Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Environ Manage ; 366: 121717, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38981274

RESUMEN

Sorption enhanced steam gasification of biomass (SESGB) presents a promising approach for producing high-purity H2 with potential for zero or negative carbon emissions. This study investigated the effects of gasification temperature, CaO to carbon in biomass molar ratio [CaO/C], and steam flow on the SESGB process, employing carbide slag (CS) and its modifications, CSSi2 (mass ratio of CS to SiO2 is 98:2) and CSCG5 (mass ratio of CS to coal gangue (CG) is 95:5), as CaO-based sorbents. The investigation included non-isothermal and isothermal gasification experiments and kinetic analyses using corn cob (CC) in a macro-weight thermogravimetric setup, alongside a fixed-bed pyrolysis-gasification system to assess operational parameter effects on gas product. The results suggested that CO2 capture by CaO reduced the mass loss during the main gasification as the [CaO/C] increased. The appropriate temperature for SESGB process should be selected between 550 and 700 °C at atmospheric pressure. The appropriate amount of sorbent or steam could facilitate the gasification reaction, but excessive addition led to adverse effects. Operational parameters influenced the apparent activation energy (Ea) by affecting various gasification reactions. For each test, Ea at the char gasification stage was significantly higher than that at the rapid pyrolysis stage. The addition of CS notably increased H2 concentration and yield, while sharply reducing CO2 levels. H2 concentration initially rose and then fell with greater steam flow, peaking at 76.11 vol% for a steam flow of 1.0 g/min. H2 yield peaked at 298 mL/g biomass with a steam flow of 1.5 g/min, a gasification temperature of 600 °C and a [CaO/C] of 1.0. Increasing gasification temperature remarkably boosted the H2 and CO2 yields. Optimal conditions for the SESGB using CS as a sorbent, determined via response surface methodology (RSM), include a gasification temperature of 666 °C, a [CaO/C] of 1.99, and a steam flow of 0.5 g/min, under which H2 and CO2 yields were 464 and 48 mL/g biomass, respectively. CSSi2 and CSCG5 demonstrated excellent cyclic H2 production stability, maintaining H2 yields around 440 mL/g biomass and low CO2 yields (∼60 mL/g biomass) across five cycles. The study results offer new insights for the high-value utilization of agroforestry biomass and the reduction and resource utilization of industrial waste.

2.
Cancer Immunol Immunother ; 72(6): 1835-1851, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36688997

RESUMEN

Radioresistance and immunosuppression remain the major obstacles in the anti-cancer treatments. This work studies the functions of sialic acid binding Ig like lectin 9 (SIGLEC9) and its related molecules in radioresistance and immunosuppression in esophageal squamous cell carcinoma (ESCC). The single-cell analysis showed that SIGLEC9 was mainly expressed on tumor-associated macrophages (TAMs). Monocytes-derived macrophages were co-cultured with ESCC cells and subjected to radiotherapy. High or low doses of radiotherapy induced SIGLEC9 upregulation and M2 polarization of TAMs. Artificial inhibition of SIGLEC9 in TAMs suppressed the radioresistance and immunosuppressive tumor microenvironment (TME) in the co-cultured ESCC cells. Upstream molecules of SIGLEC9 were predicted via bioinformatics. LINC01004 recruited Spi-1 proto-oncogene (SPI1) in nucleus of TAMs to induce transcriptional activation of SIGLEC9. SIGLEC9 interacted with mucin 1 (MUC1). MUC1 overexpression in ESCCs induced M2 skewing of TAMs, enhanced radioresistance and immunosuppression, and promoted nuclear translocation of ß-catenin to suppress radiotherapy-induced ferroptosis of ESCC cells. These effects were blocked upon SIGLEC9 suppression. In vitro results were reproduced in the animal models with xenograft tumors. Taken together, this study demonstrates that the LINC01004-SPI1 axis-activated SIGLEC9 in TAMs induces radioresistance and the formation of immunosuppressive TME in ESCC.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Animales , Humanos , Antígenos CD , Línea Celular Tumoral , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/radioterapia , Carcinoma de Células Escamosas de Esófago/patología , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico , Microambiente Tumoral , Macrófagos Asociados a Tumores/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
3.
J Recept Signal Transduct Res ; 39(4): 304-311, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31755335

