Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 589(7843): 586-590, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33299183

RESUMEN

Legumes, unlike other plants, have the ability to establish symbiosis with nitrogen-fixing rhizobia. It has been theorized that a unique property of legume root cortical cells enabled the initial establishment of rhizobial symbiosis1-3. Here we show that a SHORTROOT-SCARECROW (SHR-SCR) stem cell program in cortical cells of the legume Medicago truncatula specifies their distinct fate. Regulatory elements drive the cortical expression of SCR, and stele-expressed SHR protein accumulates in cortical cells of M. truncatula but not Arabidopsis thaliana. The cortical SHR-SCR network is conserved across legume species, responds to rhizobial signals, and initiates legume-specific cortical cell division for de novo nodule organogenesis and accommodation of rhizobia. Ectopic activation of SHR and SCR in legumes is sufficient to induce root cortical cell division. Our work suggests that acquisition of the cortical SHR-SCR module enabled cell division coupled to rhizobial infection in legumes. We propose that this event was central to the evolution of rhizobial endosymbiosis.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Medicago truncatula/citología , Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Nodulación de la Raíz de la Planta , Arabidopsis/citología , Arabidopsis/metabolismo , División Celular , Citocininas/metabolismo , Evolución Molecular , Medicago truncatula/embriología , Proteínas de Plantas/genética , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Rhizobium/metabolismo , Transducción de Señal , Simbiosis/genética
2.
J Vasc Surg ; 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38768832

RESUMEN

OBJECTIVE: The incidence of splenic artery aneurysms (SAAs) has increased with advances in imaging techniques, necessitating a comprehensive classification to guide treatment strategies. This study aims to propose a novel classification system for SAAs based on aneurysm characteristics and to review treatment outcomes at our center. METHODS: This retrospective study included 113 patients with SAAs admitted to Peking Union Medical College Hospital from January 2019 to December 2023, assessed using computed tomography angiography or digital subtraction angiography. A new classification system was devised based on the aneurysm location, morphology, integrity, and parent artery anatomy. Treatment strategies were determined based on these characteristics, with interventions ranging from endovascular therapy to laparoscopic and open surgery. Patients were followed up after the intervention to assess mortality, complications, reinterventions, and aneurysm-related outcomes. RESULTS: The study cohort of 113 patients with 127 SAAs had a predominance of female patients (63.7%) and a mean age of 52.7 years. The SAAs were classified into five types, with type I being the most common. The intervention techniques varied across types, with sac embolization, covered stent implantation, and artery embolization being the most frequently used. The overall technical success rate was 94.7%, with perioperative complication and reintervention rates of 25.0% and 0.9%, respectively, and no deaths within 30 days after the intervention. The median follow-up duration was 21 months, with overall complications rate of 3.5% and no aneurysm-related complications or deaths. CONCLUSIONS: The proposed classification system effectively guides the selection of treatment strategies for SAAs, incorporating key anatomical and morphological features. This system facilitated high technical success and low complication rates, underscoring the importance of tailored techniques in managing SAAs.

3.
Plant Dis ; 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38213119

RESUMEN

Plum (Prunus salicina) is one of the most important fruit tree species worldwide (Valderrama-Soto et al. 2021). In June 2023, the postharvest soft rot symptoms were observed on plum fruits in several fruit markets of Guiyang city, Guizhou province, China. The disease incidence in these markets ranged from 20 to 25% with 70% disease severity. Plum fruits showed rotting, which was characterized by water soaked fruit tissue, softening and presence of whitish mycelia four days post inoculation. In severe conditions, whole fruits become rotted and were covered with white fungal mycelia. Small sections (5 × 3 mm) from 6 diseased plum fruits were surface sterilized by using 75% ethanol for 30 s followed by 0.1% mercuric chloride solution for 5 min, rinsed three times with ddH2O, and then transferred onto potato dextrose agar (PDA) and incubated at 25 ± 2°C for three days. Three pure cultures (GUCC23-0001 to GUCC23-0003) were obtained by transferring a single hyphal tip to new PDA plates. Colonies of these isolates were grayish-white initially, gradually turning to whitish brown with fluffy aerial mycelia and uneven edges and finally turned to a dark gray colony after five days of inoculation. The pseudoparaphyses were hyaline, cylindrical, aseptate, and rounded at apex. Conidia were ellipsoidal, hyaline, unicellular, and 24.2 to 28.6 × 12.3 to 15.5 µm in size (n = 30) (Fig. S1), which were similar to the morphology of Lasiodiplodia pseudotheobromae (Alves et al. 2008). Furthermore, fungal DNA was extracted from fresh mycelia of PDA after seven days by using fungus genomic DNA extraction kit (Biomiga, USA). Partial DNA sequences from four loci including internal transcribed spacer (ITS), translation elongation factor 1-alpha (tef1), beta-tubulin (tub2), and polymerase II second largest subunit (rpb2) were amplified with ITS1 and ITS4 (White et al. 1990), EF1-688F and EF1-1251R (Alves et al. 2008), Bt2a and Bt2b (Glass and Donaldson 1995), and RPB2-LasF and RPB2-LasR, respectively (Cruywagen et al. 2017). GenBank accession numbers are OR361680, OR361681, OR361682 for ITS, OR423394, OR423395, OR423396 for tef1, OR423397, OR423398, OR423399 for tub2, and OR423391, OR423392, OR423393 for rpb2, and gene sequencing showed 99.6 to 100% identity with ex-type strain of L. pseudotheobromae (CBS 116459). Phylogenetic analysis also placed our isolates in a highly supported clade with the reference isolate of L. pseudotheobromae (Fig. S2). Another experiment was designed to confirm the pathogenicity test for additional confirmation. Five mm mycelial plugs of L. pseudotheobromae from a three day old culture on PDA were placed on five surface-sterilized and non-wounded plum fruits for 12 hours and incubated at 25°C ± 2°C for four days. Sterilized fungus free PDA plugs were used as a negative control. Mycelial plugs were removed after 12 hours following which whole fruits were incubated in plastic boxes at 25°C ± 2°C. The experiment was repeated twice. The pathogenicity was evaluated under control conditions in laboratory (relative humidity, 70 ± 5% and temperature 25 ± 5˚C). Plum fruits showed rotting, which was characterized by water soaked fruit tissue, softening and presence of whitish mycelia four days post inoculation. These symptoms and signs were similar to the initially observed symptoms on plums in the markets. No disease symptoms were observed on the control fruits. The re-isolated fungus obtained from inoculated plum fruits was very similar to those isolated from diseased samples in morphology, fulfilling Koch's postulates. To the best of our knowledge, this is the first report of L. pseudotheobromae causing postharvest fruit rot of plum in China. In 2022, the total planting area of plum was 1946.5 thousand hectares, which produces approximately 6626300 tons of plum (Food and Agriculture Organization of the United Nations, 2022). Based on the disease incidence and severity reported in the current study, soft rot of plum may be responsible for nearly 35% of yield losses under severe. Therefore, our study laid a theoretical foundation for the prevention and control of this post-harvest disease of plum.

4.
Angew Chem Int Ed Engl ; 63(20): e202319849, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38439625

RESUMEN

Glycans on tumor cell surface have significant impacts in the immune-killing process. Here an ultra-galactocation to sialic acid (Sia) strategy is designed to hugely introduce galactose (Gal) to Sia and on tumor cells in vivo by using a penta-functional dendritic probe (Den@5F), which efficiently enhances the immune-killing of tumor cells. The Den@5F contains five different kinds of functional groups, including Gal, Cy5, amino, phenylboronic acid (PBA) and 4-(4-(hydroxymethyl)-2-methoxy-5-nitrophenoxy) butanoate (mNB), which can be conveniently prepared through a two-step reaction. After injecting into the tumor-bearing mouse, Den@5F can efficiently block Sia through the specific recognition between PBA and Sia on tumor cells and hugely introduce Gal through the subsequent photo-crosslinking between mNB and amino groups to multiply conjugate excessive Den@5Fs. The comprehensively blocked Sia can prevent the immune escape, and the hugely introduced Gal can promote the immune stimulation of the immune cells, which lead to an efficient enhancement of the immune-killing. The proposed strategy provides a significant and promising tool to promote the clinical immunotherapy of tumor.


Asunto(s)
Galactosa , Ácido N-Acetilneuramínico , Ácido N-Acetilneuramínico/química , Humanos , Animales , Ratones , Galactosa/química , Línea Celular Tumoral , Dendrímeros/química , Dendrímeros/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Neoplasias/patología
5.
Anal Chem ; 95(19): 7503-7511, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37130068

RESUMEN

Accurate discrimination and classification of unknown species are the basis to predict its characteristics or applications to make correct decisions. However, for biogenic solutions that are ubiquitous in nature and our daily lives, direct determination of their similarities and disparities by their molecular compositions remains a scientific challenge. Here, we explore a standard and visualizable ontology, termed "biogenic solution map", that organizes multifarious classes of biogenic solutions into a map of hierarchical structures. To build the map, a novel 4-dimensional (4D) fingerprinting method based on data-independent acquisition data sets of untargeted metabolomics is developed, enabling accurate characterization of complex biogenic solutions. A generic parameter of metabolic correlation distance, calculated based on averaged similarities between 4D fingerprints of sample groups, is able to define "species", "genus", and "family" of each solution in the map. With the help of the "biogenic solution map", species of unknown biogenic solutions can be explicitly defined. Simultaneously, intrinsic correlations and subtle variations among biogenic solutions in the map are accurately illustrated. Moreover, it is worth mentioning that samples of the same analyte but prepared by alternative protocols may have significantly different metabolic compositions and could be classified into different "genera".


Asunto(s)
Metabolómica , Metabolómica/métodos
6.
Nucleic Acids Res ; 49(5): e30, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33337498

RESUMEN

AlkB is a DNA/RNA repair enzyme that removes base alkylations such as N1-methyladenosine (m1A) or N3-methylcytosine (m3C) from DNA and RNA. The AlkB enzyme has been used as a critical tool to facilitate tRNA sequencing and identification of mRNA modifications. As a tool, AlkB mutants with better reactivity and new functionalities are highly desired; however, previous identification of such AlkB mutants was based on the classical approach of targeted mutagenesis. Here, we introduce a high-throughput screening method to evaluate libraries of AlkB variants for demethylation activity on RNA and DNA substrates. This method is based on a fluorogenic RNA aptamer with an internal modified RNA/DNA residue which can block reverse transcription or introduce mutations leading to loss of fluorescence inherent in the cDNA product. Demethylation by an AlkB variant eliminates the blockage or mutation thereby restores the fluorescence signals. We applied our screening method to sites D135 and R210 in the Escherichia coli AlkB protein and identified a variant with improved activity beyond a previously known hyperactive mutant toward N1-methylguanosine (m1G) in RNA. We also applied our method to O6-methylguanosine (O6mG) modified DNA substrates and identified candidate AlkB variants with demethylating activity. Our study provides a high-throughput screening method for in vitro evolution of any demethylase enzyme.


Asunto(s)
Evolución Molecular Dirigida/métodos , Proteínas de Escherichia coli/genética , Oxigenasas de Función Mixta/genética , ADN/metabolismo , Daño del ADN , Metilación de ADN , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Fluorometría/métodos , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/metabolismo , Mutación , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Análisis de Secuencia de ARN
7.
Parasitol Res ; 122(2): 527-536, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36522547

RESUMEN

Avian trichomonosis is a worldwide and cross-species epidemic, and the infection in pigeons is particularly severe. Although the disease causes a serious threat to poultry health resulting in significant economic losses, the relationship between Trichomonas gallinae (T. gallinae) and host innate immunity is still not clear. Extracellular traps (ETs) are an innate immunity response to parasitic infections. However, whether host cells can produce ETs after T. gallinae infection has not yet been reported. In the present study, the ability of T. gallinae to induce the production of heterophil extracellular traps (HETs) in pigeons was examined. T. gallinae-induced HETs were observed by scanning electron microscopy (SEM) and the main components of HETs were detected by fluorescence confocal microscopy. Changes in reactive oxygen species (ROS) and lactate dehydrogenase (LDH) were tested during the HETosis. A quantitative analysis of T. gallinae-induced HETs, the role of myeloperoxidase (MPO), store-operated Ca (2+) entry (SOCE), and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in T. gallinae-induced HET formation were conducted by inhibitor assays. The results showed that T. gallinae induced ET formation in pigeon heterophils. ETs consisted of a DNA skeleton, neutrophil elastase (NE), MPO, and Histone3 (H3). T. gallinae-induced HETs formation in a dose- and time-dependent process. The release of T. gallinae-induced HETs depends on MPO, SOCE, and NADPH oxidase. Furthermore, after T. gallinae stimulated pigeon heterophils, ROS production was significantly increased, while no significant differences in the LDH activity were observed.


Asunto(s)
Enfermedades de las Aves , Trampas Extracelulares , Tricomoniasis , Trichomonas , Animales , Trichomonas/genética , Columbidae/parasitología , Especies Reactivas de Oxígeno , Tricomoniasis/parasitología , Enfermedades de las Aves/parasitología
8.
Parasitol Res ; 122(9): 2023-2036, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37349656

RESUMEN

Neospora caninum, an intracellular protozoan parasite, causes neosporosis resulting in major losses in the livestock industry worldwide. However, no effective drugs or vaccines have been developed to control neosporosis. An in-depth study on the immune response against N. caninum could help to search for effective approaches to prevent and treat neosporosis. The host unfolded protein response (UPR) functions as a double-edged sword in several protozoan parasite infections, either to initiate immune responses or to help parasite survival. In this study, the roles of the UPR in N. caninum infection in vitro and in vivo were explored, and the mechanism of the UPR in resistance to N. caninum infection was analyzed. The results revealed that N. caninum triggered the UPR in mouse macrophages, such as the activation of the IRE1 and PERK branches, but not the ATF6 branch. Inhibition of the IRE1α-XBP1s branch increased the N. caninum number both in vitro and in vivo, while inhibition of the PERK branch did not affect the parasite number. Furthermore, inhibition of the IRE1α-XBP1s branch reduced the production of cytokines by inhibiting NOD2 signalling and its downstream NF-κB and MAPK pathways. Taken together, the results of this study suggest that the UPR is involved in the resistance of N. caninum infection via the IRE1α-XBP1s branch by regulating NOD2 and its downstream NF-κB and MAPK pathways to induce the production of inflammatory cytokines, which provides a new perspective for the research and development of anti-N. caninum drugs.


Asunto(s)
Coccidiosis , Neospora , Animales , Ratones , FN-kappa B/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Citocinas/metabolismo , Respuesta de Proteína Desplegada , Coccidiosis/parasitología
9.
Ecotoxicol Environ Saf ; 253: 114691, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36868036

RESUMEN

There is evidence that the triazine herbicide atrazine, which is used extensively, is present in both surface water and groundwater, and its interfering effect on immune systems, endocrine systems, and tumours has been reported by laboratory and epidemiological studies. This study explored how atrazine affected 4T1 breast cancer cell development in vitro and in vivo. The obtained results showed that after exposure to atrazine, the cell proliferation and tumour volume were significantly increased and the expression of MMP2, MMP7, and MMP9 was upregulated. The thymus and spleen indices, the CD4 + and CD3 + lymphocyte percentages which from the spleen and inguinal lymph nodes, and the CD4 + /CD8 + ratio were noticeably lower than they were in the control group. Importantly, tumour-infiltrating lymphocytes such as CD4 + , CD8 + , and NK cells were decreased while Treg cells were increased. Moreover, IL-4 was increased and IFN-γ and TNF-α were decreased in the serum and tumour microenvironment. These results suggested that atrazine can suppress systemic as well as local tumour immune function and upregulate MMPs to promote breast tumour development.


Asunto(s)
Atrazina , Neoplasias de la Mama , Herbicidas , Humanos , Femenino , Atrazina/toxicidad , Neoplasias de la Mama/inducido químicamente , Linfocitos T Reguladores , Herbicidas/toxicidad , Inmunidad , Microambiente Tumoral
10.
Int J Mol Sci ; 24(13)2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37445774

RESUMEN

Repetitive low-level blast (rLLB) exposure is a potential risk factor for the health of soldiers or workers who are exposed to it as an occupational characteristic. Alveolar macrophages (AMs) are susceptible to external blast waves and produce pro-inflammatory or anti-inflammatory effects. However, the effect of rLLB exposure on AMs is still unclear. Here, we generated rLLB waves through a miniature manual Reddy-tube and explored their effects on MH-S cell morphology, phenotype transformation, oxidative stress status, and apoptosis by immunofluorescence, real-time quantitative PCR (qPCR), western blotting (WB) and flow cytometry. Ipatasertib (GDC-0068) or PDTC was used to verify the role of the Akt/NF-κB signaling pathway in these processes. Results showed that rLLB treatment could cause morphological irregularities and cytoskeletal disorders in MH-S cells and promote their polarization to the M1 phenotype by increasing iNOS, CD86 and IL-6 expression. The molecular mechanism is through the Akt/NF-κB signaling pathway. Moreover, we found reactive oxygen species (ROS) burst, Ca2+ accumulation, mitochondrial membrane potential reduction, and early apoptosis of MH-S cells. Taken together, our findings suggest rLLB exposure may cause M1 polarization and early apoptosis of AMs. Fortunately, it is blocked by specific inhibitors GDC-0068 or PDTC. This study provides a new treatment strategy for preventing and alleviating health damage in the occupational population caused by rLLB exposure.


Asunto(s)
Macrófagos Alveolares , FN-kappa B , Ratones , Animales , FN-kappa B/metabolismo , Macrófagos Alveolares/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
11.
J Environ Manage ; 345: 118840, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37604105

RESUMEN

Phosphorus (P) recovery from wastewaters treated with constructed wetlands (CWs) could alleviate the current global P crisis but has not received sufficient attention. In this study, P transformation in different magnesium-based electrochemical CWs, including micro-electrolysis CW (M-CW), primary battery CW (P-CW), and electrolysis CW (E-CW), was thoroughly examined. The results revealed that the P removal efficiency was 53.0%, 75.8%, and 61.9% in the M-CW, E-CW, and P-CW, respectively. P mass balance analysis showed that P electrode deposition was the main reason for the higher P removal in the E-CW and P-CW. Significant differences were found between the E-CW and P-CW, P was distributed primarily on the magnesium plate in the P-CW but was distributed on the carbon plate in the E-CW. The E-CW had excellent P recovery capacity, and struvite was the major P recovery product. More intense magnesium plate corrosion and alkaline environment increased struvite precipitation in the E-CW, with the proportion of 61.6%. The results of functional microbial community analysis revealed that the abundance of electroactive bacteria was positively correlated with the deposition of struvite. This study provided an essential reference for the targeted electrochemical regulation of electric field processes and microorganisms in CWs to enhance P recovery.


Asunto(s)
Eliminación de Residuos Líquidos , Aguas Residuales , Eliminación de Residuos Líquidos/métodos , Magnesio , Fósforo/análisis , Estruvita , Humedales , Nitrógeno/análisis
12.
Pharmacol Res ; 175: 106033, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34915124

RESUMEN

Acute kidney injury (AKI) is a worldwide problem, and there is no effective drug to eliminate AKI. The death of renal cells is an important pathological basis of intrinsic AKI. At present, targeted therapy for TEC death is a research hotspot in AKI therapy. There are many ways of cell death involved in the occurrence and development of AKI, such as apoptosis, necrosis, ferroptosis, and pyroptosis. This article mainly focuses on the role of pyroptosis in AKI. The assembly and activation of NLRP3 inflammasome is a key event in the occurrence of pyroptosis, which is affected by many factors, such as the activation of the NF-κB signaling pathway, mitochondrial instability and excessive endoplasmic reticulum (ER) stress. The activation of NLRP3 inflammasome can trigger its downstream inflammatory cytokines, which will lead to pyroptosis and eventually induce AKI. In this paper, we reviewed the possible mechanism of pyroptosis in AKI and the potential effective inhibitors of various key targets in this process. It may provide potential therapeutic targets for novel intrinsic AKI therapies based on pyroptosis, so as to develop better therapeutic strategies.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Piroptosis , Lesión Renal Aguda/metabolismo , Animales , Humanos , Transducción de Señal
13.
Plant Dis ; 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35536206

RESUMEN

Dictyophora rubrovolvata is a saprophytic mushroom widely cultivated in China, including Guizhou Province for its high nutritional, medicinal, and economical values (Chen et al. 2021). In May 2021, green mold disease was observed on the fruiting bodies of D. rubrovolvata, causing its death or preventing it from forming a sporocarp, in an indoor-production facility at Asuo village, Baiyun District Guiyang city, Guizhou Province, China (26°73'51" N, 106°72'88" E). The disease incidence was 60%-70% in the affected 1.33-ha growing area, causing a serious economic loss. To identify the causal agent, a total of 15 samples with symptomatic symptoms were collected. Small pieces (5 mm × 5 mm) were cut from the diseased tissues, surface sterilized in 0.4% NaClO for 5 min, washed three times with sterilized water, placed on potato dextrose agar (PDA) medium, and incubated at 24 °C for 7 days. Twenty-one pure cultures were obtained by single-spore isolation method. The colonies were initially white but after seven days as conidia developed they turned green. Hyphae were hyaline and guttulate. Conidiophores were verrucose stipes, triverticulate, and phialides flask shaped. Conidia were smooth and pale green, with subglobose to globose shape measuring 2.0-2.5 × 1.8-2.5 µm (n=50). Based on these morphological characteristics, the isolates matched the description of the genus Penicillium (Visagie et al. 2014). To confirm the identity, DNA of five representative isolates (QS001, QS005, QS008, QS015, QS017) was extracted according to the manufacturer's instructions (Biomiga Fungal DNA Extraction Kit; CA, USA). Afterwards, PCR was performed to amplify ITS region, calmodulin and ß-tubulin genes using primer pairs ITS1/ITS4 (White et al. 1990), CMD5/CMD6 (Glass et al. 1995), and Bt2a/Bt2b (Hong et al. 2006), respectively. BLASTN analysis of these sequences showed the best matches with Penicillium citrinum CBS 139.45 (ITS region: 98.60% (493/500 bp) identity to accession MH856132.1; CMD: 99.79% (469/470 bp) identity to accession MN969245.1; ß-tubulin:100% (407/407 bp) identity to accession GU944545.1). Representative sequences of the sequenced DNA regions were deposited in GenBank (ITS region: OK446552; CMD: OK492612; ß-tubulin: OK482677). Furthermore, a phylogenetic tree was constructed with MEGA 7 based on the concatenated sequences. Koch's postulates were met to confirm the pathogenicity of the representative isolate (QS001) on D. rubrovolvata. Six discs (5mm×5mm) from actively growing P. citrinum QS001 colonies (5-day-old) were placed on six fruiting bodies of D. rubrovolvata (5-month-old). Mock inoculations were performed using PDA discs only without any fungus. The inoculation sites were wrapped with a sterilized 200-µm nylon mesh. All fruiting bodies were incubated at 23°C ± 2°C under a 0-h/24-h photoperiod and 80% relative humidity (RH) after inoculation. After 14 days, green mold was observed on all P. citrinum QS001 inoculated mushrooms. In contrast, no disease was observed in mock inoculated group. The disease assays were repeated three times. P. citrinum QS001 was isolated from all inoculated D. rubrovolvata and verified via the molecular analysis mentioned above. To the best of our knowledge, this is the first report that P. citrinum causes green mold on D. rubrovalvata in China and further studies should focus on managing this disease to prevent any disease outbreaks.

14.
Analyst ; 146(6): 2029-2036, 2021 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-33528465

RESUMEN

In this study, a sensitive and effective monitoring method for ractopamine (RAC) was developed based on a sensitive electrochemiluminescence (ECL) aptasensor. Here, we employed a perylene derivative (PTC-PEI) with a Cu-based metal-organic framework (HKUST-1), which could accelerate the electron-transfer (ET) rate and strengthen interactions by the amido bond, resulting in enhanced ECL sensitivity and stability. Astonishingly, compared with the response of PTC-PEI and complex, the ECL signal of the MOF-based ECL material was noticeably raised by 6 times higher than that of PTC-PEI. HKUST-1 exhibited an excellent catalytic effect towards the electrochemical reduction process of S2O82-, thus allowing more sulfate radical anions (SO4˙-) to be generated. The strong ECL intensity of HKUST-1/PTC-PEI not only stemmed from the fixation of PTC-PEI that utilized its excellent film-forming abilities but also originated from the high porosity of HKUST-1 that carried more luminophores able to be excited. Satisfyingly, in the presence of the target molecule RAC, we observed an obvious quenching effect of signal, which could be attributed to aptamer recognition resulting in RAC being specifically captured on the electrode. Under optimal conditions, the developed sensor for the RAC assay displayed a desired linear range of 1.0 × 10-12-1.0 × 10-6 M and a low detection limit of 6.17 × 10-13 M (S/N = 3). This ECL sensor showed high sensitivity, good stability and excellent selectivity. More importantly, the proposed aptasensor exhibited excellent determination towards RAC detection and potential practical utility for real samples.

15.
Biol Pharm Bull ; 44(12): 1801-1809, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34853262

RESUMEN

Temporomandibular disorder (TMD) is an oral dentofacial disease that is related to multiple factors such as disordered dental occlusion, emotional stress, and immune responses. In the past decades, tumor necrosis factor-alpha (TNF-α), a pleiotropic cytokine, has provided valuable insight into the pathogenesis of TMD, particularly in settings associated with inflammation. It is thought that TNF-α participates in the pathogenesis of TMD by triggering immune responses, deteriorating bone and cartilage, and mediating pain in the temporomandibular joint (TMJ). Initially, TNF-α plays the role of "master regulator" in the complex immune network by increasing or decreasing the production of other inflammatory cytokines. Then, the effects of TNF-α on cells, particularly on chondrocytes and synovial fibroblasts, result in pathologic cartilage degradation in TMD. Additionally, multiple downstream cytokines induced by TNF-α and neuropeptides can regulate central sensitization and inflammatory pain in TMD. Previous studies have also found some therapies target TMD by reducing the production of TNF-α or blocking TNF-α-induced pathways. All this evidence highlights the numerous associations between TNF-α and TMD; however, they are currently not fully understood and further investigations are still required for specific mechanisms and treatments targeting specific pathways. Therefore, in this review, we explored general mechanisms of TNF-α, with a focus on molecules in TNF-α-mediated pathways and their potential roles in TMD treatment. In view of the high clinical prevalence rate of TMD and damage to patients' QOL, this review provides adequate evidence for studying links between inflammation and TMD in further research and investigation.


Asunto(s)
Inflamación/metabolismo , Trastornos de la Articulación Temporomandibular/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Huesos/metabolismo , Huesos/patología , Cartílago/metabolismo , Cartílago/patología , Condrocitos/metabolismo , Citocinas/metabolismo , Fibroblastos/metabolismo , Humanos , Inflamación/complicaciones , Dolor Musculoesquelético/metabolismo , Articulación Temporomandibular/metabolismo , Articulación Temporomandibular/patología , Trastornos de la Articulación Temporomandibular/etiología , Trastornos de la Articulación Temporomandibular/inmunología , Trastornos de la Articulación Temporomandibular/patología , Factor de Necrosis Tumoral alfa/inmunología
16.
Nucleic Acids Res ; 47(20): 10801-10814, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31552420

RESUMEN

Human ADAR3 is a catalytically inactive member of the Adenosine Deaminase Acting on RNA (ADAR) protein family, whose active members catalyze A-to-I RNA editing in metazoans. Until now, the reasons for the catalytic incapability of ADAR3 has not been defined and its biological function rarely explored. Yet, its exclusive expression in the brain and involvement in learning and memory suggest a central role in the nervous system. Here we describe the engineering of a catalytically active ADAR3 enzyme using a combination of computational design and functional screening. Five mutations (A389V, V485I, E527Q, Q549R and Q733D) engender RNA deaminase in human ADAR3. By way of its catalytic activity, the ADAR3 pentamutant was used to identify potential binding targets for wild type ADAR3 in a human glioblastoma cell line. Novel ADAR3 binding sites discovered in this manner include the 3'-UTRs of the mRNAs encoding early growth response 1 (EGR1) and dual specificity phosphatase 1 (DUSP1); both known to be activity-dependent immediate early genes that respond to stimuli in the brain. Further studies reveal that the wild type ADAR3 protein can regulate transcript levels for DUSP1 and EGR1, suggesting a novel role ADAR3 may play in brain function.


Asunto(s)
Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Mutación con Ganancia de Función/genética , Neuronas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Adenosina Desaminasa/química , Secuencia de Bases , Línea Celular Tumoral , Fosfatasa 1 de Especificidad Dual/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Regulación de la Expresión Génica , Humanos , Unión Proteica , Dominios Proteicos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/química , Especificidad por Sustrato
17.
Plant Dis ; 2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34213963

RESUMEN

Passion fruit (Passiflora edulis Sims) is a widely cultivated dicotyledonous perennial plant with woody vines (Asande et al. 2020). In November 2020, leaf blight was observed on leaves of P. edulis (cultivar: 'Panama Red') newly planted in Wangyou, Huishui county, Guizhou province, China (25°82'57" N, 106°50'49" E). The leaf blight occurred on both young and old leaves, starting from the margins, and then extended to the entire leaves. The color of the affected tissue was brown with a yellow hallo in the early period, and then gradually turned to grey. The disease incidence was 60%-70% on a 0.08-ha field. Following isolation of the potential pathogen from 12 diseased leaves, nine isolates were obtained. The colonies were white with a regular round shape at the early stage and became black with fluffy hyphae after eight days on potato dextrose agar (PDA) medium, incubated at 25°C in the dark for 10 days. The single cell conidia were solitary, spherical or slightly ellipsoidal, black, shiny, smooth, aseptate, spherical, and 8.1-13.5 µm (n=50) in diameter. Conidiophores (5.2-9.9 × 4.4-7.2 µm) were mostly reduced to conidiogenous cells and aggregated in clusters on hyphae. Conidiogenous cells were hyaline to pale brown or black, globose to ampulliform or clavate. Morphological characteristics of the isolates matched the description of the genus Nigrospora Mei Wang & L. Cai (Wang et al. 2017). For molecular identification, DNA was extracted, and PCRs were performed with primers ITS1/ITS4 for the ITS region (White et al. 1990), primers Bt2a/Bt2b for the ß-tubulin gene (TUB) (Glass and Donaldson 1995), and primers EF1-728F/EF1-986R for the translation elongation factor 1-alpha gene (EF1-α) (Carbone and Kohn 1999). Representative sequences of the ITS region, EF1-α, and TUB sequences (from isolate WYR007) were deposited in GenBank (accession numbers: MW561355; MZ053463; MZ032030) and are included in the supplementary materials. BLAST analysis against sequences from previously published studies showed 99.58% (ITS region), 99.54% (EF1-α), and 99.45% (TUB) identity to Nigrospora sphaerica sequences (accession numbers: MN215808.1; MN864137.1; KY019606.1). In addition, homology was confirmed with a phylogenetic tree using concatenated sequences from ITS, EF1-α and TUB constructed with MEGA 7 for which the maximum likelihood method was used with 1,000 bootstrapping iterations. To complete Koch's postulates, conidia suspensions of isolate WYR007 (prepared from 1-month-old colonies in 0.05% Tween 20 buffer and adjusted to a concentration of 1 × 103 conidia/mL) were sprayed on 15 leaves (200 µL per leaf) of 5 one-year-old healthy P. edulis plants (cultivar: 'Panama Red'). The same number of leaves from control group plants was only treated with 0.05% Tween buffer. All plants were incubated at 26°C ± 2°C under a 16 h/8 h photoperiod and 70%-75% relative humidity (RH) after inoculation. After 14 days, symptomatic blight appeared on all inoculated leaves. In contrast, no symptoms appeared on leaves in the control group. The disease assays were repeated three times. Pure cultures were re-isolated from diseased leaves and confirmed to be N. sphaerica based on the morphological and molecular methods mentioned above (ITS region, the TUB, and the EF1-α sequences). To our knowledge, this study is the first report of N. sphaerica as a pathogen on P. edulis causing leaf blight. The identification of the pathogen could provide relevant background for its future management.s Sims) is a widely cultivated dicotyledonous perennial plant with woody vines (Asande et al. 2020). In November 2020, leaf blight was observed on leaves of P. edulis (cultivar: 'Panama Red') newly planted in Wangyou, Huishui county, Guizhou province, China (25°82'57" N, 106°50'49" E). The leaf blight occurred on both young and old leaves, starting from the margins, and then extended to the entire leaves. The color of the affected tissue was brown with a yellow hallo in the early period, and then gradually turned to grey. The disease incidence was 60%-70% on a 0.08-ha field. Following isolation of the potential pathogen from 12 diseased leaves, nine isolates were obtained. The colonies were white with a regular round shape at the early stage and became black with fluffy hyphae after eight days on potato dextrose agar (PDA) medium, incubated at 25°C in the dark for 10 days. The single cell conidia were solitary, spherical or slightly ellipsoidal, black, shiny, smooth, aseptate, spherical, and 8.1-13.5 µm (n=50) in diameter. Conidiophores (5.2-9.9 × 4.4-7.2 µm) were mostly reduced to conidiogenous cells and aggregated in clusters on hyphae. Conidiogenous cells were hyaline to pale brown or black, globose to ampulliform or clavate. Morphological characteristics of the isolates matched the description of the genus Nigrospora Mei Wang & L. Cai (Wang et al. 2017). For molecular identification, DNA was extracted, and PCRs were performed with primers ITS1/ITS4 for the ITS region (White et al. 1990), primers Bt2a/Bt2b for the ß-tubulin gene (TUB) (Glass and Donaldson 1995), and primers EF1-728F/EF1-986R for the translation elongation factor 1-alpha gene (EF1-α) (Carbone and Kohn 1999). Representative sequences of the ITS region, EF1-α, and TUB sequences (from isolate WYR007) were deposited in GenBank (accession numbers: MW561355; MZ053463; MZ032030) and are included in the supplementary materials. BLAST analysis against sequences from previously published studies showed 99.58% (ITS region), 99.54% (EF1-α), and 99.45% (TUB) identity to Nigrospora sphaerica sequences (accession numbers: MN215808.1; MN864137.1; KY019606.1). In addition, homology was confirmed with a phylogenetic tree using concatenated sequences from ITS, EF1-α and TUB constructed with MEGA 7 for which the maximum likelihood method was used with 1,000 bootstrapping iterations. To complete Koch's postulates, conidia suspensions of isolate WYR007 (prepared from 1-month-old colonies in 0.05% Tween 20 buffer and adjusted to a concentration of 1 × 103 conidia/mL) were sprayed on 15 leaves (200 µL per leaf) of 5 one-year-old healthy P. edulis plants (cultivar: 'Panama Red'). The same number of leaves from control group plants was only treated with 0.05% Tween buffer. All plants were incubated at 26°C ± 2°C under a 16 h/8 h photoperiod and 70%-75% relative humidity (RH) after inoculation. After 14 days, symptomatic blight appeared on all inoculated leaves. In contrast, no symptoms appeared on leaves in the control group. The disease assays were repeated three times. Pure cultures were re-isolated from diseased leaves and confirmed to be N. sphaerica based on the morphological and molecular methods mentioned above (ITS region, the TUB, and the EF1-α sequences). To our knowledge, this study is the first report of N. sphaerica as a pathogen on P. edulis causing leaf blight. The identification of the pathogen could provide relevant background for its future management.

18.
Angew Chem Int Ed Engl ; 60(2): 873-880, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-32970916

RESUMEN

N6 -methyladenosine (m6 A) is a crucial RNA chemical mark which plays important roles in various biological processes. The development of highly multiplexed, cost-effective, and easy-to-operate methodologies for locus-specific analysis of m6 A is critical for advancing our understanding of the roles of this modification. Herein, we report a method which builds upon the principle of the previously reported SELECT approach by significantly improving its efficiency and coupling it to next generation sequencing technology for high-throughput validation and detection of m6 A modification at selected sites (LEAD-m6 A-seq). Through probing cDNA extension mediated by Bst DNA polymerase at and near target cellular sites by sequencing, we evaluated m6 A modification at these sites, and estimated differential methylation levels (0-84 %) upon in vitro demethylation by the m6 A demethylase FTO with high reproducibility. We envision that this strategy can be readily used for testing a greater number of sites with a broad dynamic range and modified to study other RNA modifications.


Asunto(s)
Adenosina/análisis , Metilación de ADN , Adenosina/análogos & derivados , Adenosina/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Secuencia de Bases , Secuenciación de Nucleótidos de Alto Rendimiento , Técnicas de Amplificación de Ácido Nucleico , ARN/metabolismo
19.
Analyst ; 145(23): 7616-7622, 2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33001071

RESUMEN

In this work, a solid-state electrochemiluminescence (ECL) sensor based on resonance energy transfer (RET) was proposed using MoS2QDs@g-C3N4 as a donor and NH2-SiO2@PTCA as an acceptor. Herein, MoS2QDs could significantly facilitate the stability and efficiency of the ECL of g-C3N4. PTCA provided a large platform to anchor NH2-SiO2 nanoparticles. The prepared MoS2QDs@g-C3N4 exhibited good spectral overlap with the UV-vis absorption spectrum of NH2-SiO2@PTCA. Based on this, we designed an "off-on" ECL sensing strategy for sensitive and selective detection of glutathione (GSH). Under the best conditions, the linear range of the sensor for GSH detection was from 0.001 to 100 µM with a detection limit of 0.63 nM (S/N = 3). More importantly, GSH in commercial samples can be detected using the proposed sensor, which indicated its superior detection capabilities and potential application value in commercial medicines.


Asunto(s)
Técnicas Biosensibles , Dióxido de Silicio , Técnicas Electroquímicas , Transferencia de Energía , Glutatión , Mediciones Luminiscentes
20.
Molecules ; 25(18)2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32967248

RESUMEN

This study investigated the solubilization capabilities of rhamnolipids biosurfactant and synthetic surfactant mixtures for the application of a mixed surfactant in surfactant-enhanced remediation. The mass ratios between Triton X-100 and rhamnolipids were set at 1:0, 9:1, 3:1, 1:1, 1:3, and 0:1. The ideal critical micelle concentration values of the Triton X-100/rhamnolipids mixture system were higher than that of the theoretical predicted value suggesting the existence of interactions between the two surfactants. Solubilization capabilities were quantified in term of weight solubilization ratio and micellar-water partition coefficient. The highest value of the weight solubilization ratio was detected in the treatment where only Triton X-100 was used. This ratio decreased with the increase in the mass of rhamnolipids in the mixed surfactant systems. The parameters of the interaction between surfactants and the micellar mole fraction in the mixed system have been determined. The factors that influence phenanthrene solubilization, such as pH, ionic strength, and acetic acid concentration have been discussed in the paper. The aqueous solubility of phenanthrene increased linearly with the total surfactant concentration in all treatments. The mixed rhamnolipids and synthetic surfactants showed synergistic behavior and enhanced the solubilization capabilities of the mixture, which would extend the rhamnolipids application.


Asunto(s)
Micelas , Fenantrenos/química , Tensoactivos/química , Concentración de Iones de Hidrógeno , Solubilidad , Tensión Superficial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA