externo/complicacionesRESUMEN
OBJECTIVE: The purpose of this study is to explore the inhibitory effects of S100A4 gene silencing on alkali burn-induced corneal neovascularization (CNV) in rabbit models. METHODS: Sixty-five rabbits were used to establish alkali-induced CNV models. After the operation, rabbits were given daily antibiotic eye drops and an eye ointment to prevent infection. The models were assigned to either an S100A4 siRNA or an empty vector group. Thirty rabbits were selected as the normal control group. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect the mRNA expression of S100A4, vascular endothelial growth factor (VEGF), and tumor necrosis factor-α (TNF-α) in corneal tissues. Immunohistochemistry was used to detect the protein expression of VEGF in corneal tissues, and an enzyme-linked immunosorbent (ELISA) assay was used to detect the protein expression of VEGF and TNF-α in the aqueous humor. RESULTS: The qRT-PCR results showed that S100A4 mRNA expression was lower in the S100A4 siRNA group than in the empty vector group at 1, 3, 7, 14, and 28 days after an alkali burn. When compared with the empty vector group, the expression of VEGF and TNF-α mRNA was downregulated in the S100A4 siRNA group. The immunohistochemistry results revealed that VEGF protein expression was downregulated in the S100A4 siRNA group when compared to the empty vector group at 1, 3, 7, 14, and 28 days after an alkali burn. The ELISA results suggest that VEGF and TNF-α protein expression is downregulated in the S100A4 siRNA group in comparison to the empty vector group at 1, 3, 7, 14, and 28 days after an alkali burn. CONCLUSIONS: These findings indicate that S100A4 gene silencing can inhibit alkali burn-induced CNV in rabbits.
Asunto(s)
Quemaduras Químicas/genética , Quemaduras Químicas/patología , Neovascularización de la Córnea/inducido químicamente , Neovascularización de la Córnea/genética , Quemaduras Oculares/inducido químicamente , Quemaduras Oculares/genética , Silenciador del Gen , Proteína de Unión al Calcio S100A4/genética , Álcalis , Animales , Humor Acuoso/metabolismo , Córnea/metabolismo , Córnea/patología , Neovascularización de la Córnea/patología , Quemaduras Oculares/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Conejos , Proteína de Unión al Calcio S100A4/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismoRESUMEN
MicroRNAs (miRNAs) regulate gene expression by inhibiting translation of target messenger RNAs (mRNAs) through pairing with miRNA recognition elements (MREs), usually in 3'-UTRs. miRNAs are involved in the pathogenesis of several types of cancers. Specifically, microRNA-32 (miR-32) is overexpressed in colorectal carcinoma, wherein accumulating evidence indicates that it functions as an oncogene. However, the function of miR-32 in hepatocellular carcinoma (HCC) has not been totally elucidated. In the present study, we found the expression of miR-32 was up-regulated in HCC tissue and cell lines, inversely the expression of phosphatase and tensin homolog (PTEN) decreased. Besides, miRNA-32 down-regulates PTEN through binding to 3'-UTR of PTEN mRNA from luciferase reporter assay, and the expression level of miR-32 could affect the proliferation, migration, and invasion of liver cancer cell lines via PTEN/Akt signaling pathway. Down-expression of PTEN could significantly attenuate the inhibitory effects of knockdown miR-32 on the proliferation, migration, and invasion of liver cancer cells, suggesting that miR-32 could be a potential target for HCC treatment.
Asunto(s)
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , MicroARNs/genética , Fosfohidrolasa PTEN/genética , Regiones no Traducidas 3' , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/patología , MicroARNs/biosíntesis , Invasividad Neoplásica/genética , Fosfohidrolasa PTEN/biosíntesis , Transducción de SeñalRESUMEN
In this study, Fe3O4 magnetic nanoparticles (Fe3O4 MNPs) were assessed for their ability to enhance the activity of persulfate (PS). Various controlling factors including PS dosages, initial pH, water-soil ratio, ratio of Fe2+, and Fe3O4 MNPs to PS were considered in both the Fe2+/PS system and the Fe3O4 MNPs/PS system. Results showed that the Fe3O4 MNP-activated PS system exhibited high processing efficiency owing to the gradual release of Fe2+. This process occurred in a wide pH range (5-11), attributed to the synergistic action of sulfate radicals (SO4-·) and hydroxyl radicals (OH·) under alkaline conditions, effectively mitigating soil acidification. The ratio of Fe3O4 MNPs to PS and water-soil ratio significantly influenced the degradation rate with the highest petroleum hydrocarbon degradation rate exceeding 80% (82.31%). This rate was 3.1% higher than that achieved by the Fe2+/PS system under specific conditions: PS dosage of 0.05 mol/L, Fe3O4 MNPs to PS ratio of 1:10, water-soil ratio of 2:1, and initial pH of 11. Meanwhile, oxidant consumption in the Fe3O4 MNPs/PS system was halved compared to the Fe2+/PS system due to the slow release of Fe2+ and less ineffective consumption of SO4-·. Mechanistically, the possible degradation process was divided into three parts: the initial chain reaction, the proliferating chain reaction, and the terminating chain reaction. The introduction of Fe3O4 MNPs accelerated the degradation rate of pentadecane, heneicosane, eicosane, tritetracontane, and 9-methylnonadecane.
Asunto(s)
Restauración y Remediación Ambiental , Contaminantes del Suelo , Suelo , Contaminantes del Suelo/química , Suelo/química , Restauración y Remediación Ambiental/métodos , Sulfatos/química , Nanopartículas de Magnetita/químicaRESUMEN
Advanced hepatocellular carcinoma (HCC) is a severe malignancy that poses a serious threat to human health. Owing to challenges in early diagnosis, most patients lose the opportunity for radical treatment when diagnosed. Nonetheless, recent advancements in cancer immunotherapy provide new directions for the treatment of HCC. For instance, monoclonal antibodies against immune checkpoint inhibitors (ICIs) such as programmed cell death protein 1/death ligand-1 inhibitors and cytotoxic t-lymphocyte associated antigen-4 significantly improved the prognosis of patients with HCC. However, tumor cells can evade the immune system through various mechanisms. With the rapid development of genetic engineering and molecular biology, various new immunotherapies have been used to treat HCC, including ICIs, chimeric antigen receptor T cells, engineered cytokines, and certain cancer vaccines. This review summarizes the current status, research progress, and future directions of different immunotherapy strategies in the treatment of HCC.
RESUMEN
BACKGROUND: Primary liver cancer is the sixth most common cancer worldwide, with hepatocellular carcinoma (HCC) being the most prevalent form. Despite the current availability of multiple immune or immune combination treatment options, the prognosis is still poor, so how to identify a more suitable population is extremely important. AIM: To evaluate the clinical effectiveness of combining lenvatinib with camrelizumab for patients with hepatitis B virus (HBV)-related HCC in Barcelona Clinic Liver Cancer (BCLC) stages B/C, considering various body mass index (BMI) in different categories. METHODS: Retrospective data were collected from 126 HCC patients treated with lenvatinib plus camrelizumab. Patients were divided into two groups based on BMI: The non-overweight group (BMI < 25 kg/m2, n = 51) and the overweight/obese group (BMI ≥ 25 kg/m2, n = 75). Short-term prognosis was evaluated using mRECIST criteria, with subgroup analyses for non-overweight (BMI: 18.5-24.9 kg/m2), overweight (BMI: 25-30 kg/m2), and obese (BMI ≥ 30 kg/m2) patients. A Cox proportional hazards regression analysis identified independent prognostic factors for overall survival (OS), leading to the development of a column-line graph model. RESULTS: Median progression-free survival was significantly longer in the obese/overweight group compared to the non-overweight group. Similarly, the median OS was significantly prolonged in the obese/overweight group than in the non-overweight group. The objective remission rate and disease control rate for the two groups of patients were, respectively, objective remission rate (5.88% vs 28.00%) and disease control rate (39.22% vs 62.67%). Fatigue was more prevalent in the obese/overweight group, while other adverse effects showed no statistically significant differences (P > 0.05). Subgroup analysis based on BMI showed that obese and overweight patients had better progression-free survival and OS than non-overweight patients, with obese patients showing the best outcomes. Multifactorial regression analysis identified BCLC grade, alpha-fetoprotein level, portal vein tumor thrombosis, and BMI as independent prognostic factors for OS. The column-line graph model highlighted the importance of BMI as a major predictor of patient prognosis, followed by alpha-fetoprotein level, BCLC classification, and portal vein tumor thrombosis. CONCLUSION: BMI is a long-term predictor of the efficacy of lenvatinib plus camrelizumab, and obese/overweight patients have a better prognosis.
Asunto(s)
Anticuerpos Monoclonales Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica , Índice de Masa Corporal , Carcinoma Hepatocelular , Neoplasias Hepáticas , Compuestos de Fenilurea , Quinolinas , Humanos , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/virología , Carcinoma Hepatocelular/inmunología , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/inmunología , Masculino , Femenino , Persona de Mediana Edad , Estudios Retrospectivos , Pronóstico , Compuestos de Fenilurea/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Anciano , Quinolinas/uso terapéutico , Anticuerpos Monoclonales Humanizados/uso terapéutico , Obesidad/complicaciones , Obesidad/diagnóstico , Estadificación de Neoplasias , Adulto , Resultado del Tratamiento , Supervivencia sin Progresión , Hepatitis B/complicaciones , Sobrepeso/complicacionesRESUMEN
BACKGROUND: Stress responses have been studied extensively in animal models, but effects of major life stress on the human brain remain poorly understood. The aim of this study was to determine whether survivors of a major earthquake, who were presumed to have experienced extreme emotional stress during the disaster, demonstrate differences in brain anatomy relative to individuals who have not experienced such stressors. METHODS: Healthy survivors living in an area devastated by a major earthquake and matched healthy controls underwent 3-dimentional high-resolution magnetic resonance imaging (MRI). Survivors were scanned 13-25 days after the earthquake; controls had undergone MRI for other studies not long before the earthquake. We used optimized voxel-based morphometry analysis to identify regional differences of grey matter volume between the survivors and controls. RESULTS: We included 44 survivors (17 female, mean age 37 [standard deviation (SD) 10.6] yr) and 38 controls (14 female, mean age 35.3 [SD 11.2] yr) in our analysis. Compared with controls, the survivors showed significantly lower grey matter volume in the bilateral insula, hippocampus, left caudate and putamen, and greater grey matter volume in the bilateral orbitofrontal cortex and the parietal lobe (all p < 0.05, corrected for multiple comparison). LIMITATIONS: Differences in the variance of survivor and control data could impact study findings. CONCLUSION: Acute anatomic alterations could be observed in earthquake survivors in brain regions where functional alterations after stress have been described. Anatomic changes in the present study were observed earlier than previously reported and were seen in prefrontal-limbic, parietal and striatal brain systems. Together with the results of previous functional imaging studies, our observations suggest a complex pattern of human brain response to major life stress affecting brain systems that modulate and respond to heightened affective arousal.
Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/patología , Terremotos , Sobrevivientes/psicología , Adulto , Atrofia/patología , Estudios de Casos y Controles , Femenino , Humanos , Hipertrofia/patología , Masculino , Fibras Nerviosas Amielínicas/patología , NeuroimagenRESUMEN
Proliferative vitreoretinopathy (PVR) is a leading blinding disease, which is often associated with ocular trauma, rhegmatogenous retinal detachment and diabetic retinopathy. PVR involves the vitreous and retina and its occurrence is characterized by vitreoretinal cells migration, transformation and excessive proliferation which lead to the formation of pre- or sub-retinal membrane or membrane formation in the vitreous. The subsequent contraction of the membrane can lead to retinal detachment and loss of vision. At present, vitrectomy is the standard treatment modality for the treatment of PVR. However, this procedure is expensive and post-operative vision is often unsatisfactory. With the advances of biological studies, the pathogenesis of PRV becomes clear, and the corresponding pharmacological intervention studies targeting the relevant pathways developed rapidly. This review is aiming to highlight the new developments in pharmacological prevention and treatment for PVR.
Asunto(s)
Vitreorretinopatía Proliferativa/tratamiento farmacológico , Animales , Preparaciones de Acción Retardada , Humanos , Vitreorretinopatía Proliferativa/metabolismo , Vitreorretinopatía Proliferativa/patologíaRESUMEN
OBJECTIVE: To investigate the effects of microRNA-133a on isoproterenol (ISO)-induced neonatal rat cardiomyocyte hypertrophy and related molecular mechanism focusing on the changes of L-type calcium channel α1C subunit. METHODS: Neonatal rat cardiomyocytes were cultured, cardiomyocyte hypertrophy was induced by isoproterenol (ISO, 10 µmol/L). The cell surface area was measured by phase contrast microscope and Leica image analysis system. The mRNA expressions of atrial natriuretic peptide (ANP), ß-myosin heavy chain (ß-MHC), miR-133a and the α1C were detected by qRT-PCR. The protein expression of α1C was evaluated by Western blot. MiR-133a mimic was transfected into cardiomyocytes to investigate the effects of miR-133a on ISO-induced cardiomyocyte hypertrophy. The targets of miR-133a were predicted by online database Targetscan. The 3' untranslated region sequence of α1C was cloned into luciferase reporter vector and then transiently transfected into HEK293 cells. The luciferase activities of samples were measured to verify the expression of luciferase reporter vector. The expression level of α1C was inhibited by RNAi to determine the effects of α1C on cardiomyocyte hypertrophy. Intracellular Ca(2+) content was measured by confocal laser microscope. RESULTS: (1) The expression of miR-133a was significantly reduced in ISO-induced cardiomyocyte hypertrophy (P < 0.01) . Upregulating miR-133a level could suppress the increase of cell surface area, the mRNA expression of ANP and ß-MHC (P < 0.01) . (2) α1C was the one of potential target of miR-133a by prediction using online database Targetscan. The luciferase activities of HEK293 cells with the plasmid containing wide type α1C 3'UTR sequence were significantly decreased compared with control group (P < 0.01) . Upregulation of the miR-133a level by miR-133a mimic transfection could suppress the protein expression of α1C (P < 0.05) . (3) The expression of α1C was significantly increased in ISO treated cardiomyocytes (P < 0.05) . Downregulation of α1C by RNAi could markedly inhibit the increase of cell surface area, the mRNA expression of ANP and ß-MHC (P < 0.01, P < 0.05, P < 0.05). (4) Downregulation of α1C expression by RNAi or upregulation of miR-133a level by miR-133a mimic transfection significantly inhibited intracellular Ca(2+) content (P < 0.01) . CONCLUSIONS: Our data confirms that α1C is the target of miR-133a. MiR-133a can negatively regulate the expression of L-type calcium α1C subunit, resulting in the decrease of intracellular Ca(2+) content and the attenuation of ISO-induced cardiomyocyte hypertrophy.
Asunto(s)
Canales de Calcio Tipo L/metabolismo , MicroARNs/genética , Miocitos Cardíacos/patología , Animales , Aumento de la Célula/efectos de los fármacos , Células Cultivadas , Isoproterenol/farmacología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Ratas , Ratas Sprague-Dawley , TransfecciónRESUMEN
Background: We aimed to investigate the causal association between TIM-3, an immune checkpoint inhibitor, and anterior uveitis (AU), as well as associated systemic immune diseases. Materials and methods: We performed two-sample Mendelian randomization (MR) analyses to estimate the causal effects of TIM-3 on AU and three associated systemic diseases, namely ankylosing spondylitis (AS), Crohn's disease (CD), and ulcerative colitis (UC). Single-nucleotide polymorphisms (SNPs) associated with AU, AS, CD, and UC were selected as the outcomes: AU GWAS with 2,752 patients with acute AU accompanied with AS (cases) and 3,836 AS patients (controls), AS GWAS with 968 cases and 336,191 controls, CD GWAS with 1,032 cases and 336,127 controls, and UC GWAS with 2,439 cases and 460,494 controls. The TIM-3 dataset was used as the exposure (n = 31,684). Four MR methods, namely, inverse-variance weighting (IVW), MR-Egger regression, weighted median, and weighted mode, were used in this study. Comprehensive sensitivity analyses were conducted to estimate the robustness of identified associations and the potential impact of horizontal pleiotropy. Results: Our studies show that TIM-3 is significantly associated with CD using the IVW method (OR = 1.001, 95% CI = 1.0002-1.0018, P-value = 0.011). We also found that TIM-3 may be a protective factor for AU although these results lacked significance (OR = 0.889, 95% CI = 0.631-1.252, P-value = 0.5). No association was observed between the genetic predisposition to particular TIM-3 and susceptibility to AS or UC in this study. No potential heterogeneities or directional pleiotropies were observed in our analyses. Conclusion: According to our study, a small correlation was observed between TIM-3 expression and CD susceptibility. Additional studies in different ethnic backgrounds will be necessary to further explore the potential roles and mechanisms of TIM-3 in CD.
RESUMEN
Biochar application may mitigate N2O emissions and increase crop yield, yet little is known about microbial dynamics variation. To investigate the potential of increasing yield and reducing emissions of biochar in tropical areas and the dynamic mechanism of related microorganisms, a pot experiment was conducted to investigate the biochar application on pepper yield, N2O emissions, and dynamic variation of related microorganisms. Three treatments were applied:2% biochar amendment (B), conventional fertilization (CON), and no nitrogen (CK). The results showed that the yield of the CON treatment was higher than that of the CK treatment. Compared with that of the CON treatment, biochar amendment significantly increased the yield of pepper by 18.0% (P<0.05), and biochar amendment could increase the content of NH+4-N and NO-3-N in soil in most periods of pepper growth. Compared with that in the CON treatment, the B treatment significantly reduced cumulative N2O emissions by 18.3% (P<0.05). Ammonia oxidizing archaea (AOA)-amoA and ammonia oxidizing bacteria (AOB)-amoA were very significantly negatively correlated with N2O flux (P<0.01). N2O flux was significantly negatively correlated with nosZ gene abundance (P<0.05). This indicated that N2O emission may have mainly resulted from the denitrification process. In the early stage of pepper growth, biochar significantly reduced N2O emissions by reducing the value of (nirK+nirS)/nosZ, whereas in the late stage of pepper growth, the value of (nirK+nirS)/nosZ of the B treatment was higher than that of the CON treatment, resulting in higher N2O flux in the B treatment. Therefore, biochar amendment could not only increase vegetable production in tropical areas but also reduce N2O emissions, which can be used as a new strategy to improve soil fertility in Hainan Province and other tropical areas.
Asunto(s)
Amoníaco , Verduras , Archaea , SueloRESUMEN
This study aimed to determine the potential effects of alfalfa saponins on the production performance, serum biochemical factors, and immune factors in sheep. Twenty Small-Tailed Han sheep were equally and randomly divided into Groups 1-4, fed with diets containing 0, 5, 10, and 20 g alfalfa saponins per kg, respectively, for 40 consecutive days. During the treatments, the body weight change was recorded for each sheep. Before, during, and after the treatments of alfalfa saponins, serum was collected from each group to compare the levels of biochemical and immune factors. All sheep were killed after the treatments, and the longissimus dorsi muscle was collected to compare the meat quality. The results validated the effects of alfalfa saponins on the growth performance and meat quality in Small-Tailed Han sheep, and the supplementation level of 10 g/kg was the best. Alfalfa saponins also had effects on the levels of biochemical factors in serum. However, both dose- and time-dependent effects were observed. After a shorter feeding period (14 days), the concentrations of cholesterol (CHOL) and low-density lipoprotein (LDL) in Groups 2, 3, and 4 were all lower than those in the control group; however, when alfalfa saponins were continuously fed, this effect was not apparent or even gone. Supplying alfalfa saponins increased serum concentrations of IgA, IgG, IgE, IgM, IL-1, IFN-α, and IFN-ß. And this effect was distinctly observed in Groups 3 and 4. Based on the current results, the alfalfa saponins concentration of 10 g/kg (for 14 consecutive days) could be suggested as the optimum ratio for good health conditions of Small-Tailed Han sheep.
RESUMEN
Purpose: To investigate the deficits in contrast sensitivity in patients with Fuchs uveitis syndrome (FUS) and to explore the potential relationship between contrast sensitivity and ocular structure. Methods: In this prospective study, 25 patients with FUS and 30 healthy volunteers were recruited. Eyes were divided into three groups: FUS-affected eyes (AE), fellow eyes (FE), and healthy eyes. The contrast sensitivity function (CSF) of all participants was evaluated using the quick CSF (qCSF) method. Fundus photographs were collected for the analysis of refractive media, and vascular density (VD) was assessed using optical coherence tomography angiography (OCTA). Data were analyzed and compared using the generalized estimating equation (GEE). Results: The CSF of AE was significantly lower than that of FE and controls, while no significant difference was observed between FE and controls. Contrast sensitivity was negatively correlated with the grade of haze. No significant correlation was found between visual function and VDs in FUS eyes. Conclusions: We found that the CSF of FUS-affected eyes was significantly reduced, and the visual impairment was predominantly caused by the refractive media turbidity.
RESUMEN
1. 2,3,4',5-Tetrahydroxystilbene-2-O-ß-d-glucoside (TSG) has been shown to have an anti-atherosclerotic effect. Vascular smooth muscle cell (VSMC) proliferation contributes to the pathobiology of atherosclerosis. The aim of the present study was to investigate the effects of TSG on platelet-derived growth factor (PDGF)-BB-induced VSMC proliferation and to explore the molecular mechanisms underlying the effects. 2. Cultured rat VSMC were pretreated with TSG (l-50 µmol/L) for 1 h, followed by exposure to PDGF-BB (10 ng/mL) for 24 h, after which cell proliferation and cell cycle stages were examined. The expression of protein cell cycle regulators, including retinoblastoma (Rb), cyclin D1/E, cyclin-dependent kinase (CDK) 2/4, CDK inhibitors p21 and p27 and proliferative cell nuclear antigen (PCNA), was examined. Activation of extracellular signal-regulated kinase (ERK) 1/2 was evaluated to elucidate the possible upstream mechanism by which TSG affects cell cycle regulators. 3. The results showed that TSG dose-dependently inhibited PDGF-BB-induced VSMC proliferation, possibly by blocking the progression of the cell cycle from the G(1) to S phase. In addition, TSG significantly inhibited PDGF-BB-induced phosphorylation of Rb and the expression of cyclin D1, CDK4, cyclin E, CDK2 and PCNA. In addition, TSG suppressed PDGF-BB-induced downregulation of p27 and upregulation of p21, as well as PDGF-BB-induced activation of ERK1/2. 4. Together, the findings of the present study provide the first evidence that TSG can inhibit PDGF-BB-stimulated VSMC proliferation via cell cycle arrest in association with modulation of the expression of cell cycle regulators, which may be mediated, at least in part, by suppression of ERK1/2 activation.