RESUMEN

The α-fetoprotein transcription factor (FTF) is a member of the nuclear receptor NR5A subfamily, which is involved in the pathogenesis of liver cancer and some other gastrointestinal cancers. The protein's transcriptional activity is regulated by binding TIF-2 coactivator at its coactivator-interacting site (CIS); suppression of the transcriptional activity has been recognized as a potential therapeutic strategy against cancer. Previously, small-molecule antagonists have been developed to target the ligand-binding site (LBS) of FTF ligand-binding domain, which simply occupy the site to exclusively block natural ligand entry (type-I antagonists) or destabilize the agonist conformation of activation helix 12 of the domain (type-II antagonists). Here, we describe the use of small-molecule competitors (type-III antagonists) to directly disrupt FTF-TIF-2 interaction by competitively targeting FTF CIS site. High-throughput virtual screening is performed against a structurally diverse, commercially available compound library to identify FTF CIS binders as competitor candidates, from which 12 hits are manually selected and their competitive potency with TIF-2 core binding sequence for FTF CIS site is tested with CC50 values up to 2.5 µM. Structural modeling analysis revealed that the competitive ligands can form a complicated network of noncovalent interactions to specifically or nonspecifically pack against FTF CIS site, thus preventing TIF-2 from binding to the site.


Asunto(s)
Descubrimiento de Drogas , Neoplasias Hepáticas/metabolismo , Coactivador 2 del Receptor Nuclear/metabolismo , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Ensayos Analíticos de Alto Rendimiento , Humanos , Ligandos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Simulación del Acoplamiento Molecular , Estructura Molecular , Coactivador 2 del Receptor Nuclear/antagonistas & inhibidores , Unión Proteica , Conformación Proteica , Receptores Citoplasmáticos y Nucleares/metabolismo
4.
AJR Am J Roentgenol ; 213(6): 1348-1357, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31461321

RESUMEN

OBJECTIVE. The purpose of this study was to develop and validate a radiomics model for evaluating immunohistochemical characteristics in patients with suspected thyroid nodules. MATERIALS AND METHODS. A total of 103 patients (training cohort-to-validation cohort ratio, ≈ 3:1) with suspected thyroid nodules who had undergone thyroidectomy and immunohistochemical analysis were enrolled. The immunohistochemical markers were cytokeratin 19, galectin 3, thyroperoxidase, and high-molecular-weight cytokeratin. All patients underwent CT before surgery, and a 3D slicer was used to analyze images of the surgical specimen. Test-retest and Spearman correlation coefficient (ρ) were used to select reproducible and nonredundant features. The Kruskal-Wallis test (p < 0.05) was used for feature selection, and a feature-based model was built by support vector machine methods. The performance of the radiomic models was assessed with respect to accuracy, sensitivity, specificity, corresponding AUC, and independent validation. RESULTS. Eighty-six reproducible and nonredundant features selected from the 828 features were used to build the model. The best performance of the cytokeratin 19 model yielded accuracy of 84.4% in the training cohort and 80.0% in the validation cohort. The thyroperoxidase and galectin 3 predictive models yielded accuracies of 81.4% and 82.5% in the training cohort and 84.2% and 85.0% in the validation cohort. The performance of the high-molecular-weight cytokeratin predictive model was not good (accuracy, 65.7%) and could not be validated. CONCLUSION. A radiomics model with excellent performance was developed for individualized noninvasive prediction of the presence of cytokeratin 19, galectin 3, and thyroperoxidase based on CT images. This model may be used to identify benign and malignant thyroid nodules.


Asunto(s)
Inmunohistoquímica , Aprendizaje Automático , Nódulo Tiroideo/diagnóstico por imagen , Nódulo Tiroideo/metabolismo , Tomografía Computarizada por Rayos X , Adulto , Anciano , Biomarcadores/metabolismo , Femenino , Galectina 3/metabolismo , Humanos , Yoduro Peroxidasa/metabolismo , Queratina-19/metabolismo , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Estudios Retrospectivos , Nódulo Tiroideo/cirugía , Tiroidectomía
5.
BMC Cancer ; 18(1): 660, 2018 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-29914443

RESUMEN

BACKGROUND: RUNX1 overlapping RNA (RUNXOR) is a long non-coding RNA that has been indicated as a key regulator in the development of myeloid cells by targeting runt-related transcription factor 1 (RUNX1). Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells consisting of immature granulocytes and monocytes with immunosuppression. However, the impact of lncRNA RUNXOR on the development of MDSCs remains unknown. METHODS: Both the expressions of RUNXOR and RUNX1 in the peripheral blood were measured by qRT-PCR. Human MDSCs used in this study were isolated from tumor tissue of patients with lung cancer by FCM or induced from PBMCs of healthy donors with IL-1ß + GM-CSF. Specific siRNA was used to knockdown the expression of RUNXOR in MDSCs. RESULTS: In this study, we found that the lncRNA RUNXOR was upregulated in the peripheral blood of lung cancer patients. In addition, as a target gene of RUNXOR, the expression of RUNX1 was downregulated in lung cancer patients. Finally, the expression of RUNXOR was higher in MDSCs isolated from the tumor tissues of lung cancer patients compared with cells from adjacent tissue. In addition, RUNXOR knockdown decreased Arg1 expression in MDSCs. CONCLUSIONS: Based on our findings, it is illustrated that RUNXOR is significantly associated with the immunosuppression induced by MDSCs in lung cancer patients and may be a target of anti-tumor therapy.


Asunto(s)
Tolerancia Inmunológica/genética , Neoplasias Pulmonares/inmunología , Células Supresoras de Origen Mieloide/inmunología , ARN Largo no Codificante/inmunología , Escape del Tumor/genética , Adulto , Anciano , Subunidad alfa 2 del Factor de Unión al Sitio Principal/biosíntesis , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/inmunología , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Tolerancia Inmunológica/inmunología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , ARN Largo no Codificante/genética , Escape del Tumor/inmunología
6.
J Immunol ; 195(3): 1301-11, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26091714

RESUMEN

Myeloid-derived suppressor cells (MDSCs) play a critical role in tumor-associated immunosuppression, thus affecting effective immunotherapies for cancers. However, the molecular mechanisms involved in regulating the differentiation and function of MDSCs remain largely unclear. In this study, we found that inhibition of microRNA (miR)-9 promoted the differentiation of MDSCs with significantly reduced immunosuppressive function whereas overexpression of miR-9 markedly enhanced the function of MDSCs. Notably, knockdown of miR-9 significantly impaired the activity of MDSCs and inhibited the tumor growth of Lewis lung carcinoma in mice. Moreover, miR-9 regulated MDSCs differentiation by targeting the runt-related transcription factor 1, an essential transcription factor in regulating MDSC differentiation and function. Furthermore, the CREB was found to regulate miR-9 expression in MDSCs. Taken together, our findings have identified a critical role of miR-9 in regulating the differentiation and function of MDSCs.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , MicroARNs/genética , Células Mieloides/citología , Células Mieloides/inmunología , Animales , Carcinoma Pulmonar de Lewis/inmunología , Diferenciación Celular/genética , Línea Celular , Subunidad alfa 2 del Factor de Unión al Sitio Principal/biosíntesis , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , MicroARNs/antagonistas & inhibidores , MicroARNs/biosíntesis , Regiones Promotoras Genéticas/genética , beta-Glucanos/farmacología
7.
Environ Res ; 154: 334-344, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28160730

RESUMEN

One year-long criteria air pollutants data collected in Beijing were analyzed in this paper, which can support the research on formation, transport and human health effects of air pollutants. This is the first time to study the spatial and temporal variations of criteria pollutants in Beijing using hourly observational data from 12 sites between June 2014 and May 2015 released by the Ministry of Environmental Protection (MEP) of China. Beijing is facing tremendous air pollution as the daily averaged PM2.5 (particulate matter with aerodynamic diameter less than 2.5µm) concentrations in all sites exceeding the Chinese Ambient Air Quality Standards (CAAQS) Grade I & II standards (15 and 35µg/m3). Slightly differences in PM2.5 and ozone (O3) were observed between sites at the urban and rural areas. Pearson correlation coefficients show that most pollutants are temporally correlated in Beijing except for O3. The coefficients of divergence (COD) indicate that PM2.5 is associated at most sites with only one rural site (Dingling) having observable difference and one site may be insufficient for monitoring surrounding area. The 8h peak O3 (O3-8h) also correlates at different sites but with one urban site (Haidianquwanliu) different from others. In addition, an extreme PM2.5 event (hourly average concentration exceeding 300µg/m3 for ~40h) was examined with the consideration of meteorological conditions. Southerly wind with low speed and high relative humidity allow the accumulation of pollutants while northerly wind with high speed and low relative humidity result in good air quality.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Ozono/análisis , Material Particulado/análisis , Contaminación del Aire , Beijing , Meteorología , Estaciones del Año , Análisis Espacio-Temporal
8.
Environ Res ; 159: 466-473, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28863301

RESUMEN

Millions of premature deaths worldwide every year mostly in China and India are contributed by the poor air quality. The atmospheric visibility is a proven indicator of the ambient air quality. In this study, nine megacities were selected, including Beijing, Shanghai and Guangzhou from China, Chicago, Los Angeles (LA) and New York City (NYC) from the United States, and Mumbai, Chennai and Jaipur from India. The data of visibility, aerosol optical depth (AOD), and meteorological factors from 1973 to 2015 were collected. The temporal variations of annual and monthly percentages of bad days (visibility < 5km) and good days (visibility > 15km) were evaluated. Visibility of Chicago, LA and NYC gradually improved during the past 43 years and has reached a very good level (good day percentages: 75-88%; bad day percentages: 0 - 4%). Conversely, visibility in Mumbai, Chennai and Jaipur continued deteriorating and suffered an extremely poor visibility situation in recent years (good day percentages: 0; bad day percentages: 6-100%). Likewise, visibility in Beijing, Shanghai and Guangzhou has experienced the worsening period during the industrial development from 1970s and turned better after the 1990s. A strong seasonal pattern of bad day percentages of each year were observed in most cities, especially in the winter, which is caused by the fossil fuel combustion for heating, relatively high relative humidity, and other unfavorable meteorological conditions. The low visibility events occurred more frequently in days with low wind speeds and specific wind directions, further explaining the seasonal patterns of visibility. With population growth from the period of 2000-2010 to the period of 2011-2015, AOD and bad day percentages both increased in Mumbai, Chennai, Jaipur and Beijing while others were relatively stable. This study demonstrated that the macro-control of pollution emissions could effectively reduce air deterioration. The relationships among visibility variation, meteorological, pollutant and population factors provide valuable scientific support for public health researches, air quality managements (monitoring and forecasting), and clean energy initiatives.


Asunto(s)
Aerosoles/análisis , Contaminación del Aire/análisis , Atmósfera/análisis , Monitoreo del Ambiente , Tiempo (Meteorología) , China , Ciudades , India , Estaciones del Año , Estados Unidos
9.
Environ Res ; 156: 239-246, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28359042

RESUMEN

The ambient PM2.5 pollution problem in China has drawn substantial international attentions. The mass extinction efficiency (MEE) and hygroscopicity factor (f(RH)) of PM2.5 can be readily applied to study the impacts on atmospheric visibility and climate. The few previous investigations in China only reported results from pilot studies and are lack of spatial representativeness. In this study, hourly average ambient PM2.5 mass concentration, relative humidity, and atmospheric visibility data from China national air quality and meteorological monitoring networks were retrieved and analyzed. It includes 24 major Chinese cities from nine city-clusters with the period of October 2013 to September 2014. Annual average extinction coefficient in urban China was 759.3±258.3Mm-1, mainly caused by dry PM2.5 (305.8.2±131.0Mm-1) and its hygroscopicity (414.6±188.1Mm-1). High extinction coefficient values were resulted from both high ambient PM2.5 concentration (68.5±21.7µg/m3) and high relative humidity (69.7±8.6%). The PM2.5 mass extinction efficiency varied from 2.87 to 6.64m2/g with an average of 4.40±0.84m2/g. The average extinction hygroscopic factor f(RH=80%) was 2.63±0.45. The levels of PM2.5 mass extinction efficiency and hygroscopic factor in China were in comparable range with those found in developed countries in spite of the significant diversities among all 24 cities. Our findings help to establish quantitative relationship between ambient extinction coefficient (visual range) and PM2.5 & relative humidity. It will reduce the uncertainty of extinction coefficient estimation of ambient PM2.5 in urban China which is essential for the research of haze pollution and climate radiative forcing.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Humedad , Material Particulado/análisis , Humectabilidad , Atmósfera , China , Ciudades , Tamaño de la Partícula
10.
Environ Res ; 140: 242-54, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25880606

RESUMEN

Meteorological conditions play a crucial role in ambient air pollution by affecting both directly and indirectly the emissions, transport, formation, and deposition of air pollutants. In this study, the relationships between meteorological parameters and ambient air pollutants concentrations in three megacities in China, Beijing, Shanghai, and Guangzhou were investigated. A systematic analysis of air pollutants including PM2.5, PM10, CO, SO2, NO2, and O3 and meteorological parameters including temperature, wind speed (WS), wind direction (WD) and relative humanity (RH) was conducted for a continuous period of 12 months from March 2013 to February 2014. The results show that all three cities experienced severe air quality problems. Clear seasonal trends were observed for PM2.5, PM10, CO, SO2 and NO2 with the maximum concentrations in the winter and the minimum in the summer, while O3 exhibited an opposite trend. Substantially different correlations between air pollutants and meteorological parameters were observed among these three cities. WS reversely correlated with air pollutants, and temperature positively correlated with O3. Easterly wind led to the highest PM2.5 concentrations in Beijing, westerly wind led to high PM2.5 concentrations in Shanghai, while northern wind blew air parcels with the highest PM2.5 concentrations to Guangzhou. In Beijing, days of top 10% PM2.5, PM10, CO, and NO2 concentrations were with higher RH compared to days of bottom 10% concentrations, and SO2 and O3 showed no distinct RH dependencies. In Guangzhou, days of top 10% PM2.5, PM10, CO, SO2, NO2 and O3 concentrations were with lower RH compared to days of bottom 10% concentrations. Shanghai showed less fluctuation in RH between top and bottom 10%. These results confirm the important role of meteorological parameters in air pollution formation with large variations in different seasons and geological areas. These findings can be utilized to improve the understanding of the mechanisms that produce air pollution, enhance the forecast accuracy of the air pollution under different meteorological conditions, and provide effective measures for mitigating the pollution.


Asunto(s)
Contaminantes Atmosféricos/análisis , Ciudades , Conceptos Meteorológicos , China
11.
Int J Mol Sci ; 15(12): 21674-86, 2014 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25429429

RESUMEN

Hashimoto's thyroiditis (HT) is an organ-specific immune disease characterized by the presence of lymphocytic infiltration and serum autoantibodies. Previous studies have confirmed the critical role of Th17 cells in the pathopoiesis of HT patients. Additionally, regulatory T cells (Treg) display a dysregulatory function in autoimmune disease. The purpose of this study is to investigate the alteration of Th17 and Treg cells in HT patients and explore contributing factors. We found there was an increased ratio of Th17/Treg in HT patients and a positive correlation with autoantibodies (anti-TgAb). In addition, there was an increased level of GITRL, which has been demonstrated to be correlated with the increassement of Th17 cells in the serum and thyroid glands of HT patients; the upregulated serum level of GITRL has a positive correlation with the percentage of Th17 cells in HT patients. In summary, an increase in GITRL may impair the balance of Th17/Treg, and contribute to the pathopoiesis of Hashimoto's thyroiditis.


Asunto(s)
Enfermedad de Hashimoto/inmunología , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Factores de Necrosis Tumoral/metabolismo , Femenino , Enfermedad de Hashimoto/sangre , Enfermedad de Hashimoto/genética , Humanos , Interleucina-17/genética , Interleucina-17/metabolismo , Masculino , Persona de Mediana Edad , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Tiroglobulina/inmunología , Glándula Tiroides/metabolismo , Glándula Tiroides/patología , Factores de Necrosis Tumoral/genética
12.
Sci Rep ; 14(1): 3527, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347032

RESUMEN

In this paper, TiO2 catalysts doped with different Fe contents (Fe-TiO2 catalysts) were prepared by coprecipitation method and the Fe loading capacity was optimized, and then the integrated pollutant removal experiment was conducted, in which TiO2 doped with Fe as catalyst and H2O2 as oxidant. The results show that under the condition of constant H2O2/(SO2 + NO) molar ratio, low concentration of SO2 can promote the oxidation and removal efficiency of NO, while high concentration of SO2 can inhibit the removal of NOx. The pollutant removal efficiency is proportional to the amount of catalyst, liquid-gas ratio and pH value of the absorbing solution. The optimal experimental conditions are H2O2/(SO2 + NO) molar ratio 1.5, space velocity ratio 10,000 h-1, H2O2 mass fraction 10 wt%, liquid gas ratio 10, pH 10. Correspondingly, NO oxidation efficiency reaches 88%, NOx removal efficiency 85.6%, and SO2 is almost completely removed. The microstructure of the catalyst before and after the reaction was characterized, and the crystal structure did not change obviously. However, with the deepening of the reaction, the specific surface area of the catalyst decreases, and the catalytic effect decreases slightly.

13.
Cell Rep Med ; 5(1): 101374, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38232701

RESUMEN

LILRB4 is an immunosuppressive receptor, and its targeting drugs are undergoing multiple preclinical and clinical trials. Currently, the absence of a functional LILRB4 ligand in solid tumors not only limits the strategy of early antibody screening but also leads to the lack of companion diagnostic (CDx) criteria, which is critical to the objective response rate in early-stage clinical trials. Here, we show that galectin-8 (Gal-8) is a high-affinity functional ligand of LILRB4, and its ligation induces M-MDSC by activating STAT3 and inhibiting NF-κB. Significantly, Gal-8, but not APOE, can induce MDSC, and both ligands bind LILRB4 noncompetitively. Gal-8 expression promotes in vivo tumor growth in mice, and the knockout of LILRB4 attenuates tumor growth in this context. Antibodies capable of functionally blocking Gal-8 are able to suppress tumor growth in vivo. These results identify Gal-8 as an MDSC-driving ligand of LILRB4, and they redefine a class of antibodies for solid tumors.


Asunto(s)
Células Supresoras de Origen Mieloide , Neoplasias , Animales , Ratones , Ligandos , Neoplasias/terapia , FN-kappa B
14.
J Med Entomol ; 50(1): 205-8, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23427671

RESUMEN

Dermatophagoides farinae Hughes, American house dust mite, is highly allergenic, producing symptoms in people worldwide. Identifying and cloning the allergens in this species may enable better diagnostic and therapeutic approaches. Here, we cloned, sequenced, and expressed the full-length cDNA encoding D. farinae group 10 allergen (Der f 10) isolated from dust mites in China. Bioinformatic analysis indicated that the 888 bp sequence encoded a cytoskeleton protein 295 amino acids long, with a molecular weight of approximately equal 34 kDa. Sequence alignment with the group 10 allergens of Pyroglyphidae, Acaridae, and Glycyphagidae families revealed that the group 10 allergen from D. farinae is 95% similar to D. pteronyssinus Trouessart and Psoroptes ovis (Hering). These findings lay the groundwork for future studies, including large-scale production of recombinant Der f 10 allergen for diagnostic and therapeutic agents.


Asunto(s)
Antígenos Dermatofagoides/genética , Dermatophagoides farinae/genética , Secuencia de Aminoácidos , Animales , Clonación Molecular , Secuencia Conservada , ADN Complementario , Dermatophagoides farinae/inmunología , Escherichia coli , Expresión Génica , Datos de Secuencia Molecular , Plásmidos , Proteínas Recombinantes , Análisis de Secuencia de ADN
15.
Environ Sci Pollut Res Int ; 30(41): 94081-94096, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37526831

RESUMEN

Biomass/sludge co-pyrolysis contributes to the high-efficiency resource utilization, harmless treatment, and reduction in volume of sludge. Due to the complexity of co-pyrolysis reaction, it is essential to evaluate the thermodynamic behavior, synergy, and reaction mechanism of this process to make it commercially viable. In this work, the pyrolysis properties, thermodynamic analysis and product distribution of municipal sludge (MS), peanut shell (PS), and their blends with various sludge mass ratios (SMRs) were investigated by a thermogravimetric analyzer and a fixed bed reactor. There was a considerable synergy existing in the process of PS/MS co-pyrolysis, and the synergy occurred mainly at the devolatilization phase, accelerating the mixture pyrolysis. When the conversion rate α was less than 0.7, the apparent activation energy decreased continuously with SMR at the same α; however, it increased dramatically with SMR when α was greater than 0.7. Reactants and reaction stages greatly affected the kinetic mechanism of fuel pyrolysis, and this finding was beneficial for the numerical simulation of mixture pyrolysis. Based on the conclusions and precision of this work, the mass ratio of PS to MS was recommended to be 6:4, which had the strongest synergy, with a gas yield of 26.69 wt.% at 600°C and a lower heating value (LHV) of pyrolysis gas of 14.89 MJ/Nm3.


Asunto(s)
Arachis , Aguas del Alcantarillado , Pirólisis , Termodinámica , Cinética , Biomasa
16.
MedComm (2020) ; 4(3): e271, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37206639

RESUMEN

The optimum fractionation of radiation to combine with immune checkpoint blockade is controversial. This study aimed to investigate the fractionated radiation to maximize immunity during combination therapy. To evaluate the abscopal effect, C57BL/6 hPD-1 knock-in mice bearing two syngeneic contralateral MC38 murine colon cancer tumors were treated with four distinct regimens of radiotherapy. Three fractions of 8 Gy were chosen as the optimal fractionation to combine with anti-PD-1 as the optimal fractionation for maximizing immunity. Anti-PD-1 administration enhanced both local and systemic antitumor immunity in a cytotoxic T cell-dependent manner. Meanwhile, the spleen exhibited decreased myeloid-derived suppressor cells (MDSCs) under combination treatment. Furthermore, RNA-sequencing revealed significantly increased tumor necrosis factor (TNF) receptors and cytokines associated with lymphocyte infiltration in the combining group. Here we demonstrate that the hypofractionation of 8 Gy × 3f was the optimum-fractionated dosage to maximize immunity, and the combination of anti-PD-1 showed promising results in boosting abscopal effect. Underlying mechanisms may include the activation of T cells and the reduction of MDSCs, which is achieved through the action of TNF and related cytokines. This study indicates a radioimmunotherapy dosage painting method that can be developed to overcome present limitations in tumor immunosuppression.

17.
RSC Adv ; 13(20): 13412-13422, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37143916

RESUMEN

Walnut shell is characterized by high yield, high fixed carbon content, and low ash content. In this paper, the thermodynamic parameters for walnut shell during the carbonization process is investigated, and its carbonization and mechanism are discussed. Then, the optimal carbonization process of walnut shell is proposed. Results demonstrated that the comprehensive characteristic index of pyrolysis first increases and then decreases with the increase of heating rate and reaches the peak at about 10 °C min-1. Note that the carbonization reaction intensifies at this heating rate. The carbonization process of walnut shell is a complex reaction involving multiple steps. It decomposes hemicellulose, cellulose, and lignin in stages, and the activation energy of this process gradually increases. The simulation and experimental analyses showed that the optimal process presents a heating time of 14.8 min, final temperature of 324.7 °C, holding time of 55.5 min, particle size of material of about 2 mm, and optimum carbonization rate of 69.4%.

18.
RSC Adv ; 13(37): 25978-25988, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37664214

RESUMEN

Volatile organic compounds (VOCs) are one of the major components of air pollution. Catalytic combustion is a promising technology for the treatment of VOCs and at its center is the preparation of efficient and cheap catalysts. In this study, by loading copper (Cu) and manganese (Mn) on Santa Barbara Amorphous-15 (SBA-15) molecular sieve, the Cux-Mny/SBA-15 (x = 1, 2; y = 1, 2) composite metal oxide catalyst was prepared using the equal volume impregnation method. Their performance in the toluene catalytic combustion reaction was investigated by adjusting the molar ratio (x : y), and the loading of Cu and Mn. The results of the Brunner-Emmett-Teller (BET), X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) analyses show that the CuMnO spinel phase can be detected in the Cu-Mn composite metal oxide catalyst doped with a low concentration of Cu. The overall rod-like structure of the fibrous network structure provides a large specific surface area, and the particle crystallinity is low and the dispersion is good. Due to the synergistic effect of Cu and Mn, the greater the amount of Mn3+ and adsorbed oxygen species (Oads) that are available, and the higher the turnover frequency (TOF) value, the better and more superior catalytic performance and excellent stability is obtained, when compared with the single-component oxides used in toluene catalytic combustion. After a continuous catalytic reaction for 12 h, the toluene conversion rate remained above 95%. The coupling effect of the catalytic reaction temperature and concentration of oxygen on the catalytic combustion of toluene was also studied. At a low reaction temperature (<250 °C), the increase of the concentration of oxygen played a superior role in promoting the conversion of toluene. The kinetic analysis of the toluene catalytic combustion process showed that the catalytic combustion of toluene by Cu-Mn/SBA-15 followed both the Mars-Van Krevelen (MVK) and Langmuir-Hinshelwood (L-H) reaction mechanisms. With the increase of the Oads amount caused by the decrease of the Cu ratio, the proportion of the L-H reaction mechanism increases.

19.
J Immunother Cancer ; 11(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37364932

RESUMEN

BACKGROUNDS: In inflammatory bowel disease microenvironment, transdifferentiation of myeloid-derived suppressor cells (MDSCs) and M2 macrophage accumulation are crucial for the transition of colitis-to-cancer. New insights into the cross-talk and the underling mechanism between MDSCs and M2 macrophage during colitis-to-cancer transition are opening new avenues for colitis-associated cancer (CAC) prevention and treatment. METHODS: The role and underlying mechanism that granulocytic MDSCs (G-MDSCs) or exosomes (Exo) regulates the differentiation of monocytic MDSCs (M-MDSCs) into M2 macrophages were investigated using immunofluorescence, FACS, IB analysis, etc, and employing siRNA and antibodies. In vivo efficacy and mechanistic studies were conducted with dextran sulfate sodium-induced CAC mice, employed IL-6 Abs and STAT3 inhibitor. RESULTS: G-MDSCs promote the differentiation of M-MDSC into M2 macrophages through exosomal miR-93-5 p which downregulating STAT3 activity in M-MDSC. IL-6 is responsible for miR-93-5 p enrichment in G-MDSC exosomes (GM-Exo). Mechanistically, chronic inflammation-driven IL-6 promote the synthesis of miR-93-5 p in G-MDSC via IL-6R/JAK/STAT3 pathway. Early use of IL-6 Abs enhances the effect of STAT3 inhibitor against CAC. CONCLUSIONS: IL-6-driven secretion of G-MDSC exosomal miR-93-5 p promotes the differentiation of M-MDSC into M2 macrophages and involves a STAT3 signaling mechanism that promote colitis-to-cancer transition. Combining STAT3 inhibitors with strategies that inhibit IL-6-mediated G-MDSC exosomal miR-93-5 p production is beneficial for the prevention and treatment of CAC.


Asunto(s)
Colitis , Exosomas , MicroARNs , Células Supresoras de Origen Mieloide , Neoplasias , Animales , Ratones , Exosomas/metabolismo , Interleucina-6/metabolismo , Neoplasias/metabolismo , Macrófagos/metabolismo , Diferenciación Celular , MicroARNs/genética , MicroARNs/metabolismo , Microambiente Tumoral
20.
Front Plant Sci ; 14: 1080691, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36938035

RESUMEN

Introduction: The flower buds of Lonicera japonica Thunb. are widely used in Chinese medicine for their anti-inflammatory properties, and they have played an important role in the fight against SARS COVID-19 and other major epidemics. However, due to the lack of scientific and accurate variety identification methods and national unified standards, scattered and non-standardized management in flower bud production has led to mixed varieties that have caused significant difficulties in the cataloging and preservation of germplasm resources and the identification, promotion, and application of new L. japonica varieties. Methods: In this study, we evaluated the population structure, genetic relationships, and genetic fingerprints of 39 germplasm resources of Lonicera in China using simplified genome sequencing technology. Results: A total of 13,143,268 single nucleotide polymorphisms (SNPs) were identified. Thirty-nine samples of Lonicera were divided into four subgroups, and the population structure and genetic relationships among existing Lonicera germplasm resources were determined using principal component analysis, population structure analysis, and phylogenetic tree analysis. Through several stringent selection criteria, 15 additional streamlined, high-quality DNA fingerprints were filtered out of the validated 50 SNP loci and verified as being able to effectively identify the 39 Lonicera varieties. Discussion: To our knowledge, this is the first comprehensive study measuring the diversity and population structure of a large collection of Lonicera varieties in China. These results have greatly broadened our understanding of the diversity, phylogeny, and population structure of Lonicera. The results may enhance the future analysis of genetic diversity, species identification, property rights disputes, and molecular breeding by providing a scientific basis and reference data for these efforts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA