Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Microb Cell Fact ; 23(1): 114, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38641799

RESUMEN

BACKGROUND: Isoquercitrin (quercetin-3-O-ß-D-glucopyranoside) has exhibited promising therapeutic potentials as cardioprotective, anti-diabetic, anti-cancer, and anti-viral agents. However, its structural complexity and limited natural abundance make both bulk chemical synthesis and extraction from medical plants difficult. Microbial biotransformation through heterologous expression of glycosyltransferases offers a safe and sustainable route for its production. Despite several attempts reported in microbial hosts, the current production levels of isoquercitrin still lag behind industrial standards. RESULTS: Herein, the heterologous expression of glycosyltransferase UGT78D2 gene in Bacillus subtilis 168 and reconstruction of UDP-glucose (UDP-Glc) synthesis pathway led to the synthesis of isoquercitrin from quercetin with titers of 0.37 g/L and 0.42 g/L, respectively. Subsequently, the quercetin catabolism blocked by disruption of a quercetin dioxygenase, three ring-cleavage dioxygenases, and seven oxidoreductases increased the isoquercitrin titer to 1.64 g/L. And the hydrolysis of isoquercitrin was eliminated by three ß-glucosidase genes disruption, thereby affording 3.58 g/L isoquercitrin. Furthermore, UDP-Glc pool boosted by pgi (encoding glucose-6-phosphate isomerase) disruption increased the isoquercitrin titer to 10.6 g/L with the yield on quercetin of 72% and to 35.6 g/L with the yield on quercetin of 77.2% in a 1.3-L fermentor. CONCLUSION: The engineered B. subtilis strain developed here holds great potential for initiating the sustainable and large-scale industrial production of isoquercitrin. The strategies proposed in this study provides a reference to improve the production of other flavonoid glycosides by engineered B. subtilis cell factories.


Asunto(s)
Ingeniería Metabólica , Quercetina , Quercetina/análogos & derivados , Quercetina/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Uridina Difosfato/metabolismo
2.
Rapid Commun Mass Spectrom ; 38(16): e9780, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38887892

RESUMEN

BACKGROUND: Natural medicines present a considerable analytical challenge due to their diverse botanical origins and complex multi-species composition. This inherent complexity complicates their rapid identification and analysis. Tangerine peel, a product of the Citrus species from the Rutaceae family, is widely used both as a culinary ingredient and in traditional Chinese medicine. It is classified into two primary types in China: Citri Reticulatae Pericarpium (CP) and Citri Reticulatae Pericarpium Viride (QP), differentiated by harvest time. A notable price disparity exists between CP and another variety, Citri reticulatae "Chachi" (GCP), with differences being based on the original variety. METHODS: This study introduces an innovative method using portable miniature mass spectrometry for swift on-site analysis of QP, CP, and GCP, requiring less than a minute per sample. And combined with machine learning to differentiate the three types on site, the method was used to try to distinguish GCP from different storage years. RESULTS: This novel method using portable miniature mass spectrometry for swift on-site analysis of tangerine peels enabled the characterization of 22 compounds in less than one minute per sample. The method simplifies sample processing and integrates machine learning to distinguish between the CP, QP, and GCP varieties. Moreover, a multiple-perceptron neural network model is further employed to specifically differentiate between CP and GCP, addressing the significant price gap between them. CONCLUSIONS: The entire analytical time of the method is about 1 minute, and samples can be analyzed on site, greatly reducing the cost of testing. Besides, this approach is versatile, operates independently of location and environmental conditions, and offers a valuable tool for assessing the quality of natural medicines.


Asunto(s)
Citrus , Aprendizaje Automático , Espectrometría de Masas , Citrus/química , Citrus/clasificación , Espectrometría de Masas/métodos
3.
Analyst ; 149(14): 3857-3864, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38855898

RESUMEN

Renowned for their nutritional benefits, citrus fruits are harvested at various stages in China for functional food production. This study introduces an innovative analytical method, DART-MS, enabling direct qualitative analysis of citrus samples without the need for preprocessing. Simultaneously, the combination of chemometrics can be applied to distinguish between three different citrus samples: Citri Reticulatae Pericarpium, Citri Reticulatae Pericarpium Viride, and Citri Reticulatae "Chachi". Notably, given the international regulatory concerns surrounding synephrine, a precise quantitative analysis method for synephrine was developed. The limit of detection (LOD) and the limit of quantification (LOQ) were 39 ng mL-1 and 156 ng mL-1, respectively. The recovery rates obtained varied from 98.46% to 100.71%. Furthermore, the intra-day and inter-day precision demonstrated robust consistency, with values spanning 5.0-6.1% and 5.03-6.08%, respectively, offering quicker results compared to those from HPLC-MS, promising a safer assessment of herbal and food products.


Asunto(s)
Citrus , Límite de Detección , Espectrometría de Masas , Citrus/química , Espectrometría de Masas/métodos , Sinefrina/análisis , Quimiometría/métodos , Cromatografía Líquida de Alta Presión/métodos
4.
Nanotechnology ; 35(12)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38108219

RESUMEN

Wearable heaters are essential for people living in cold regions, but creating heaters that are low-cost, lightweight, and high air permeability poses challenges. In this study, we developed a wearable heater using carbon nanotube/water polyurethane (CNT/WPU) nanocomposite fibers that achieve high extension rate and conductivity. We produced low-cost and mass-produced fibers using the wet spinning. With heat treatment, we increased the elongation rate of the fibers to 1893.8% and decreased the resistivity to 0.07 Ω*m. then wove the fibers into a heating fabric using warp knitting, that resistance is 493 Ω. Achieved a uniform temperature of 58 °C at voltage of 36 V, with a thermal stability fluctuation of -5.0 °C to +6.3 °C when bent from 0° to 360°. Our results show that wearable heaters have excellent flexibility and stretchability, due to nanocomposite fibers and special braided structure, which offer a novel idea for wearable heaters.

5.
Acta Pharmacol Sin ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009651

RESUMEN

Triple-negative breast cancer (TNBC) is incurable and prone to widespread metastasis. Therefore, identification of key targets for TNBC progression is urgently needed. Our previous study revealed that isotoosendanin (ITSN) reduced TNBC metastasis by targeting TGFßR1. ITSN is currently used as an effective chemical probe to further discover the key molecules involved in TNBC metastasis downstream of TGFßR1. The results showed that GOT2 was the gene downstream of Smad2/3 and that ITSN decreased GOT2 expression by abrogating the activation of the TGF-ß-Smad2/3 signaling pathway through directly binding to TGFßR1. GOT2 was highly expressed in TNBC, and its knockdown decreased TNBC metastasis. However, GOT2 overexpression reversed the inhibitory effect of ITSN on TNBC metastasis both in vitro and in vivo. GOT2 interacted with MYH9 and hindered its binding to the E3 ubiquitin ligase STUB1, thereby reducing MYH9 ubiquitination and degradation. Moreover, GOT2 also enhanced the translocation of MYH9 to mitochondria and thus induced DRP1 phosphorylation, thereby promoting mitochondrial fission and lamellipodia formation in TNBC cells. ITSN-mediated inhibition of mitochondrial fission and lamellipodia formation was associated with reduced GOT2 expression. In conclusion, ITSN prevented MYH9-regulated mitochondrial fission and lamellipodia formation in TNBC cells by enhancing MYH9 protein degradation through a reduction in GOT2 expression, thus contributing to its inhibition of TNBC metastasis.

6.
Acta Pharmacol Sin ; 45(7): 1451-1465, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38491161

RESUMEN

Inflammatory bowel disease (IBD) is characterized by persistent damage to the intestinal barrier and excessive inflammation, leading to increased intestinal permeability. Current treatments of IBD primarily address inflammation, neglecting epithelial repair. Our previous study has reported the therapeutic potential of notoginsenoside R1 (NGR1), a characteristic saponin from the root of Panax notoginseng, in alleviating acute colitis by reducing mucosal inflammation. In this study we investigated the reparative effects of NGR1 on mucosal barrier damage after the acute injury stage of DSS exposure. DSS-induced colitis mice were orally treated with NGR1 (25, 50, 125 mg·kg-1·d-1) for 10 days. Body weight and rectal bleeding were daily monitored throughout the experiment, then mice were euthanized, and the colon was collected for analysis. We showed that NGR1 administration dose-dependently ameliorated mucosal inflammation and enhanced epithelial repair evidenced by increased tight junction proteins, mucus production and reduced permeability in colitis mice. We then performed transcriptomic analysis on rectal tissue using RNA-sequencing, and found NGR1 administration stimulated the proliferation of intestinal crypt cells and facilitated the repair of epithelial injury; NGR1 upregulated ISC marker Lgr5, the genes for differentiation of intestinal stem cells (ISCs), as well as BrdU incorporation in crypts of colitis mice. In NCM460 human intestinal epithelial cells in vitro, treatment with NGR1 (100 µM) promoted wound healing and reduced cell apoptosis. NGR1 (100 µM) also increased Lgr5+ cells and budding rates in a 3D intestinal organoid model. We demonstrated that NGR1 promoted ISC proliferation and differentiation through activation of the Wnt signaling pathway. Co-treatment with Wnt inhibitor ICG-001 partially counteracted the effects of NGR1 on crypt Lgr5+ ISCs, organoid budding rates, and overall mice colitis improvement. These results suggest that NGR1 alleviates DSS-induced colitis in mice by promoting the regeneration of Lgr5+ stem cells and intestinal reconstruction, at least partially via activation of the Wnt/ß-Catenin signaling pathway. Schematic diagram of the mechanism of NGR1 in alleviating colitis. DSS caused widespread mucosal inflammation epithelial injury. This was manifested by the decreased expression of tight junction proteins, reduced mucus production in goblet cells, and increased intestinal permeability in colitis mice. Additionally, Lgr5+ ISCs were in obviously deficiency in colitis mice, with aberrant down-regulation of the Wnt/ß-Catenin signaling. However, NGR1 amplified the expression of the ISC marker Lgr5, elevated the expression of genes associated with ISC differentiation, enhanced the incorporation of BrdU in the crypt and promoted epithelial restoration to alleviate DSS-induced colitis in mice, at least partially, by activating the Wnt/ß-Catenin signaling pathway.


Asunto(s)
Colitis , Ginsenósidos , Mucosa Intestinal , Ratones Endogámicos C57BL , Receptores Acoplados a Proteínas G , Vía de Señalización Wnt , Animales , Ginsenósidos/farmacología , Ginsenósidos/uso terapéutico , Vía de Señalización Wnt/efectos de los fármacos , Colitis/tratamiento farmacológico , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/patología , Ratones , Receptores Acoplados a Proteínas G/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Masculino , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Humanos
7.
Appl Microbiol Biotechnol ; 108(1): 282, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573330

RESUMEN

Oleanane-type ginsenosides are a class of compounds with remarkable pharmacological activities. However, the lack of effective preparation methods for specific rare ginsenosides has hindered the exploration of their pharmacological properties. In this study, a novel glycoside hydrolase PlGH3 was cloned from Paenibacillus lactis 154 and heterologous expressed in Escherichia coli. Sequence analysis revealed that PlGH3 consists of 749 amino acids with a molecular weight of 89.5 kDa, exhibiting the characteristic features of the glycoside hydrolase 3 family. The enzymatic characterization results of PlGH3 showed that the optimal reaction pH and temperature was 8 and 50 °C by using p-nitrophenyl-ß-D-glucopyranoside as a substrate, respectively. The Km and kcat values towards ginsenoside Ro were 79.59 ± 3.42 µM and 18.52 s-1, respectively. PlGH3 exhibits a highly specific activity on hydrolyzing the 28-O-ß-D-glucopyranosyl ester bond of oleanane-type saponins. The mechanism of hydrolysis specificity was then presumably elucidated through molecular docking. Eventually, four kinds of rare oleanane-type ginsenosides (calenduloside E, pseudoginsenoside RP1, zingibroside R1, and tarasaponin VI) were successfully prepared by biotransforming total saponins extracted from Panax japonicus. This study contributes to understanding the mechanism of enzymatic hydrolysis of the GH3 family and provides a practical route for the preparation of rare oleanane-type ginsenosides through biotransformation. KEY POINTS: • The glucose at C-28 in oleanane-type saponins can be directionally hydrolyzed. • Mechanisms to interpret PlGH3 substrate specificity by molecular docking. • Case of preparation of low-sugar alternative saponins by directed hydrolysis.


Asunto(s)
Ginsenósidos , Ácido Oleanólico/análogos & derivados , Paenibacillus , Saponinas , Glicósido Hidrolasas/genética , Simulación del Acoplamiento Molecular , Escherichia coli/genética , Ésteres
8.
Arch Toxicol ; 98(8): 2557-2576, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38703205

RESUMEN

Consumption of herbal products containing pyrrolizidine alkaloids (PAs) is one of the major causes for hepatic sinusoidal obstruction syndrome (HSOS), a deadly liver disease. However, the crucial metabolic variation and biomarkers which can reflect these changes remain amphibious and thus to result in a lack of effective prevention, diagnosis and treatments against this disease. The aim of the study was to determine the impact of HSOS caused by PA exposure, and to translate metabolomics-derived biomarkers to the mechanism. In present study, cholic acid species (namely, cholic acid, taurine conjugated-cholic acid, and glycine conjugated-cholic acid) were identified as the candidate biomarkers (area under the ROC curve 0.968 [95% CI 0.908-0.994], sensitivity 83.87%, specificity 96.55%) for PA-HSOS using two independent cohorts of patients with PA-HSOS. The increased primary bile acid biosynthesis and decreased liver expression of farnesoid X receptor (FXR, which is known to inhibit bile acid biosynthesis in hepatocytes) were highlighted in PA-HSOS patients. Furtherly, a murine PA-HSOS model induced by senecionine (50 mg/kg, p.o.), a hepatotoxic PA, showed increased biosynthesis of cholic acid species via inhibition of hepatic FXR-SHP singling and treatment with the FXR agonist obeticholic acid restored the cholic acid species to the normal levels and protected mice from senecionine-induced HSOS. This work elucidates that increased levels of cholic acid species can serve as diagnostic biomarkers in PA-HSOS and targeting FXR may represent a therapeutic strategy for treating PA-HSOS in clinics.


Asunto(s)
Biomarcadores , Enfermedad Veno-Oclusiva Hepática , Metabolómica , Alcaloides de Pirrolicidina , Receptores Citoplasmáticos y Nucleares , Alcaloides de Pirrolicidina/toxicidad , Animales , Enfermedad Veno-Oclusiva Hepática/inducido químicamente , Enfermedad Veno-Oclusiva Hepática/metabolismo , Enfermedad Veno-Oclusiva Hepática/tratamiento farmacológico , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/agonistas , Masculino , Humanos , Biomarcadores/metabolismo , Ratones , Hígado/metabolismo , Hígado/efectos de los fármacos , Ácidos y Sales Biliares/metabolismo , Femenino , Persona de Mediana Edad , Ratones Endogámicos C57BL , Ácido Cólico , Adulto
9.
Zhongguo Zhong Yao Za Zhi ; 49(4): 858-867, 2024 Feb.
Artículo en Zh | MEDLINE | ID: mdl-38621893

RESUMEN

Benign prostatic hyperplasia(BPH) is a common disease of the male urinary system, and its incidence rate in China is increasing. However, the mechanism underlying the pathogenesis of BPH remains unclear. Some studies demonstrated that the incidence of BPH was related to the change in the levels of steroid hormones. Too high content of dihydrotestosterone(DHT) in the body may cause BPH and other related diseases. Testosterone(T) is converted to DHT by 5α-reductase(SRD5A). By inhibiting the activity of this enzyme, the production of DHT can be reduced, and then the incidence of BPH can be lowered. Therefore, it has drawn great attention to screen and discover safer and more effective 5α-reductase inhibitors from natural medicines to treat prostatic hyperplasia without affecting the physiological function of men. This review summarizes the characteristics and tissue distribution of 5α-reductase, the discovery of 5α-reductase inhibitors in traditional Chinese medicine and natural medicines, 5α-reductase inhibitors commonly used in clinical practice and their side effects, as well as the animal models of prostatic hyperplasia and common detection indicators, aiming to provide a reference for more in-depth understanding and research about BPH and development of drugs.


Asunto(s)
Inhibidores de 5-alfa-Reductasa , Hiperplasia Prostática , Animales , Humanos , Masculino , Inhibidores de 5-alfa-Reductasa/uso terapéutico , Colestenona 5 alfa-Reductasa , Dihidrotestosterona , Hiperplasia Prostática/tratamiento farmacológico , Testosterona
10.
Zhongguo Zhong Yao Za Zhi ; 48(22): 6088-6092, 2023 Nov.
Artículo en Zh | MEDLINE | ID: mdl-38114216

RESUMEN

To study the chemical constituents in the non-alkaloid part of stems of Dendrobium nobile. The macroporous adsorption resin, MCI, silica gel, RP-C_(18), and Sephadex LH-20 gel, preparative thin layer chromatography, and preparative high-performance liquid chromatography(HPLC) were used to isolate and purify the compounds. The structures of the compound were determined according to the spectra data, physicochemical properties, and relevant references. A total of 8 compounds were isolated from D. nobile, which were soltorvum F(1), p-hydroxyphenylpropionic acid(2), vanillic acid(3), p-hydroxybenzoic acid(4), N-trans-cinnamic acid acyl-p-hydroxybenzene ethylamine(5),(+)-(1R,2S,3R,4S,5R,6S,9R)-2,11,12-trihydroxypicrotoxane-3(15)-lactone(6), dendronobilin H(7), soltorvum E(8). Compound 1 was a novel compound, named as soltorvum F. Compound 8 was isolated from Dendrobium species for the first time.


Asunto(s)
Dendrobium , Sesquiterpenos , Dendrobium/química , Estructura Molecular , Sesquiterpenos de Guayano , Sesquiterpenos/química
11.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5235-5243, 2023 Oct.
Artículo en Zh | MEDLINE | ID: mdl-38114112

RESUMEN

The aim of this study is to investigate the effects of Gynostemma pentaphyllum dried with two different methods(air drying and heating) on inflammation in acute lung injury(ALI) mice in vivo and in vitro. Lipopolysaccharide(LPS) was sprayed into the airway of wild type C57BL/6J male mice to establish the model, and the drug was injected into the tail vein 24 h after modeling. Lung function, lung tissue wet/dry weight(W/D) ratio, the total protein concentration, interleukin 6(IL-6), IL-1ß, and tumor necrosis factor-α(TNF-α) in the bronchoalveolar lavage fluid(BALF), and pathological changes of the lung tissue were used to evaluate the effects of different gypenosides on ALI mice. The results showed that total gypenosides(YGGPs) and the gypenosides substituted with one or two glycosyl(GPs_(1-2)) in the air-dried sample improved the lung function, significantly lowered the levels of IL-1ß and TNF-α in BALF, and alleviated the lung inflammation of ALI mice. Moreover, GPs_(1-2) had a more significant effect on inhibiting NO release in RAW264.7 cells. This study showed that different drying methods affected the anti-inflammatory activity of G. pentaphyllum, and the rare saponins in the air-dried sample without heating had better anti-inflammatory activity.


Asunto(s)
Gynostemma , Factor de Necrosis Tumoral alfa , Masculino , Ratones , Animales , Factor de Necrosis Tumoral alfa/metabolismo , Ratones Endogámicos C57BL , Pulmón , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismo , Interleucina-6/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Lipopolisacáridos/farmacología
13.
Sci Total Environ ; 919: 170875, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38360307

RESUMEN

Poyang Lake is the largest freshwater lake in China, serving as a natural reservoir and playing a paramount role in climate regulation, ecological environment, and water resource management. However, in recent years, Poyang Lake has approached desiccation multiple times, with severe droughts becoming increasingly common. Consequently, precise quantification and analysis of the terrestrial water storage anomalies (TWSA) and drought characteristics of the Poyang Lake basin (PLB) are of profound scientific and practical significance. This paper, for the first time, utilizes data for the period 2021-2022 from 77 newly-established GNSS observation stations in the PLB to precisely determine its vertical crustal displacement, invert daily and monthly TWSA, and investigate extreme hydrological drought. The results reveal the following: 1) The annual amplitude range of vertical surface displacements at GNSS stations in the Poyang Lake basin is from 7 to 14 mm, with the most substantial seasonal vertical displacements occurring during the months of June and July; 2) monthly GNSS-TWSA maintains a commendable consistency with TWSA data obtained from the Gravity Recovery and Climate Experiment (GRACE), the Global Land Data Assimilation System (GLDAS), and precipitation, with correlation coefficients of 0.67, 0.55, and 0.62, respectively; 3) at daily scale, the GNSS-derived Drought Severity Index (GNSS-DSI) accurately recorded the severity and intensity of eight drought events in the PLB during 2021-2022, in particular the period of extensive drought between October 2021 and February 2022, when drought intensity reaching a notable 1.03, which is classified as an extreme and prolonged drought event. Additionally, at local temporal scales, daily GNSS-DSI exhibits heightened sensitivity to drought signals. This study provides novel technological tools and datasets for multi-source satellite-based drought monitoring in the PLB.

14.
J Ethnopharmacol ; 329: 118136, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38583731

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Panax ginseng C.A. Meyer., a famous and valuable traditional Chinese medicine with thousand years of history for its healthcare and therapeutic effects. It is necessary and meaningful to study the pharmacokinetic behavior of ginsenosides in vivo as they are the most active components. Dried blood spots (DBS) are a mature and advanced blood collection method with meet the needs for the measurement of numerous analytes. AIM OF THE STUDY: This study aimed to explore the feasibility on DBS in the metabolic profile analysis of complex herbal products. MATERIALS AND METHODS: An ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS/MS) method was developed and validated for the determination of ginsenosides. The preparation of DBS samples was conducted by spiking the whole blood with analytes to obtain 20 µL of blood spots on Whatman 903 collection card. A punched dish of 10 mm in diameter was extracted with 70 % methanol aqueous solution, digoxin was used as an internal standard. Target compounds were separated on a Waters T3 column (2.1 × 100 mm, 1.8 µm) with acetonitrile and water (0.1 % formic acid) at a flow rate of 0.4 mL/min. RESULTS: The various ginsenosides showed good linearity in the range of 1-2000 ng/mL. The extraction recoveries and matrix effects of the target analytes were above 82.2%. The intra- and inter-batch accuracy and precision were within the limits of ≤15% for all tested concentrations. Moreover, the collected dried blood spot samples could be stably stored at room temperature for 14 days and 4 °C for 1 month without being affected. And it is delightful that the DBS-based analysis is compatible or even superior to the conventional protein precipitation in terms of sensitivity, linearity, and stability. In particular, the target analytes are stable in the DBS sampling under normal storing condition and the sensitivity for some trace metabolites of ginsenosides, such as 20(S)-Rg3, 20(R)-Rg3, F1, Rk1, Rg5, etc. increases 3-4 folds as evaluated by LLOQ. CONCLUSIONS: The established method was successfully applied to pharmacokinetic studies of ginseng extract in mice, this suggests a more feasible strategy for pharmacokinetic study of traditional and natural medicines both in animal tests and clinical trials.


Asunto(s)
Pruebas con Sangre Seca , Ginsenósidos , Espectrometría de Masas en Tándem , Ginsenósidos/sangre , Ginsenósidos/farmacocinética , Cromatografía Líquida de Alta Presión/métodos , Pruebas con Sangre Seca/métodos , Animales , Espectrometría de Masas en Tándem/métodos , Masculino , Panax/química , Reproducibilidad de los Resultados , Ratones , Cromatografía Líquida con Espectrometría de Masas
15.
Food Chem ; 445: 138748, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38422865

RESUMEN

Pyrrolizidine alkaloids (PAs) in food and natural preparations have received widespread attention due to their hepatotoxicity, genotoxicity, and embryotoxicity. Mass spectrometry (MS), as a high resolution, high sensitive, and high throughput detection tool, has been the most commonly used technique for the determination of PAs. The continuous advancement of new technologies, methods, and strategies in the field of MS has contributed to the improvement of the analytical efficiency and methodological enhancement of PAs. This paper provides an overview of the structure, toxicity properties and commonly employed analytical methods, focusing on the concepts, advances, and novel techniques and applications of MS-based methods for the analysis of PAs. Additionally, the remaining challenges, future perspectives, and trends for PA detection are discussed. This review provides a reference for toxicological studies of PAs, content monitoring, and the establishment of quality control and safety standards for herbal and food products.


Asunto(s)
Alcaloides de Pirrolicidina , Alcaloides de Pirrolicidina/análisis , Espectrometría de Masas , Alimentos
16.
J Agric Food Chem ; 72(28): 15832-15840, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38957132

RESUMEN

Prenylflavonoids are promising candidates for food additives and functional foods due to their diverse biological activities and potential health benefits. However, natural prenylflavonoids are generally present in low abundance and are limited to specific plant species. Here, we report the biosynthesis of licoflavanone from naringenin and prenol by recombinant Escherichia coli. By investigating the activities of seven different sources of prenyltransferases overexpressed in E. coli toward various flavonoid substrates, the prenyltransferase AnaPT exhibits substrate preference when naringenin serves as the prenyl acceptor. Furthermore, licoflavanone production was successfully achieved by coupling the isopentenol utilization pathway and AnaPT in recombinant E. coli. In addition, the effects of fermentation temperatures, induction temperatures, naringenin concentrations, and substrate feeding strategies were investigated on the biosynthesis of licoflavanone in recombinant E. coli. Consequently, the recombinant E. coli strain capable of improved dimethylallyl diphosphate (DMAPP) supply and suitable for prenylflavonoid biosynthesis increased licoflavanone titers to 142.1 mg/L in a shake flask and to 537.8 mg/L in a 1.3 L fermentor, which is the highest yield for any prenylflavonoids reported to date. These strategies proposed in this study provide a reference for initiating the production of high-value prenylflavonoids.


Asunto(s)
Dimetilaliltranstransferasa , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Dimetilaliltranstransferasa/metabolismo , Dimetilaliltranstransferasa/genética , Pentanoles/metabolismo , Ingeniería Metabólica , Flavonoides/metabolismo , Flavonoides/biosíntesis , Hemiterpenos/metabolismo , Fermentación
17.
J Chromatogr A ; 1721: 464816, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38537486

RESUMEN

The severe respiratory dysfunctions associated with acute lung injury (ALI) and its sequelae have a high morbidity and mortality rate, are multifactorial, and lack a viable treatment. Considering the critical function that amino acids and derivatives play in the genesis of illnesses and the regulation of metabolic processes, monitoring the levels of metabolites associated with amino acids in biological matrices is necessary and interesting to study their pathological mechanisms. Exploring the dynamics of amino acids and derivatives level and searching for biomarkers provides improved clinical ideas for the diagnosis and treatment of ALI. Therefore, we developed an ultra-high-performance liquid chromatography-electrospray tandem mass spectrometry (UHPLC-MS/MS) method that can simultaneously determine the amino acid and derivatives metabolic levels to study amino acid profiles in different biological samples to facilitate clinical research of ALI. In this study, 48 amino acids and derivatives, including neurotransmitters, polyamines, purines, and other types, were quantified simultaneously in a fast, high-throughput, sensitive, and reliable manner within a 15-minute run time without derivatization. No relevant studies have been reported to quantify these 48 amino acid metabolites in three biological samples simultaneously. Satisfactory linearity (R > 0.995), inter-day and intra-day accuracy (85.17-112.67 % and 85.29-111.60 %, respectively), inter-day and intra-day precision (RSD < 13.80 % and RSD < 12.01 %, respectively), matrix effects (81.00 %-118.00 %), recovery (85.09 %-114.65 %) and stability (RSD < 14.72 %) were all demonstrated by the optimized method's successful validation for all analytes. In addition, the suggested method was effectively implemented in plasma, urine, and lung tissue from normal mice and mice with ALI, with the aim of finding potential biomarkers associated with ALI. Potential biomarkers were screened through multivariate statistical analysis and volcanic map analysis, and the changes of markers in ALI were again identified through heat map analysis and correlation analysis with biochemical indicators, which provided ideas and references for subsequent mechanism studies. Here, the technique created in this work offers a quick and dependable way to perform an integrated analysis of amino acids in a variety of biological materials, which can provide research ideas for understanding the physiopathological state of various diseases.


Asunto(s)
Lesión Pulmonar Aguda , Espectrometría de Masas en Tándem , Ratones , Animales , Espectrometría de Masas en Tándem/métodos , Aminoácidos/análisis , Cromatografía Líquida de Alta Presión/métodos , Lesión Pulmonar Aguda/diagnóstico , Biomarcadores/análisis
18.
Int Immunopharmacol ; 141: 112929, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39153307

RESUMEN

As a prominent complication of diabetes mellitus (DM) affecting microvasculature, diabetic retinopathy (DR) originates from blood-retinal barrier (BRB) damage. Natural polyphenolic compound chlorogenic acid (CGA) has already been reported to alleviate DR. This study delves into the concrete mechanism of the CGA-supplied protection against DR and elucidates its key target in retinal endothelial cells. DM in mice was induced using streptozotocin (STZ). CGA mitigated BRB dysfunction, leukocytes adhesion and the formation of acellular vessels in vivo. CGA suppressed retinal inflammation and the release of tumor necrosis factor-α (TNFα) by inhibiting nuclear factor kappa-B (NFκB). Furthermore, CGA reduced the TNFα-initiated adhesion of peripheral blood mononuclear cell (PBMC) to human retinal endothelial cell (HREC). CGA obviously decreased the TNFα-upregulated expression of vascular cell adhesion molecule-1 (VCAM1) and intercellular adhesion molecule-1 (ICAM1), and abrogated the TNFα-induced NFκB activation in HRECs. All these phenomena were reversed by overexpressing type 1 TNF receptor (TNFR1) in HRECs. The CGA-provided improvement on leukocytes adhesion and retinal inflammation was disappeared in mice injected with an endothelial-specific TNFR1 overexpression adeno-associated virus (AAV). CGA reduced the interaction between TNFα and TNFR1 through binding to TNFR1 in retinal endothelial cells. In summary, excepting reducing TNFα expression via inhibiting retinal inflammation, CGA also reduced the adhesion of leukocytes to retinal vessels through decreasing VCAM1 and ICAM1 expression via blocking the TNFα-initiated NFκB activation by targeting TNFR1 in retinal endothelial cells. All of those mitigated retinal inflammation, ultimately alleviating BRB breakdown in DR.

19.
J Adv Res ; 2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38195040

RESUMEN

BACKGROUND: Rare ginsenosides (Rg3, Rh2, C-K, etc.) refer to a group of dammarane triterpenoids that exist in low natural abundance, mostly produced by deglycosylation or side chain modification via physicochemical processing or metabolic transformation in gut, and last but not least, exhibited potent biological activity comparing to the primary ginsenosides, which lead to a high concern in both the research and development of ginseng and ginsenoside-related nutraceutical and natural products. Nevertheless, a comprehensive review on these promising compounds is not available yet. AIM OF REVIEW: In this review, recent advances of Rare ginsenosides (RGs) were summarized dealing with the structurally diverse characteristics, traditional usage, drug discovery situation, clinical application, pharmacological effects and the underlying mechanisms, structure-activity relationship, toxicity, the stereochemistry properties, and production strategies. KEY SCIENTIFIC CONCEPTS OF REVIEW: A total of 144 RGs with diverse skeletons and bioactivities were isolated from Panax species. RGs acted as natural ligands on some specific receptors, such as bile acid receptors, steroid hormone receptors, and adenosine diphosphate (ADP) receptors. The RGs showed promising bioactivities including immunoregulatory and adaptogen-like effect, anti-aging effect, anti-tumor effect, as well as their effects on cardiovascular and cerebrovascular system, central nervous system, obesity and diabetes, and interaction with gut microbiota. Clinical trials indicated the potential of RGs, while high quality data remains inadequate, and no obvious side effects was found. The stereochemistry properties induced by deglycosylation at C (20) were also addressed including pharmacodynamics behaviors, together with the state-of-art analytical strategies for the identification of saponin stereoisomers. Finally, the batch preparation of targeted RGs by designated strategies including heating or acid/ alkaline-assisted processes, and enzymatic biotransformation and biosynthesis were discussed. Hopefully, the present review can provide more clues for the extensive understanding and future in-depth research and development of RGs, originated from the worldwide well recognized ginseng plants.

20.
Sci Total Environ ; 944: 173840, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-38866166

RESUMEN

Long-term, high spatiotemporal resolution of surface water area, water level, and storage changes in the Yangtze River Basin (YRB) has great scientific and practical importance for improving the management of water resources. Here, three distinct area estimations were first derived using the water classification enhancement method, automated water extraction method based on random forest, and the modified normalized difference water index. The optimized area data was determined by comparing against Sentinel-2 with the minimum root mean square error. A new area data was constructed with the optimized area as the primary data, while the remaining datasets were employed to fill in gaps. The elevation-area relationship was used to derive monthly water level. Changes in water storage were calculated by applying the pyramidal frustum formula from surface water area and water level data. Finally, a new comprehensive dataset of the monthly area, level, and storage changes in the 119 lakes and 75 reservoirs across the YRB with area larger than 10 km2 from 1990 to 2021 were first reconstructed. The spatiotemporal trends of surface water area/level/storage in lakes and reservoirs over 11 sub-basins of the YRB were quantified from 1990 to 2021, as well as before (1990-2003) and after (2003-2021) the construction of the Three Gorges Dam (TGD). During 1990-2021, there was a marked decrease in surface water area/level/storage in most of the YRB sub-basins, which contain 79 % of the lakes and 30 % of the reservoirs. After TGD was constructed, the surface water in lakes decreased by 10 %, while that of reservoirs remained consistent with the pre-construction. The surface water area/level/storage in the lower sub-basins of YRB exhibited a decline to an upward trend before and after the construction of TGD. This study provides a new comprehensive dataset for understanding the dynamic changes of water resource and climate change.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA